

Research Journal of **Botany**

ISSN 1816-4919

Effect of Ethylene Inhibitors on *in vitro* Shoot Multiplication and their Impact on Ethylene Production in Cucumber (*Cucumis sativus* L.)

²Vasudevan Ayyappan, ³Selvaraj Natesan, ¹Ganapathi Andy,
²Chang won Choi, ¹Manickavasagam Markandan and ¹Kasthurirengan Sampath
¹Department of Biotechnology, Bharathidasan University,
Tiruchirappalli 620-024, Tamilnadu, India
²Department of Biology and Medicinal Science,
Pai Chai University, Daejeon 302-735, Korea
³Department of Botany, Periyar E.V.R. College (Autonomous),
Tiruchirappalli 620-023, Tamilnadu, India

Abstract: Effects of ethylene inhibitors like silver nitrate (AgNO₃), cobalt chloride (CoCl₂) and salicylic acid (SA) on multiple shoot induction and their impact on ethylene production using embryonal cotyledon cultures of *Cucumis sativus* L. were examined. The optimum concentration of AgNO₃ (40 μ M), CoCl₂ (20 μ M) and SA (20 μ M), separately, induced maximum number of shoots in Murashige and Skoog's (MS) medium supplemented optimally with 4.44 μ M BA and 0.25 μ M NAA. Among the three ethylene inhibitors tested, AgNO₃ produced maximum number of shoots when compared to CoCl₂ and SA. Ethylene production was monitored in all the treatments with AgNO₃/CoCl₂/SA and it was observed that the treatment with AgNO₃ alone showed increase in ethylene production when compared to CoCl₂ and SA. Even though ethylene concentration was the highest in AgNO₃ treated explants, maximum number of shoots were observed.

Key words: Ethylene inhibitors, shoot regeneration, *Cucumis sativus* L.

Introduction

Cucumber (*Cucumis sativus* L.) is one of the major vegetable in the tropics, subtropics and milder areas of the temperate zones of both hemispheres. In recent years, cucumber tissue culture has been employed to produce cultivars with improved agronomic traits such as virus resistance (Chee and Slightom, 1991) and fungal resistance (Raharjo *et al.*, 1996; Tabei *et al.*, 1998). However, plant regeneration in cucumber still encounters many problems such as abnormal embryo development, poor differentiation of callus into shoots, poor survival of regenerated plants in soil and undesirable changes in ploidy level of regenerated plants (Ziv and Gadasi, 1986; Malepszy, 1988; Gambley and Dodd, 1990). Further, the frequency of regeneration in earlier studies was dependent on the source of explants, the cultivars, growth regulator combinations and physical conditions of culture.

In recent years, there has been accumulating evidences that growth and differentiation of plant cells and tissues *in vitro* can be affected considerably by ethylene. Ethylene is readily produced by plants and its production is associated with poor regeneration or recalcitrance behavior of culture materials (Chi *et al.*, 1990). Many reports have demonstrated the positive effect of AgNO₃ on plant tissue culture (Mohiuddin *et al.*, 1997; Mhatre *et al.*, 1998; Saly *et al.*, 2002). Ethylene inhibitors such as silver nitrate (AgNO₃), cobalt chloride (CoCl₂) and Salicylic Acid (SA) have been shown to be effective for shoot regeneration by inhibiting the ethylene production in cucumber (Roustan *et al.*, 1992; Mohiuddin *et al.*, 1997; Mhatre *et al.*, 1998), muskmelon (Yadav *et al.*, 1996), or its function by

blocking certain steps in the pathway of ethylene synthesis in *Brassica campestris* (Pua et al., 1996) and *Chicorium intybus* (Bais et al., 1999). Addition of these compounds in vitro may be helpful for overcoming the recalcitrance or in enhancing regeneration. The present study was determined the effect of ethylene inhibitors on shoot regeneration efficiency from the embryonal explants of an important commercial cucumber cultivar Poinsett 76. In particular, we examined the interaction of ethylene and other plant growth regulator, SA. In addition, ethylene production from cultured explants and its impact on shoot induction frequency was investigated at the first time. Such studies are providing an update in regenerating large number of shoots from a single explant.

Materials and Methods

Culture Method

Seeds of Cucumis sativus L. cv. Poinsett 76 (Indo-American hybrid seeds Ltd., Bangalore, India) were soaked in tap water for 15 min disinfested with 70% alcohol (v/v) for 1 min and 2.5% (v/v) commercial bleach 'Teepol' (5.25% sodium hypochlorite; Reckitt and Benckiser of India Ltd., Kolkatta, India) for 15 min followed by three rinses with sterile distilled water. Seeds were further disinfested by soaking in 0.1% mercuric chloride (w/v) for 8 min and germinated in darkness for 48 h in 25×150 mm test tubes (Borosil, India) containing sterile moist cotton. Embryonal cotyledon explants were isolated from one day-old germinating seeds under sterile conditions and were used as explants. To optimize the concentration of phytohormone for shoot regeneration, embryonal cotyledon explants were cultured on ten ml of shoot regeneration medium which was agar-solidified MS (Murashige and Skoog, 1962) medium supplemented with different concentrations and combinations of 6-benzyladenine (BA) (0-8.88 μM), kinetin (Kn) (0-9.2 μM) and α-naphthalene acetic acid (NAA) (0.05-1.0 μM). The effect of AgNO₃, CoCl₂ and SA were investigated by culturing the explants on MS medium containing 4.44 μM BA and 0.25 μM NAA with different concentrations of AgNO₃ (10-50 μM), CoCl₂(10-40 μM) and SA (10-40 μM) individually. Silver nitrate and SA were filter sterilized through 0.22 µm Millipore filter (Sigma, USA) and added to the medium after autoclaving. After 4 weeks of culture, the adventitious shoots that formed on the explants were counted. Shoots developed from the explants were excised and transferred to rooting medium containing different concentrations of IBA (0.4, 2.4, 4.9 and 7.3 µM; Indole-3-butyric acid). The medium was adjusted to pH 5.8 before autoclaving at 121°C for 15 min. All cultures were incubated at 25°C under 16 h photoperiod of cool-white illumination (Philips, India) at 30 μmol m⁻² sec⁻¹.

Acclimatization

Plants with profuse rooting were thoroughly washed in tap water to remove the agar and later transplanted to plastic pots containing a mixture of autoclaved sand, soil and vermiculite (1:1:1, v/v/v). Potted plants were grown in a growth chamber at 85% relative humidity for 4 weeks. Upon new leaf growth, the plants were kept in a shade house for 4 week before transferring to the field.

Statistical Analysis

Regeneration frequency (number of explants with shoots/total number of explants cultured) and shoot number per explant were assessed for 20 replicates. A complete randomized design was used in all experiments and a one-way analysis of variance (ANOVA) and comparisons between the mean values of treatments were carried out using Duncan's Multiple Range Test (DMRT). Significance was determined at the 5% level (Gomez and Gomez, 1976).

Ethylene Measurement

The embryonal cotyledon explant was cultured in a 9 mL glass tube (Borosil, India) (5 cm in length, 1 cm in diameter) containing 2.5 mL MS medium with or without different concentrations of

AgNO $_3$ (10-50 μ M), CoCl $_2$ (10-50 μ M) and SA (10-50 μ M). The glass tube was sealed with an airtight seal septum until ethylene measurement. Each treatment consisted of five to six replicates with each glass tube containing 1 explant. Cultures were allowed to stand hood and at the end of 3 h, one milliliter of gas was sampled from each glass tube and measured using gas-chromatograph (Theologis, 1992). Ethylene produced by the cultured explant was examined at the interval of one week each during 4 week culture period.

Results and Discussion

Optimization of Culture Conditions for Shoot Regeneration

Among the different concentrations and combinations of BA, Kn and NAA tested, BA (4.44 μ M) with NAA (0.25 μ M) was found favourable for adventitious shoot induction and multiplication with a frequency of 62.6% for embryonal cotyledon explant (Table 1). In this medium, each explant regenerated 9.2 shoots. In the absence of plant growth regulators (control) in MS medium no shoot regeneration was observed. Similarly BA and NAA induced multiple shoots from various explants of cucumber viz., cotyledon (Selvaraj, 2002), shoot tip (Vasudevan *et al.*, 2001; Selvaraj, 2002), hypocotyl (Wehner and Locy, 1981; Rajasekaran *et al.*, 1983; Selvaraj, 2002) and shoot tip of *Momordica dioica* (Shiragave and Chavan, 2001). Hence, a combination of 4.44 μ M BA and 0.25 μ M NAA was chosen as a basal medium for investigating the effect of AgNO₃, CoCl₂ and SA on their role in enhancing shoot regeneration frequency and other growth parameters.

Table 1: Effect of BA, Kn and NAA on multiple shoot induction from cotyledon explants of cucumber cv. Poinsett 76

Perce		Percentage	Mean No. of shoo	ts	•	
Concentration		of explants			Shoot	
(μM)		with shoots	Initial culture	After 2nd transfer	length (cm)	No. of nodes
0		9.4±0.16qr	1.6±0.16j	2.4±0.16n	1.7±0.16lm	1.1 ± 0.08 lm
		(F = 6291.25)***	(F = 6.410)***	(F = 15.83)***	(F = 58.40)***	(F = 21.87)***
BA						
0.44		12.6±0.11p	1.8±0.16hi	3.0 ± 0.341	$2.2\pm0.11k$	1.4 ± 0.11 kl
0.88		18.4 ± 0.11 mn	1.9±0.32h	3.6±0.11jk	$2.4\pm0.23k$	1.6±0.11k
1.76		$23.6\pm0.11k$	2.1±0.16gh	4.2±0.11i	$3.6\pm0.11h$	$2.4\pm0.11i$
2.22		32.2±0.11hi	$2.5\pm0.40e$	4.8±0.46g	3.8 ± 0.11 gh	$2.6\pm0.11h$
4.44		43.4±0.23e	2.8±0.16d	$5.4\pm0.23ef$	$4.6\pm0.11e$	$3.4 \pm 0.11 ef$
8.88		15.8±0.20no	1.8±0.16hi	$3.4\pm0.23k$	2.6 ± 0.11 jk	1.8±0.11jk
		(F = 1238.32)***	(F = 31.645)***	(F = 13.52)**	(F = 31.66)***	(F = 15.92)**
Kn						
0.92		9.2±0.23r	0.9 ± 0.121	2.0±0.34o	$1.2\pm0.11n$	$0.8\pm0.08n$
1.84		$12.4\pm0.23q$	1.6±0.11j	2.8±0.11lm	$2.0\pm0.34kl$	1.2 ± 0.11 ln
2.76		$17.2\pm0.11n$	1.8±0.11hi	3.2±0.11kl	2.6±0.23jk	$2.0\pm0.34j$
3.68		22.4 ± 0.111	2.0±0.11gh	3.8±0.46j	3.0±0.11ij	2.2±0.30ij
4.64		30.8±0.46i	$2.4\pm0.11ef$	4.6±0.23gh	3.8 ± 0.11 gh	$2.8\pm0.11g$
9.28		$10.8\pm0.23q$	1.2±0.11k	2.4±0.11n	1.8 ± 0.111	1.2 ± 0.231
		(F = 5507.31)***	(F = 16.954)***	(F = 56.89)***	(F = 187.12)***	(F = 75.28)***
BA	NAA					
4.44	0.05	46.6±0.11d	$2.8\pm0.11d$	5.6±0.11e	$4.4\pm0.11ef$	$3.6\pm0.11e$
	0.10	58.4±0.23b	3.6±0.34b	7.4±0.23c	6.0±0.23c	5.0±0.34bc
	0.25	62.6±0.11a	4.8±0.46a	9.2±0.23a	7.2±0.11a	5.8±0.23a
	0.50	$38.4 \pm 0.23 \text{fg}$	$2.4\pm0.11ef$	4.8±0.46g	$3.6\pm0.11h$	2.6±0.11gh
	0.75	32.8±0.11q	2.1±0.08g	4.0±0.23ij	2.8±0.11j	2.0±0.11j
		(F = 1942.95)***	(F = 91.393)***	(F = 24.54)***	(F = 40.80)***	(F = 58.07)***
Kn	NAA					
4.64	0.05	27.4±0.23j	3.6±0.11b	5.2±0.30f	4.0±0.40g	$2.8\pm0.11g$
	0.10	$38.6 \pm 0.40 f$	3.4±0.11c	6.4±0.23d	5.2±0.11d	4.0±0.23d
	0.25	49.8±0.34c	3.5±0.08bc	7.8±0.50b	6.4±0.23b	$5.2\pm0.11b$
	0.50	$22.6\pm0.11kl$	2.1±0.08g	4.2±0.41i	3.2±0.30i	2.4±0.23i
	0.75	19.4±0.23m	1.6±0.11j	3.4±0.23k	2.2±0.11k	1.4±0.23kl

Values represents the treatment means of 20 replicates, Values with the same letter(s) within the column are not significantly different according to Duncan's Multiple range Test (DMRT) at $p \le 0.05$ level ***, Highly significant (p < 0.001); **, Highly significant (p < 0.01)

Table 2: Effect of ethylene inhibitors in multiple shoot induction on MS medium containing BA (4.44 μM) and NAA (1.59 μM)

	Percentage	No. of shoots			
Compound	of explants			Mean shoot	
(μΜ)	with shoots	Initial culture	After 2nd transfer	length (cm)	No. of nodes
BA + NAA	62.6d	4.8gh	9.2j	7.2b	5.8b
$AgNO_3$					
10	48.6± 0.12g	$7.2 \pm 0.12d$	13.4 ± 0.17 g	4.6 ± 0.12 g	$3.2 \pm 0.16 fg$
20	62.4 ± 0.17 de	$8.4 \pm 0.17 cd$	$16.2 \pm 0.11 \mathrm{ef}$	$5.4 \pm 0.18e$	$4.6 \pm 0.18d$
30	$71.6 \pm 0.11b$	$10.6 \pm 0.12b$	$21.6 \pm 0.24c$	$6.2 \pm 0.12c$	$5.0 \pm 0.21 \mathrm{c}$
40	$84.2 \pm 0.16a$	$13.8 \pm 0.24a$	$37.4 \pm 0.17a$	$7.6 \pm 0.14a$	$6.2 \pm 0.24a$
50	34.6 ± 0.30 k	$6.0 \pm 0.17 f$	$9.6 \pm 0.12i$	$3.4 \pm 0.12ij$	$2.6 \pm 0.21 \mathrm{gh}$
CoCl ₂					
10	30.8 ± 0.111	2.8 ± 0.14 k	6.6 ± 0.121	$2.2 \pm 0.12 m$	$1.4 \pm 0.12ij$
20	$36.4 \pm 0.11j$	$3.6 \pm 0.11ij$	8.2 ± 0.14 k	2.8 ± 0.14 k	$1.6 \pm 0.12 hi$
30	$68.6 \pm 0.34c$	$8.8 \pm 0.24c$	$27.2 \pm 0.24b$	5.6 ± 0.21 de	4.4 ± 0.24 de
40	$52.4 \pm 0.17f$	7.2 ± 0.12 de	$16.4 \pm 0.17e$	$4.8 \pm 0.21 \text{fg}$	$3.6 \pm 0.18 f$
50	$44.6 \pm 0.22i$	4.8 ± 0.14 g	$11.4 \pm 0.14h$	$3.4 \pm 0.18i$	$2.0 \pm 0.14 h$
Salicylic acid					
10	$21.8 \pm 0.18n$	$1.8 \pm 0.17 m$	3.0 ± 0.12 no	$1.6 \pm 0.12h$	$1.0 \pm 0.08j$
20	26.4 ± 0.20 m	2.4 ± 0.21 kl	3.8 ± 0.14 n	2.6 ± 0.16 kl	$1.6 \pm 0.12i$
30	$62.4 \pm 0.34e$	$5.8 \pm 0.14 fg$	20.6 ± 0.17 cd	$5.8 \pm 0.24d$	$4.8 \pm 0.20 cd$
40	47.6 ± 0.28 gh	$4.4 \pm 0.24 h$	$9.6 \pm 0.12ij$	5.0 ± 0.18 f	$4.2 \pm 0.18e$
50	34.8 ± 0.24 jk	$3.6 \pm 0.17i$	5.4 ± 0.12 m	3.8 ± 0.16 gh	3.0 ± 0.21 g

Values represents the treatment means of 20 replicates, Values with the same letter(s) within the column are not significantly different according to Duncan's Multiple range Test (DMRT) at $p \le 0.05$ level

Effect of Ethylene Inhibitors on Shoot Regeneration

In the present study the addition of AgNO₃ (10-50 μM) was beneficial to shoot regeneration (Table 2). The high frequency of shoot regeneration for embryonal cotyledon (84.2%) with maximum number of shoots (37.4/explant) as well as increase in the length of shoots (7.6 cm) were achieved on the medium containing 40 µM AgNO3; shoot number was four times more than that was obtained on the medium without AgNO₃. AgNO₃ concentration below 40 µM also induced multiple shoots but to a lower extent (Table 2). Silver nitrate treatment at 50 µM inhibited shoot multiplication in terms of both in shoot number (9.6/explant) and length of shoots (3.4 cm). Roustan et al. (1992), in melon and Mohiuddin et al. (1997) in cucumber reported the efficiency of AgNO₃ on multiple shoot induction in cotyledon and hypocotyl explants respectively. However, they were able to obtain only lower number of shoots per explant (about 25 shoots). But in the present experiment, we could get more number of shoots (37.4 shoots/explant) at the end of second subculture. As Ag⁺ ions can prevent a wide variety of ethylene-induced plant responses, including growth inhibition and senescence, the effect was assumed to be mediated via the inhibition of the physiological action of ethylene (Beyer et al., 1984), a potential inhibitor of many plant regeneration systems. In other words, the addition of AgNO₃ or Ag₂SO₄ causes precipitation in culture medium, enhanced shoot regeneration on these media suggests that free Ag+ ions are still available. In a similar way, AgNO3 enhanced shoot regeneration in Nicotiana plumbaginifolia and Triticum aestivum (Purnhauser et al., 1987), Zea mays (Songstad et al., 1991), Brassica campestris sp. Oleifera (Burnett et al., 1994), sp. Pereinensis (Chi et al., 1990) and Raphanus sativus (Pua et al., 1996).

Treatment with CoCl₂ was also effective for improving shoot regeneration frequency (Table 2). In the present study, a high frequency of shoot regeneration was achieved by CoCl₂ (30 μM) with embryonal cotyledon explant (68.6%). The number of shoots were 27.2/explant with a mean shoot length of 5.6 cm. Roustan *et al.* (1992), Mhatre *et al.* (1998) reported that CoCl₂ induced multiple shoots but a lower frequency of 11 shoots/explant in melon and cucumber respectively. In some cases, CoCl₂ was equally effective as AgNO₃ in eliciting morphogenesis (Chraibi *et al.*, 1991).

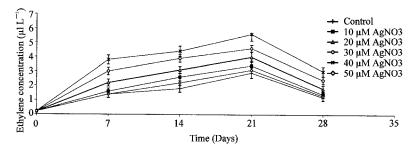


Fig. 1: Effect of various concentrations of AgNO₃ (10-50 μM) on ethylene production in cucumber cv. Poinsett 76

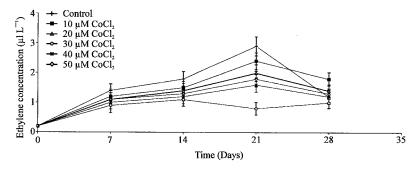


Fig. 2: Effect of various concentrations of CoCl₂ (10-50 μM) on ethylene production in cucumber cv. Poinsett 76

Among the different concentrations of SA tested, $30~\mu M$ concentration induced maximum shoot proliferation (Table 2) but lees than $AgNO_3$ and $CoCl_2$ treatments with 20.6 shoots/explant. Present study was in conformity with Mhatre *et al.* (1998) who reported that acetyl SA induced multiple shoots at $20~\mu M$ concentration in cucumber (about 9 shoots/explant). Experiments with apple suspension culture SA reduced ethylene production over a short period of time but less effective over longer periods (Leslie and Romani, 1988). Increased concentration of $10~to~30~\mu M$, enhances the shoot growth and development, suggesting that there is a correlation between a decrease in ethylene level and an increase in SA level.

Ethylene Production from Cultured Explants

The addition of $AgNO_3$ to basal shoot regeneration medium enhanced the level of ethylene produced by the cultured explants (Fig. 1). Increasing $AgNO_3$ concentrations coincided with an increase in ethylene production in embryonal culture. In the untreated cucumber explants the maximal ethylene level was 2.9 μL L^{-1} after 3 week in the culture. Then the capacity of explant to produce ethylene declined gradually after a week (1.4 μL L^{-1}). In the presence of $AgNO_3$ at 40 μM the ethylene production was dramatically increased after 3 week over the control (Fig. 1). On the 28th day, ethylene production by $AgNO_3$ treated or non treated tissue had decreased. Although the mechanism in which ethylene production is stimulated in response to $AgNO_3$ is unknown, ethylene over production as a result of Ag^{2+} ions treatment has been reported in tomato fruits (Penarrubia *et al.*, 1987). Theologis (1992) reported that ethylene production by the stimulation of $AgNO_3$ can be explained by receptor interference by Ag^{2+} ions that triggers cells to overproduce ethylene.

When embryonal cotyledon explants were cultured with CoCl₂, ethylene production was strongly inhibited over the control treatment. On the 21st day its effectiveness as an inhibitor of ethylene production was concentration-dependent (Fig. 2). Co²⁺ inhibits ethylene production by blocking the

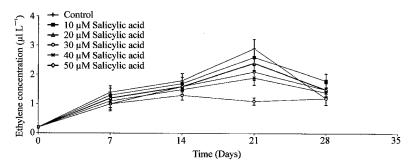


Fig. 3: Effect of various concentrations of Salicylic acid (10-50 μ M) on ethylene production in cucumber cv. Poinsett 76

conversion of 1-aminocyclo-propane 1-carboxylic acid to ethylene (Yang and Hoffman, 1984). In the presence of this inhibitor, shoot regeneration increased with the level of inhibition of ethylene production.

In the present study, the amount of ethylene production in SA treated explants strongly inhibited. In the presence of SA at 30 μ M, the ethylene level was strongly inhibited after 3 week (Fig. 3). Supporting the previous assumption that SA inhibits ethylene production by blocking the action of ethylene forming enzyme (EFE) (Leslie and Romani, 1988). In the present study, like CoCl₂ treatment SA induced multiple shoots by inhibiting ethylene production. Salicylic acid may have an inhibitory effect on ethylene biosynthesis on signaling (Jirage *et al.*, 2001), on the other hand, ethylene can also inhibit SA accumulation.

The present study concluded that ethylene plays an important role in the growth of cell cultures and it is also possible to improve the frequencies of shoot regeneration in cucumber by supplementing the regeneration medium with ethylene inhibitors. Inhibitors of ethylene biosynthesis on receptor binding that confer enhancement of shoot induction and provide efficient way of shoot propagation. As a result, we obtained more number of shoots from embryonal explants of cucumber. Further the ethylene production from embryonal cotyledon explants was analyzed for the first time in cucumber.

References

Bais, H.P., D. Sudha and G.A. Ravishanker, 1999. Putrescine influences growth and production of coumarins in hairy root cultures of witloof chicory (*Chicorium intybus* L. ev. Lucknow Local). J Plant Growth Reg., 18: 159-165.

Beyer, E.M., Y.M. Page and S.F. Yang, 1984. Ethylene. In: Wilkins, M.B. (Ed.) Advanced Plant Physiology, Pitman, London, pp: 111-115.

Burnett, L., M. Arnoldo, S. Yarrow and B. Huang, 1994. Enhancement of shoot regeneration from cotyledon explants of *Brassica rapa* sp. *oleifera* through pretreatment with auxin and cytokinin and use of ethylene inhibitors. Plant Cell Tiss. Organ Cult., 37: 253-256.

Chee, P.P. and J.L. Slightom, 1991. Transfer and expression of Cucumber Mosaic Virus Coat Protein in the genome of *Cucumis sativus*. J. Am. Soc. Hortic. Sci., 116: 1098-1102.

Chi, G.L., D.G. Barfield, G.E. Sim and E.C. Pua, 1990. Effect of AgNO₃ and aminoethoxyglycine on *in vitro* shoot and root organogenesis from seedling explants of recalcitrant *Brassica* genotypes. Plant Cell Rep., 9: 195-198.

Chraibi, B.K.M., A. Latche, J.P. Roustan and J. Fallot, 1991. Stimulation of AgNO₃ and aminoethoxyglycine on *in vitro* shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep., 9: 195-198.

- Gambley, R.L. and W.A. Dodd, 1990. An *in vitro* technique for production of *de novo* of multiple shoots in cotyledon explants of cucumber (*Cucumis sativus* L.). Plant Cell Tiss. Organ Cult., 20: 177-183.
- Gomez, K.A. and K.A. Gomez, 1976. Statistical procedures for agricultural research with emphasis of rice. Rice. Res. Inst., Los Banos, Philliphines.
- Jirage, D., N. Zhou, B. Cooper, J.D. Clarke, X. Dong and J. Glazerbrook, 2001. Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J., 26: 395-407.
- Leslie, C.A. and R.G. Romani, 1988. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol., 88: 833-837.
- Malepszy, S., 1988. Cucumber (*Cucumis sativus* L.). In Biotechnology in Agriculture and Forestry. Bajaj, Y.P.S. (Ed.), 6: 276-293.
- Mhatre, M., M. Mirza and P.S. Rao, 1998. Stimulatory effect of ethylene inhibitors and orthocoumaric acid in tissue cultures of cucumber, *Cucumis sativus* L. Ind. J. Exp. Biol., 36: 104-107.
- Mohinuddin, A.K.M., M.K.U. Chowdhury, S. Zaliha, Z.C. Abdullah and S. Napis, 1997. Influence of silver nitrate (ethylene inhibitor) on cucumber *in vitro* shoot regeneration. Plant Cell Tiss. Organ Cult., 51: 75-78.
- Murashige, T. and F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497.
- Penarrubia, L., M. Aguilar, L. Margossian and R.L. Fischer, 1992. An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell, 4: 681-687.
- Pua, E.C., G.E. Sim, G.L. Chi and L.F. Kong, 1996. Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (*Raphanus sativus* L. var. *longipinnatus* Bailey) in vitro. Plant Cell Rep., 15: 685-690.
- Purnhauser, L.P., M. Medgyesy, P.J. Czakó, K. Dix and L. Marton, 1987. Stimulation of shoot regeneration in *Triticum aestivum* and *Nicotiana plumbaginifolia* via tissue cultures using the ethylene inhibitor AgNO₃. Plant Cell Rep., 6: 1-4.
- Raharjo, S.H.T., M.O. Hernandez, Y.Y. Zhang and Z.K. Punza, 1996. Transformation of pickling cucumber with chitinase-encoding genes using *Agrobacterium tumefaciens*. Plant Cell Rep., 15: 591-596.
- Rajasekaran, K., M.G. Mullins and T. Nair, 1983. Flower formation *in vitro* by hypocotyl explants of cucumber (*Cucumis sativus* L.). Ann Bot., 52: 417-420.
- Roustan, J.P., A. Latche and J. Fallot, 1992. Enhancement of shoot regeneration from cotyledon of Cucumis melo by silver nitrate, an inhibitor of ethylene action. J. Plant Physiol., 140: 485-488.
- Saly, S., C. Joseph, F.Corbineau, M.A. Lelu and D. Côme, 2002. Induction of secondary somatic embryogenesis in hybrid larch (*Larix x leptoeuropaea*) as related to ethylene. Plant Growth Regul., 37: 287-294.
- Selvaraj, N., 2002. *In vitro* culture and genetic transformation of cucumber (*Cucumis sativus* L.). Thesis submitted to Bharathidasan University, Tiruchirappalli. Tamilnadu, India, pp. 24.
- Shiragave, R. and N.S. Chavan, 2001. *In vitro* propagation of *Momordica dioica* (Roxb) Willd. Asian J. Microbiol. Biotechnol. Environ. Sci., 3: 173-175.
- Songstad, D.D., C.L. Armstrong and W.L. Peterson, 1991. Silver nitrate increases type II callus production from immature embryos of maize inbred B 73 and its derivatives. Plant Cell Rep., 9: 699-702.
- Tabei, Y., S. Kitade, Y. Nishizawa, N. Kikuchi, T. Kayano, T. Hibi and K. Akutsu, 1998. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (*Botrytis cinerea*). Plant Cell Rep., 17: 159-164.

- Theologis, A., 1992. One rotten apple spoils the whole bushel: The role of ethylene in fruit Ripening. Cell, 70: 181-184.
- Vasudevan, A., N. Selvaraj, P. Sureshkumar and A. Ganapathi, 2001. Multiple shoot induction from shoot tip explant of cucumber (*Cucumis sativus* L.). Cucurbit Genet. Coop. Rep., 24: 8-12.
- Wehner, T.C. and R.D. Locy, 1981. Tissue culture propagation of field-grown cucumber selections. Cucurbit Genet. Coop. Rep., 4: 20-22.
- Yadav, R.C., M.T. Saleh and R. Grumet, 1996. High frequency shoot regeneration from leaf explants of muskmelon. Plant Cell Tiss. Organ. Cult., 45: 207-214.
- Yang, S.F. and N.F. Hoffman, 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol., 35: 155-189.
- Ziv, M. and G. Gadasi, 1986. Enhanced embryogenesis and plant regeneration from cucumber (*Cucumis sativus* L.) callus by activated charcoal in solid/liquid double layer cultures. Plant Sci., 47: 115-122.