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Abstract: In this research, a versatile algorithm for simulating CNN arrays and time
multiplexing is implemented using numerical integration algorithms. The approach, time-
multiplexing simulation, plays a pivotal role in the area of simulating hardware models and
testing hardware implementations of CNN. Owing to hardware limitations in practical sense,
it is not possible to have a one-one mapping between the CNN hardware processors and all
the pixels of the image. The simulator provides a solution by processing the input image
block by block, with the number of pixels in a block being the same as the number of CNN
processors in the hardware. Simmulation results and comparison have also been presented to
show the efficiency of the Numerical Integration Algorithms. In this research, RK-cight stage
seventh order limiting formulas are implemented and it is found that the RK (7,8) algorithm
outperforms well in comparison with the Explicit Euler, RK-Gill, RK-fifth order and
RK-sixth order algorithms. A more quantitative analysis has been carried out to clearly
visualize the goodness and robustness of the numerical algorithms.

Key words: Time-nuiltiplexing, cellular neural network, nmumerical integration techniques,
edge detection, RK-eight stage seventh order limiting formulas

INTRODUCTION

The uniqueness of Cellular Newral Networks (CNNs) are analog, time-continuous, non-linear
dynamical systems and formally belong to the class of recurrent neural networks. CNNs have been
proposed by Chua and Yang (1988a) and they have found that CNN has many important applications
in signal and real-time image processing (Gonzalez ef af., 2005). As Roska ez al. (1994) have presented
the first widely used simulation system which allows the simulation of a large class of CNN and is
especially suited for image processing applications. It also includes signal processing, pattern
recognition and solving ordinary and partial differential equations ete. Oliveira {1999) introduced the
popular RK-Gill algorithm for evaluation of effectiveness factor of immobilized enzymes. Butcher
(1987) derived the best RK pair along with an error estimate and by all statistical measures it appeared
as the RK-Butcher algorithms. This RK-Butcher algorithm is nominally considered sixth order since
it requires six functions evaluation, butin actual practice the working order is equivalent to five
(fifth order). Ponalagusamy and Senthilkumar (2007a) have discussed RK-sixth order algorithm for
raster CNN simulation. Lee and de Gyvez (1994) introduced Euler, Improved Euler, Predictor-
Corrector and RK-fourth-order (quartic) algorithms in time-multiplexing CNN simulation. It is well
known that RK-eight stage seventh order explicit limiting formulas are of order at most six.
However, by taking the limit as the first abscissa approaches zero, the formulas can achieve seventh
order. Such formulas are called limiting fornmilas which require the evaluations of the second derivatives
of the solution. The possible order of s-stage explicit Runge-Kutta methods is s-1 for s = 5, 6, 7 but,
they can achieve sth order in the limiting case where distance between some pairs of abscissas
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approaches zero. Such formulas are known as s-stage sth order limiting formulas. Ono (1989)
discussed five and six stage RK-type limiting formulas of orders numerically five and six. They are
obtained by replacing the second derivatives involved in the limiting formulas with simplest numerical
differentiation. The reason to perform is that the second derivatives in the limiting formulas does not
need full significant figures carried in computation and the user can choose free parameters so as to
minimize the error caused by nmumerical differentiation. Tn this research, the time multiplexing CNN
simulation problem is solved with different approach using the algorithms such as Explicit Euler,
RK-Gill, RK-Fifth order, RK-Sixth order and the RK-Eight stage seventh order limiting formulas
(Mitsui and Shinochara, 1995) to yield higher accuracy with less error.

STRUCTURE AND FUNCTIONS OF CELLULAR NEURAL NETWORK

The general CNN architecture consists of M*N cells placed in a rectangular array. The basic
circuit unit of CNN is called a cell and the array structure and Block diagram is shown in Fig. 1. It has
linear and nonlinear circuit elements. Any cell, C{(1j), is connected only to its neighbor cells (adjacent
cells interact directly with each other). This intuitive concept is known as neighborhood and is denoted
by N(i,j). Cells not in the immediate neighborhood have indirect effect because of the propagation
effects of the dynamics of the network. Each cell has a state x, input u and output y. For all time
t = 0, the state of each cell is said to be bounded and after the transient has settled down, a cellular
neural network always approaches one of its stable equilibrium points. It implies that the circuit
will not oscillate. The dynamics of a CNN has both output feedback (A) and input control (B)
mechanisms. The dynamics of a CNN network cell is governed by the first order nonlinear differential
equation given:

dx. (t) —
cﬁz—lxu(t)-&- 2 A,k Dy, (D+ 2 B jkDu,(H+L 1 i< M;1 <j <N.
dt R ok (2 NG ) ok 1)eN( )

(1)

and the output equation is given by,

yu(t):%ﬂxu(tﬁ 1-|x, -1 J 1<isM;l1<j<N.

Where:

C = A linear capacitor

X = Denotes the state of cell C(i )
x;(0) = The imtial condition of the cell
R = A linear resistor

I = Anindependent cwrrent source

Ak Dy, and B(i,j:k.uy = Voltage controlled current sources for all cells C(kl) in the
neighborhood N(i,j) of eell C(i,j)
¥ = The output equation

For simulation purposes, a discretized form of Eq. 1 is solved within each cell to simulate its
state dynamics. One common way of processing a large complex image is using a raster approach
(Chua and Yang, 1988a). This approach implies that each pixel of the image is mapped onto a
CNN processor. That is, it has an image processing function in the spatial domain that is
expressed as:
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Fig. 1. Cellular neural networks: (a) Array structure and (b) Block diagram

glxy) = T(fxy) )
Where:
g(.) = The processed image
f{) = The inputimage
T = An operator on f{) defined over the neighborhood of {x,y)

It is an exhaustive process from the view of hardware implementation. For practical applications,
in the order of 250,000 pixels, the hardware would require a large amount of processors which would
make its implementation unfeasible. An alternative option to this scenario is multiplex the image
processing operator.

TIME MULTIPLEXING SIMULATION APPROACH

In this procedure it is possible to define a block of CNN processors which will process a
subimage whose number of pixels is equal to the number of CNN processors in the block. The
processing within this subimage follows the raster approach adapted in Chua and Yang (1988b).
Once convergence is achieved, a new subimage is processed. The same approach is being carried
out until the whole image has been scanned. It is clear that with this approach the hardware
implementation becomes feasible since the number of CNN processors is finite. Also, the entire image
is scanned only once since each block is allowed to fully converge. An important point is to be
noticed that the processed border pixels in each subimage may have incorrect values since they are
processed without neighboring information only local interactions are important for the latency of
CNNs. To overcome the aforementioned problem two sufficient conditions must be considered
while performing time-multiplexing simulation. Alternatively, to ensure that each border cell
properly interacts with its neighbors it is necessary to have the following. (1) To have a belt of
pixels from the original image around the subimage and (2) to have pixel overlaps between
adjacent subimages.

It is possible to quantize the processing error of any border cell C; with neighberhood radius of
1. By computing independently the error owing to the feed forward operator and interaction among
cells for the two horizontally adjacent processing blocks, the absoulte processing error owed only to
the effect of the B template is obtained by subtracting the erroneous state value from the error free
states using Eq. 1. This gives,

1=3

= b1,j+1 Sigl’l (u1,j+1) (3)

B
&;
1=1
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Where:
b;;,y = The missing entries from the B template due to the absence of input signals 1,
sign(.) = The sign function

The latter function is used to represent the status of a pixel, e.g. black = 1 and white = -1. Tt is
seen that the error is both image and template dependent. Alternatively, the steady state of a border
cell may converge to an incorrect value due to the absence of its neighbors weighted input. Given the
local interconnectivity properties of CNN, one c¢an conclude that the minimum width of the input belt
of pixels is equal to the neighborhood radius of the CNN.

Interaction Between Cells
In view of interation between cells, it is possible to compute the absolute error in a similar way.
In absence of the B template for a moment, the error is expressed as:

[}

i=

€ b= b',]+l Y1,j+1 (t) (4)

i i

Where:
&, — Themissing entries from the A template due to the absence of weighted output signals v, ;.,()

In this case output signals depend on the state of their corresponding cells. The technique of an
overlap of pixels between two adjacent blocks is proposed in order to mimimize the error. The
minimum overlap width must be proportional to two times of the neighborhood’s radius of the CNN.
The time-multiplexing procedure deals with iterating each block (subimage) until all CNN cells within
the block converge. The block with converged cells will have state variables x which are the values used
for the final output image shown in Fig. 2, the converged values from Block are taken by the left side
of the overlapped cells and the right side from Block;,,. Further, the initial conditions for the border
cells of Block,,, are the state values obtained while processing Block, ,. In the simulator used here, the
number of overlapping columms or rows between the adjacent blocks is defined by the user. Suppose
if higher number of overlapping is obtained in columns or rows then it indicates the more accurate
simulation of neighboring effects on the border cells. In case of practical applications the correct final

8 x8 CNN block

Belt of inputs (10x10 array) Cverlapped cells

Fig. 2: CNN multiplexing with overlapped cells
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state is of more importance than the transient states, an overlap of two is usually sufficient. An even
number of overlapping cells is recommended, because the converged cells in the overlapped region can
be evenly divided by the two adjacent blocks. Having the added overlapping feature, better neighboring
interactions are achieved, but at the same time, an increase in computation time 1s unavoidable. On the
other hand, by taking advantage of the fact that the original input image is been divided into small CNN
subimages, the chance of a subimage having all its pixels black or white is high. This is another feature
that can be added to the time multiplexing sirmulation to improve computation times. The savings in
simulation time come from avoiding repetitive simulations of all-black and all-white subimages. The
notion behind this timesaving scheme is that when the very first all-black/all-white block is
encountered, after processing that block, the final states of the block are stored separately from the
whole image. When subsequent all-black/all-white blocks are found, there is no need to simulate these
blocks since the converged states are readily available in memory, which in turn leads to avoiding the
most time consuming part of the simulation which is the numerical integration. The overall idea of this
simulation approach is given below in the form of program fragment.

Program Fragment for Time-Multiplexing CNN Simulation
To understand the overall concept of overlap and belt approaches and raster simulation, the
simplified version of algorithm is given:

Step 1: /* Defining the Variables */

B={C,/i=1,.,block x"j=1, .., block_v}
P = B = set of border cells {lower left corner)
overlap = mumber of cell overlaps;

belt = width of the input belt

M = number of rows of the image

N = number of columns of the image

for i=0;1<M;1+=Dblock x - overlap)

for (i=0; j <N;j+=block vy - overlap)

{

Step 2: /* Load the initial conditions for the cells in the block except for those in borders */

for (p = -belt; p < block_x + belt; p++)
for (q = -belt; q < block_y + belt; ¢++)

{
X P
1+p,_]+_]

Step 3: /* if the block contains all white or black do not process it */
if (x £R)

. . =—1lvx. . =1vC. .
i+tp,j+q i+p,j+tq i+tp.j+q
{obtain the final states from memory,

continue;

}
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)
do

{

Step 4: /* Perform the normal raster simulation */

for (p=0; p < block_x; pt++)

{
for (q=0; q < block_y; g++)

{
Step 3: /* Compute of the next state excluding the belt of inputs */

n+l

t
X1+p,1+q (tn+1) = X1+p,]+q(tn) + I f’(X1+p,]+q(tn ))dtvci+p,]+q CB

tl’\

Step 6: /* Check the convergence criteria */

dXi+ i+ (tn) i i
If($ =0 and y, =x1Ve(k, He N, (i+p,j+qQ)

{

converged-cellst+;

Step 7: Mupdate the state values of the entire image */

Xi+p,j+q(tn):Xi+p,j+q(tn+1)VC

}
while (converged-cells < (block-x *block-v));

i+ p.itq € B ;} /* end for */

Step 8: /* store new state values excluding the ones corresponding to the border cells */

Aex VCeEBAP
1* end for*/

NUMERICAL INTEGRATION TECHNIQUES

The CNN is described by a system of nonlinear differential equations. Therefore, it is necessary
to discretize the differential equation for performing behavioral simulation. For computational
purposes, a normalized time differential equation describing CNN is used by Nossek er af. (1992).

) dx, (nT) .
fxim))=——=—x;(nT)+ 2 ALk Dy, (o) +
dt IR, )
Y BhjkDuy@o+I]l €i< M1 <j <N (5)
el LN, 6,)

yij(nr):%[ Xy (nt)-1

xu(nr)+l‘—

],15151\/1;151'51\1;
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Where:
T = The normalized time

For the purpose of solving the initial-value problem, well established Single Step methods of
numerical integration techniques are used in (Lai and Leong, 1995). These methods can be derived using
the definition of the definite integral:

Tasl

x, (n+ Do)-x, (nT)) = j F(x(nt)d(nt) (6)

Five types of numerical integration algorithms are used in time-multiplexing simulations which
are described in the present study. They are Explicit Euler's Algorithm and the Fourth-Order Runge-
Kutta Algorithim discussed respectively by Bader (1987, 1988). RK-Gill Algorithm was discussed by
Oliveira (1999) and Ponalagusamy and Senthilkumar (2007) discussed in detail about the RK-Fifth and
RK-Sixth order algorithms for raster CNN simulation.

Explicit Euler’s Algorithm
Euler’s method is the simplest of all algorithms for solving ordinary differential equations. Itis
an explicit formula which uses the Tavlor-series expansion to calculate the approximation.

%, ((n +1)T) =x, (nT)+f (x(n1)) )

RK-Gill Algorithm

The RK-Gill algorithm was discussed by Oliveira (1999) is an explicit method which requires the
computation of four derivatives per time step. The increase of the state variable x; is stored in the k?
constant This result is used in the next iteration for evaluating k, and repeat the same process to
obtain the values of k,i and k,J.

ki =f'(x,, (nm)),
K =0, (o) %ki;,
(8
1 Ly,
V2 V2
K =f(x, (1)) 7%1@ LK,

V2 vz

I =G, (0m)) +( %)k?)ﬂk

Therefore, the final integration is a weighted sum of the four calculated derivates is given:
1. )
x,(m+ D0)=x, (nr)+g[k‘f 22K K 1K (9

RK-Fifth Order Algorithm

The Fifth Order Runge-Kutta algorithm is an explicit method discussed by Badder (1987, 1988).
It starts with a simple Euler method. The increase of the state variable x;is stored in the constant k.
This result is used in the next iteration for evaluating k,Y. The same procedure must be repeated to
compute the values of k', ki, k. and k4.
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k) =T (x; (nT)),
Kk =tf(x; (nT)+ ikj’,

) =1 (x, (nr))+<%)k?>+ (é)k‘;,

. (10)
I = Gy (o)) =K+ K,

1 i 3 1 9 1

3 2 12 12, 8
K =f(x, (o)) — K ki o 2 B
TGl gk Sk

3

Therefore, the final integration is a weighted sum of the five calculated derivatives which is given:
X ((n+1)1)=x; (nT) + %[715; +32k)+12kY +32k! +7kY] (n

Where, f{.)1s computed according to ¢1).

RK-Sixth Order Algorithm

The RK-Sixth order algorithm is an explicit method discussed by Ponalagusamy and Senthilkumar
(2007b). It starts with a simple Euler method. The increase of the state variable x; is stored in the
constant k,9. This result is used in the next iteration for evaluating k.. The same procedure must be
repeated to compute the values of k;ji, k,%, k. and kJ.

kef =" (nT)),

K =tf'(x, (nr))-?—%k”l,

K= G, )+ (R HOR,

7 2 1
K =tf{x, (nT))+—k) + =k ——kY,
= )k ok ok (12)

35 55 . 35 . 15
K=o (nT)) =k — T2 - T g
’ (1]())144136248384

1 1., 1., 1 1
K =t (nT)) ——k - — k=K =k —K,
=1"(x,(n1)) 2605 36 g R

41 22 43 118 32 . 80
K =t (x, (nT)) —— K+ 22k — k) Yk
! (”())260113215633941955396

Therefore, the final integration is a weighted sum of the seven calculated derivatives which is given:

13, 11, 11, 4. . 4. . 13
x(+DD=x,nT+[— K+ —ki+—kl + — I+ —ki+—kJ (13)
(DD =, () [2001 407 407 257 25 20 7]

Where, f{.) is computed according to (1).
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RK-Eight Stage Seventh Order Limiting Formulas
Let us consider an initial value problem

dx
E = f(t,X),X(tU) = Xu

Where, fandx are vectors and f'is assumed to be differentiable sufficiently often for the defimtion
to be meaningful. The parameters of an s-stage explicit Runge-Kutta method are represented in
the following Butcher array (Butcher, 1987).

Where:

£, =(tx), f =fitrehx) (1=23...5)
Using them, the method can be written as

X, =X, t hiblfl

1=1

Many RK-eight stage sixth order formmulas that uses are known (Butcher, 1987, Tanaka ef al.,
1993) and their properties are precisely reported (Butcher, 1987).

An eight stage limiting formula that uses the values of the second derivatives at the point (t,.x,)
1s of the form,

£ =1f,.x,)

E = DU, x D)),
x, = X, +h(a f+hoF),
f, =f{,+chx),

il (14)
x, = x, thaf+Yaf +haF),

=3

f = fit, +chx) (i=45,.8)

g
= Xn+h(b1f1+ b1f; +hBZF2

1=3

Xn+1
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Where, D{fit,.x,)) and u(f}) denote the Jacobian matrix of f at the point (t_x,) and the vector
(1, 1, £2.....5 97 respectively (the superscripts denote the component numbers). The parameters
of this limiting formula can be written in the following array analogous to Butcher array.

Gy 8y [+ 11
< 8y ™ [+
Cy ay 2, Ay oy
& Ay, ey L TR By7 [+ Y

b, b  b.. B P2

Order Conditions
We restrict ourselves to the case that

2
o, = S (15)
2
i-1 02
a0, +0, =— (i=4,5,...8) (16)
1=3 2
i—1 03
acl = (i=4,5,..8) amn
1=3 3

Comparing the Taylor series expansion for Eq. 15 with that of the true value x(t;+h) and matching
the coefficients of each elementary differential, after tedious computations, one may get the following
equations of conditions for seventh order accuracy:

-1

a5 =Cs, all+2a1J =c, (i=4,5,...8) (18)
1=3
8
Y ba, =bd-c) (i=4,5..7) (19)
1=+l
8
Ebiaﬁ =0 (20)
i=
8 1-1
Ebi aa, =0 20
i=5 =4

10



22)
23)
(24)
25
(26)
@7
(28)
29
(30)
3L
(32)
33)
34

=0

4
4

i-1

b1 Eau Ea]kakii =0

i-l

b; Ealchaj:‘

k

1

i-l
=5

1
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35)

a]
-I7. =+
I
=S
]
O

- o

(36)
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Solving Eq. (19-36), the values of the parameters are obtained. For more detail, refer the book written

by Mitsui and Shinchara (1995). The RK-Eight stage Seventh order limiting algorithm is an explicit
method which is given as follows (Mitsui and Shinohara, 1995).

ki = Tf’(xij (o))

1] 4 7 1]
K = o' (n’c))-%—%kl’

22979 33275
k= o (x, (nT)+ !+ k)
K = Tf(x, (o) 25760306 K- 11585024 K — 2139752 131
! 57421875 2296875 390625

119004452, 22528 . 37929472 19000 _
ky — K+ 3T ky (37)
855099375 ' 25725 ° 25788125 ° 288827
34346067405574 |, 6059333632
580779387800625 ' 91822828125
_ 306126104994304 , , 49440496 Kt 1168031718
5780137717578125 ° 3893087515 76431573125
1484320913137, 235840, 235609507990864, ,
501007140480 ' 196049 ° 260700167892285
1702700078125 16765288525  935180524328125 .

+
3787716228384 1576329984 ~  256363606146816

ki = o (x;(m0) +

K = f(x, ()

K = Tf(x, (o)~

Therefore, the final integration is a weighted sum of the seven calculated derivatives which is given
below.

8835 ;. 24748509184
X+ o= x0Ty + ! 3
108416 60419933937 (38)
6640625 ;- 951125 . 57826519140625 4
- ki + ko + k;
836062944 2363904 210293765402112

Where, f{.) is computed according to (1).
SIMULATION RESULTS AND COMPARISONS

The remarkable features of the raster CNN simulator (Chua and Yang, 1988a,b) are included in
the time multiplexing simulator, namely the choice of three integration methods. In time-multiplexing
simulation involving the timesaving scheme, the mumber of all-black/all-white blocks are encountered
durning simulation. The mumber of blocks depends on the image itself and the block size chosen by the
user. Figure 4 shows the benefit of this time-saving scheme and it is noticed that it is not necessary to
simulate all white block more than once.

All the simulated outputs are performed using a high power workstation and the simulation time
used for comparisons is the actual CPU time used. The input image format is the X windows bitmap
format (xbm), which is commonly available and easily convertible from popular image formats like GIF
or JPEG. Figures 3-5 show the results of the time-multiplexing simulator obtained from a complex
image of (256*256) pixels and an averaging template 1s used for simulation comparisons. By raster
CNN simulator discussed by Ponalagusamy and Senthilkumar (2007a), the simulation took 189.56 sec.
Next, with the regular time-multiplexing simulator (with overlapping and input belt) the simulation

12
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(a) (b) (c)

Fig. 3: (a) Original lena image, (b) Afier averaging template and (c) After averaging and edge
detection templates by employing RK-fifth order algorithm

(a) (b) {c)

Fig. 4: (a) Original lena image. (b) After averaging template and (c) Afier averaging and edge
detection templates by adapting RK-sixth order algorithm

{a) (b) (c)

Fig. 5: (a) Original lena image. (b) After averaging template and (c) After averaging and edge
detection templates by adapting RK-eight stage seven order algorithm
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Fig. 6: Maximum step size (At) yields the convergence for three different templates
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Simulation time (sec)
798

—_
=
X
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=
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Fig. 7. Comparison of five numerical integration techniques using the averaging template

took 330.42 se¢. Finally, the time-multiplexing with the time-saving scheme performed the same
simulation in 190.35 sec, almost a 42.42% improvement from the regular time-multiplexing. Similarly
by RK-cight order seven stage raster CNN simulator discussed by Ponalagusamy and Senthilkumar
(2007b) the simulation took 176.34 sec. Next, with the regular time-multiplexing simulator (with
overlapping and input belt) the simulation took 316.27 sec. Finally, the time-multiplexing with the
time-saving scheme performed the same simulation in 175.93 sec, almost a 44.37% improvement from
the regular time-multiplexing. The size of two dimensional window of 10x10, with two column
overlapping is used. It may be noted that this algorithm maintains all the edges of the original one.
Using RK-Eight stage seven order, RK-Fifth order and RK-Sixth order algorithms the results of the
time-multiplexing simulator obtained from a complex image of 256*256 pixels are depicted,
respectively in Fig. 3-5. For the present example an averaging template followed by an Edge Detection
template were applied to the onginal image to vield the images displayed in Fig. 3a, b and c,
respectively. The same procedure has been adapted for getting the results shown in Fig. 4a, band ¢

14
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and Fig. 5a, b and ¢. Tt is observed from Fig. 3-5 that the edges obtained by the RK-Eight stage Seven
order algorithm is better than that obtained by the RK-Sixth order and RK-Fifth order algorithms. As
speed is one of the major concemns in the simulation, determining the maximum step size that still
vields convergence for a template can be helpful in speeding up the system. The speed-up can be
achieved by selecting an appropriate (At) for that particular template. Even though the maximum step
size may slightly vary from one image to another, the values in Fig. 6 still serve as good references.
These results were obtained by trial and error over more than 100 simulations on a lena image.
Figure 7 shows that the importance of selecting an appropriate time step size (At). If the step size is
chosen is too small, it might take many iterations, hence longer time, to achieve convergence. But, on
the other hand, if the step size taken is too large, it might not converge at all or it would be
converges to erroneous steady state values; the latter remark can be observed in the case of the Euler
algorithm. The results of Fig. 7 were obtained by simulating a small image of size (256*256) pixels
using Averaging template on a Lena image. For a larger step size (At), the RK-Eight stage seven order
algorithm takes lesser simulation fime in comparison with other numerical integration algorithms
namely RK-Sixth order, RK-Fifth order, RK-Gill and Explicit Euler.

CONCLUSIONS

The time multiplexing sirmulator presented here process the image block by block, simulating
CNN the way the hardware specifications, if the templates number of CNN processors of the
hardware is smaller than the input image, which usually it is the case with practical size images. With
the overlapping and external belt of inputs, the neighboring interaction between CNN blocks is ensured,
but at the same time, computation costs also increased. On the other hand, with the added feature of
processing the all-black and all-white blocks just once for the entire simulation, the simulation time is
brought down to the levels of raster simulation, if not better, in some cases, depending on the input
image and the size of block and overlap chosen. For a given step size, the convergence time of this
algorithm is log linear for all larger size images and this is an additional attractive feature to deal with
high resolution/ large images. It is pertinent to pin-point out here that the RK-cight stage seven order
algorithm guarantees the accuracy of the detected edges and greatly reduces the impact of random noise
on the detection results in comparison with the RK-fifth order algorithm and RK-sixth order
algorithms. It is of interest to mention that RK-eight stage seventh order algorithm preserves the edges
of the output images, proved to be feasible and effective by theoretic analysis and simulation.
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