@

Academic
Journals Inc.

j '
1l

Research Journal of
Information

Technology

ISSN 1815-7432

www.academicjournals.com

Research Journal of Information Technology 2 (4): 201-214, 2010
ISSN 1815-7432
© 2010 Academic Journals Inec.

A Replication-Based Distribution Approach for Tuple Space-Based
Collaboration of Heterogeneous Agents

Jiankuan Xing, 'Zheng Qin and *Jinxue Zhang
"Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, Beijing, People’s Republic of China
*School of Software, Tsinghua University, Beijing 100084, Beijing,
People’s Republic of China

Abstract: Decentralized tuple space implements tuple space model among a series
of decentralized nodes and provides the global shared tuple repository. But, in spite
of its advantages, large access latency is brought by the frequent remote operations
and the conventional performance improving approach that dynamic moving tuples
among nodes ceases to be effective if tuple’s locations are immutable, such as in
LIME. In this study, a replication-based tuple distribution approach 1s proposed to
umnprove performance of tuple access. A replicable decentralized tuple space model
is presented, which gives semantics of tuple space primitives under replication. In
this model, tuples are categorized as their use patterns and applied differentiated
replication policies. According to the model, replication management modules are
unplemented based on LIME2. The expermment results showed that the read
operation’s latency is obviously reduced. However, a large penalty is incurred for
writing operations. Therefore, applying differentiated replication policies is
absolutely necessary, because no single policy 1s suitable for all cases.

Key words: Decentralization, tuple space, tuple distribution, replication
management, performance, consistency

INTRODUCTION

Collaboration among heterogeneous agents, which can be used for providing
autonomous and spontaneous solutions has been become popular. Many collaboration
mechanisms and frameworks have been developed and researched. One of them, is the Tuple
Space Model, which was first introduced by coordination language Linda (Gelernter, 1985),
a classical paradigm for communications of multiple processes. Tuple space provides a
multi-agent like architecture, where agents can collaborate through writing, reading or
removing tuples in the space. Among various tuple space iumplementations, two most-known
centralized tuple spaces are Sun JavaSpaces (Freeman, 1999) and IBM TSpaces
(Wyckoff et al., 1998).

LIME (Murphy and Picco, 2004; Murphy ef al., 2006) implements and extends this model
to the decentralized environment. In LIME, local tuple spaces distributed on different nodes
are transient shared as the abstract global one, whose contents depends on the connectivity
of participating local tuple spaces. LIME allows both location specified and unspecified tuple
access. Many other decentralized tuple space systems have been proposed, such as

Corresponding Author: Jiankuan Xing, Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, China
201

Res. J. Inform. Technol., 2 (4): 201-214, 2010

Swarmlinda (Tolksdorf and Menezes, 2004; Graff ef al., 2008), Peer Spaces (Busi et al., 2003)
and TATO (Mamei and Zambonelli, 2005) etc. However, in these tuple spaces users cannot
specify tuple’s locations explicitly, which are mternally managed by tuple space.

In spite of the convemence m development brought by decentralized tuple space,
collaborative applications also require low access latency, which is hard for decentralized
tuple spaces to afford because the execution latency of remote operations takes
approximately two or three orders of magnitude more than the local ones. In LIME-like tuple
space, tuples’ locations are unchanged until deletion. Therefore, replication needs to be
introduced to meet both the immutable location setting and the feasibility of dynamic
distribution.

Replicable LIME (Murphy and Picco, 2006) has added a replication layer to LIME in
meeting the needs of TULING (Murphy and Picco, 2004). Replicable LIME adopts
profile-based manner to setup replication policies. However in our project, these profiles level
1s too low, only deciding where to get replicated and updated. We tend to bind replication
and tuple space primitives together and improve replication’s automation. Another
shortcoming brought by Replicable LIME 1s resulting from its per-replication profile and
per-reaction implementation. This is because of LIME’s linear reaction matches
umplementation, which will incur excessive overhead when profile’s number 1s not trivial.
GSpace (Russello et al., 2005, 2007) adopts category-based replication policies to improve
availability with self-adaptation. However, GSpace essentially uses centralized style: one
Adaption Module on a host controls the replication policy of a single category of tuples
distributed among all other hosts.

In this study, we concentrate on a replication-based tuple distribution approach to
decentralized tuple space for performance improving. This study tends to be used in
collaborative applications in the highly dynamic environment. Besides, the basic
replication-related AP, multiple replication policies are mtroduced to handle replication in
different scenarios. We have implemented Replicable Decentralized Tuple Space (RDTS)
upon LIMEZ (Bellni, 2004) and have taken benchmark experiments among multiple hosts
connected by LAN. The experiment results showed that RDTS greatly reduces the latencies
of read-intensive scenarios; they also make it clear that when write and update operations
are dominant, replication hwt the performance, which proves the necessity of multiple
replication policies.

REPLICABLE DECENTRALIZED TUPLE SPACE MODEL

This section describes the model of replicable decentralized tuple space. We use formal
statements similar to Klaim (De Nicola et al., 1998) to define the semantics of primitives of
tuple space with replication.

Tuple Space Systems

A tuple space is an unordered container of tuples. A tuple is a data structure consisting
of one or more typed fields each containing some value. A tuple template (template for short
later), used for tuple matching, is the tuple that have some fields with null value as the typed
wildcard. In the following sections, e is used to represent a tuple, e indicates a tuple with
a specified id and t represents a tuple template. If t matches e, we say evt. For detailed formal
defimtion of tuples, templates and match (Gelernter, 1985; Murphy ef al., 2006).

Decentralized Tuple Space Model
In our model, decentralized tuple space is a quintuple:

202

Res. J. Inform. Technol., 2 (4): 201-214, 2010

DTS={T.LX G~} (1)

where, tuples in the tuple set T are distributed among physical locations, expressed by
location set 1.. X is the process set that are running on locations. In this study, we ignored
the difference between physical locations and nodes located on them and do not care about
logic location since, it is unrelated to our motivation. The local tuple space on location i is
donated as LTS-yeP (TuX)xL represents the DTS configuration. Physical locations are
connected by network G

G={g;}, LJ €L (2)

g, = 1 means location 1 and j are engaged, g; = 0 means they are disengaged. We assumed
the network 1s symmetrie, that 1s, g; = g;. Engagement and disengagement indicate whether
local context are merged as the global one.

Primitives of Decentralized Tuple Space Without Replication
The behavior n the DTS can be formalized as Eq. 3.

Xo=nil|=X|X, || X, (3)

= outlj(?e) ‘rdplj(? t,1e) ‘inp'](?t,!é) |up;(?t,?e)

where, X is the process executed by an agent and || parallel execution of two processes.
Each action in the process has several parameters. Those marked by ? are the input
parameters while ! are the output ones.

First, we define the non-blocking local lookup operation v, (?t,! €) n LTS

vi(7t,1€)[e /€], fJe € LTS Ael>t

v,(?7,18)[null /&], otherwise

4

vi(t,8) o=

In this definition, LTS, is the tuple set which is hold all the tuples (both masters and
replicas) 1 the location 1. v 1s the lookup operation with one input parameter t and one output
parameter € . [e/ & | means the variable € 1s substituted by e. In this manner, Eq. 4 means that
if a matched tuple e 1s found, 1t is returned. When nothing matched 1s found, null 1s returned
and we define {mull} = @. The subscript i of v is the location where, lookup is executed. In
the rest of study, one operation’s subscript denotes where, it is executed and superscript
represents where 1t 1s imtiated.

Based on lookup there are four primitives out, rdp, inp and up supported by
decentralized tuple space model, performing add, retrieval, take and update operation
respectively. up 1s not one of primitives n the traditional tuple space. Because of the
existence of replication, it is necessary to define an atomic update operation. The formal
semantics of primitives are listed as follows:

out!(?e) = LTS, @ {e} (5

rdp;(?6,18) == v (74,18) (&)

inp(?4) == v,(?t,18).LTS; @ {&} (N
up(?t,7e) -= rdp(?+,? &) rdp(?,7&) LTS, & {&} @ {e’} (8

203

Res. J. Inform. Technol., 2 (4): 201-214, 2010

Here, we use @ and o to indicate adding and removing an element from the set. For example,
inrdp,, LTS,e { ¢} means remove the tuple variant ¢ from LTS, And considering, € is finally
substituted by v, finally the lookup result 1s removed.

Replication Policies

As replicable TLIME, we apply replication policies to groups of tuples. Rather than simply
using a template to identify a certain group, our model explicitly adds a tuple category field
to our replicable tuple because different tuple categories may be confused if their templates
are identical. Tn the rest, we use C, to indicate the category of e.

In our model, all local tuple spaces control their own replication policies. In detail, the
policy applying is a per tuple category, per location action:

Pol,(C) € {SO,RC,FR} (9)

which indicates applying a policy to category C on location 1.
Because, the replication will incur excessive overhead in certain cases, our model adopts
three different replication policies:

e Store Originally (SO): No replicas are made, equivalent to original LIME

* Read and Cache (RC): Create a replica when a remote read operation is initiated and no
matched tuple (master or replica) 1s found locally

¢ Full Replication (FR): Create replicas for all new tuples written to the tuple space and
push them to other local tuple spaces

For example, 1f Pol (C,) = RC, LTS, will create a replica in location 1 if a read operation 1s
mutiated and no matched tuple (master or replica) of C, can be found locally; if Pol, (C,) = FR,
all other LTS will automatically push the tuples of C, to LTS, once they are written. In this
way, the policies on different locations do not influence each other; and the tuples with
different categories can use different policies.

Decentralized Tuple Space Primitives with Replication
Here, the primitive’s semantics under replication consideration are introduced. Our
model uses e, to express one replica of master tuple e and does not distinguish the replicas
mn different local tuple space. The location set where, e is replicated is defined as:
£(e)={i|Vie, € LTS} (10)
and the location set where a policy Pol (C) is adopts is represented as:

£(Pol, €) = {i| ¥i,Pol.(C) = Pol}, Pol e {SO.RC,FR} (11)

where, Pol 1s a variant indicating a certain policy.
No matter which policy is applied, inp and up have to handle the replicas’ take and
update besides the masters:

inp‘j(‘?t,!é)::—v](?t,!é).LTSj@{5}{ 1T LTSkG){é,}} (12)

whe L (2]

204

Res. J. Inform. Technol., 2 (4): 201-214, 2010

upi(?t,2¢) = v, (LI LTS, o @ @ ()| [[LTS, o0&) (13)

vhe op (2]

In the above formulas, Il means the following actions are connected by | and thus will
be executed in parallel, as Eq. 14 indicates.

[1% =P PP, (14)

1zkzn

When Pol, (C) = RC, rdp first tries to access the matched replica cached locally. If not found,
it performs conventional remote retrieval operation and at last create new replica for the result
if 1t 18 found:

L18) v, (7,18), Je, LTS, ne, -t (15)
TPy iiLrele= v,(?LI8.LTS €18}, JesLTS, ner tornot found

When Pol; (C) = FR, edp can assume the there must be local replica which can be directly
retrieved.

rdpi (P18 = v (18) (16)

Meanwhile, the out operation will automatically push tuple replicas to anywhere that
registered FR to the category that the written tuple belongs to.

outj(‘?e)::—LTSJ@{e}.[I1 LTSk®{er}] (17)

ke LOFR.G)

DESIGN AND IMPLEMENTATION

This section briefly describes the design and implementation of our RDTS system, which
was built upon LIME2 and LighTS (Balzarotti ef af., 2007). The RDTS managed to unplement
everything by use of tuples, reactions and replication itself, demonstrating their
expressiveness and versatility.

Figure 1 shows the overall architecture of our RDTS system. Replication management
modules were implemented in a multi-layers style. The Local Replication Manager is
responsible of single-tuple replication and Replication Policy Manager above takes care of
policies information of tuple categories. RDTS registers two reactions, Replication Policy
Reaction and Command Reaction, which handle replication commands and trigger policy
switch, to implement remote replication protocols. In RDTS, only the kemel of LIME 1s
remained, including the local operation processor and communication protocols, to avoid the
overhead of data format conversion. LIME and LighTS-based replica space together provide
the local tuple space abstraction mentioned in the model. The key points of RDTS” design
and implementation are described n the following sub-sections n detail

Storage of Replicas

RDTS separates the spaces of master and replica tuples. All replicas are put into a
private tuple space implemented by LighTS. This design i1s led by the following
considerations:

205

Res. J. Inform. Technol., 2 (4): 201-214, 2010

(e)

T
L
Replication policy manager g] Replicaion
: 2] 4 reaction
—
(Local replication manager J o Command g

2 & J_ reaction =
§

[Replica tuple space (LighTs) j \ / a:

Fig. 1. The schematic of RDTS architecture. The round rectangles mean components; the
cloud shape means the network; the arrowed lines mean data access relationship
(A points at B means A get data from B)

¢ Access is accelerated if users specify what they required is a master or replica explicitly
in template, since only part of tuples are looked up linearly. If not specified, the lookup
process will take place first in replica tuple space; and if not found, the master tuple
space is searched. In the worst case, the lookup is equivalent to the design which stores
both replicas and masters in the same place. Meanwhile, the tuple field that marks
whether a replica or not 1s not necessary any more

* Replication management is more convenient. With the separated replica tuple space, we
can easily take statistics of categorized replica’s counts and sizes, as well as replication
operations counts and timing. This is useful for us to monitor the runtime status of
replicas

Share Tuples and Signal Tuples

In Replicable DTS, tuples are classified as in two main categories: shared tuples and
signal tuples. Shared tuples, as the name mdicates, are used for data sharing and thus
replicable. There are several meta-fields mn a shared tuple to support replication:

(tid,curr,dest, rid, cat, ver, [user ficlds]}

where tid, curr and dest are LIME meta-fields, which means tuple ID, current location and
destination respectively. Rid 1s the replication layer ID. A master tuple and all its replicas are
identical m this ID. Cat 1s the tuple’s category wlhile ver is the tuple’s current version, which
is started with 1 and monotone increasing.

Signal tuples, on the contrary, are used to transferred commands and messages among
local tuple spaces. They are never actually written mto the tuple space, only for reactions
triggering purpose. The format of a signal tuple 1s shown below. The only field that needs
attention is src, which indicates the source of this signal. Because, it is not replicable, fields
like rid, xat and ver are no longer necessary.

{tid, curr,dest,sre, [user fields])

Shared and signal tuples are designed for generic use of collaborative applications built
upon RDTS. For example, shared tuples can be used for sharing of documents, images or

206

Res. J. Inform. Technol., 2 (4): 201-214, 2010

context information, while signal tuples are suitable for instant messages, task assignments
or beacon-style self-identification. We also adopt these two basic tuples m RDTS
umnplementation of replication management and protocols, as described in the following two
sub sections.

Replication Policy Tuples
Replication policy tuple (RPTuple for short), inplemented as a shared tuple, represents
a replication policy. RPTuple’s fields are shown below:

{[shared tuple meta-fields], teat, tloc,pol)

teat and tloc indicates the target category and location where, the policy pol is applied. Local
tuple space on each location maintains its own replication policy to certain categories while
others need to know other’s policies and thus, do something necessary (such as push
replicas when FR is applied). Therefore, if users want to set up a replication policy, they need
only to create a new RPtuple and out it into DTS.

The broadcast of policies are realized by replication itself. That is, RPtuple itself is
applied FR on each location. When, two LTS first engaged, they exchange so-called RP*
tuple:

{[shared tuple meta-fields],RPTuple,self, FR)

RP? tuple’s transfer will be handled by the replication policy reaction, which triggers
exchange of all RPTuples and starts up further replication related operations.

Command Tuples

In RDTS, remote replication-related operations are implemented by a series of command
tuples, based on signal tuples. Two benefits are wnplicitly achieved. First, failures during
command transfer can be recovered through LIME’s reconciliation mechamsm, which 1s able
to automatically synchronize the inconsistencies as soon as it is possible. Also, tuple
commands can be handled by reactions, which guarantee commands’ atomicity and
independence. Tn RDTS, we define five command tuples for replication protocols, which are
listed in Table 1.

These commands are self-explanatory by their names. The second field of each
command marks its command type as a literal string. It i1s worthy note, that
AddReplicaRequestCommand and RemoveReplicaRequestCommand only add and remove
replica requests, not replicas themselves. For example, 1f LTS, has just retrieved a tuple e from
LTS, and want its replica, LTS, replicate ¢ by itself and out an AddReplicaRequestCommand

Table 1: Command Tuples in RDTS
Command name Tuple format

AddReplicaRequestCommand [signal tuple meta-ficlds],"Add",rids,cvs)

RemoveReplicaRequestCommand [signal tuple meta-ﬁelds],"Rem",rids)

{
{
ClearReplicaCommand {[signal tuple meta-fields],"Clr", rids}
{
{

UpdateReplicaCommand [signal tuple meta-fields],"Upd",new Tuples)

PushReplicaCommand [signal tuple meta-fields],"Psh”,newTuples}

207

Res. J. Inform. Technol., 2 (4): 201-214, 2010

tuple to LTS, which then makes a record on LTS, that LTS, just made a replica of e. Similarly,
RemoveReplicaRequestCommand only removes the record on the LTS where, master tuple
1s hold.

The field evs m AddReplicaRequestCommand 1s an array of excepted versions. It 1s used
for the local tuple space that handles the replication request to decide whether to send back
replica or not. In more detail, consider the case that an AddReplicaRequestCommand tuple
initialized by LTS, is sent to LTS, attached by rids and evs. The replicas {e"™|vev, = -1,
1<k<|evs|} will be returned back through PushCommand, where ev, and rid, mean the k-th
excepted version in evs and k-th rid in rids, respectively. In this case -1 is a special value,
which means LTS; wants to acquire replica tuples from LTS, If LTS, has already owned the
replica (for instance, retrieves a tuple and make its replica), evs contain the version numbers
that LTS; expects LTS, has. If the replication source tuple’s actual version is greater than the
corresponding expected version, LTS; immediately update those replicas. In other words, in
this scenario replicas {e["|vev,<ver™ } 1<k<|evs|} are sent back to LTS, through
UpdateCommand.

EXPERIMENT RESULTS AND ANALYSIS

Here, we evaluate the performance of RDTS. We deployed RDTS over 12 nodes which
run Windows XP SP2 and JDK 1.6 update 10 and were equipped with 3.06 GHz dual core
Pentium D and 1G memory and connected via 100 Mbit LAN.

The experiment measured the execution performance of tuple space operations under
replication protocols. We implemented operation generating agents which periodically
initialize operations including rdp, out and up. As what the above model indicated, only
non-blocking operations were taken into account in order to avoid introducing the
mterference of registering and deregistering the reactions by the blocking operations.
Figure 2 shows the deployment schematic of these agents together with RDTS middleware
in the experiments, which mimicked a typical collaboration scenario. In each node (or physical
location), 3 to 6 agents run concurrently. Parts of nodes were responsible of tuple writers and
updaters, while others were pure tuple readers. The writers and updaters manipulated the
tuples in the local tuple space only and the readers performed the remote read operations.

B
it
=
&
%] RDTS RDTS RDTS
38
b
[Node 1 Node 2 == |Noden
(Network 0

Fig. 2: The deployment schematic of experiment. The rectangle means a physical node; the
rectangles with RDTS label mean RDTS middleware; round rectangles mean agents;
the pipe shape means the network; the lines mean the data channels which connect
agents, middleware and the networlk

208

Res. J. Inform. Technol., 2 (4): 201-214, 2010

80 T r r . . , .
(a)
@ —©—s0 —O—TR02) ||
0 ’\ —H—=rc@.2) "K —A— FR(0.5)
60 *—Rc(0.5) —— LIME2

Percentage

Operation latency (sec) Operation latency (sec)

Fig. 3: (a, b) rdp latency distribution with 10 kB tuple size. The x-axis means the operation
latency distribution intervals, stepped by 10"* sec in logarithmic scale, the v value
with the x value 10" means the percentage of operations whose latency is less or equal
than 10" sec and greater than 10°"% sec

80

(@ -0 | {b) —€—rFR02) ||
70 —H&— Rrc.2) —&— FR(0.5)
60 —¥%— pc.8) | —#—LIME2 |]
& 50
E .
o 40
30

o 107? 10°? 107! 10° 10-? 1072 10~} 10"

Operation latency (sec)

Fig. 4 (a, b) rdp latency distribution with tuple size 500 kB. The x-axis means the operation
latency distribution intervals, stepped by 10"* sec in logarithmic scale, the y value
with the x value 10" means the percentage of operations whose latency is less or equal
than 10" sec and greater than 10°"% sec

Operation Latency under Replication

The results of operation latency can be grouped by tuple size, ranged among 10, 50, 100
and 500 kB. We only present 10 and 500 kB in this section for conciseness. The data is
illustrated as the operation latency distribution among various time intervals that users
perceive with logarithm x-axis, from 107 to 10° sec.

Figure 3a and b to 6a and b show the latency distribution for rdp, out and up, with
different replication policies and tuple sizes. For RC and FR, we employ the concept Miss
Rate (MR), which are shown as the bracketed value after policy in the legends of these
figures. MR means the expected proportion of no local replica found scenarios. Therefore,
the higher MR value inplies more actual remote operations.

209

Percentage

100

90

80

70

60

50

40

30

20

10 Pl

0

Res. J. Inform. Technol., 2 (4): 201-214, 2010

| —©—so
—B—rRrc@©.2)

)

1 —¢—rcoy

| —9—rr©.2)

———
S ———

Operation latency (sec)

. FR (0.8)
—d—Lime2 h
1073 1072 107 10°

Operation latency (sec)

Fig. 5: (a, b) out latency distribution. The x-axis means the operation latency distribution
intervals, stepped by 10" sec in logarithmic scale, the y value with the x value 10

Fig. &

means the percentage of operations whose latency is less or equal than 10° sec and
greater than 10" sec

100

90

80 |

70

50
40

Percentage

30

20

10
0

60 P

—5— 50

(®)

—B— Rrc(0.2)

—¥— RC{0.8)

[1—©— rro2)
—&— rro0.9)

10~° 1072

Operation latency (sec)

1072

Operation latency (sec)

(a, b) up latency distribution. The x-axis means the operation latency distribution

intervals, stepped by 10°” sec in logarithmic scale, the y value with the x value 10°
means the percentage of operations whose latency is less or equal than 10° sec and
greater than 10™"% sec

Figure 3 and 4 show the experiment results of rdp latency distribution. Considering the
mess, if the distribution plots of rdp with various replication policies were drawn on the one
figure, we separated them into Fig. 3 and 4. The latency distribution line of SO policy
behaves very similar to the one of LIMEZ2. This confirms that our implementation does not
introduce conspicuous overhead when no replicas get involved. When RC or FR is applied,
the line’s peak locates at 1077 sec in the 10 kB case and 10 *’sec in the 500 kB case.
Comparing the distribution lines for FR and RC, FR owns the similar latency to the RC ones
since, they are all actually locally executed. And FR achieves a higher local replica access
count, as Fig. 7 showed, because when tuples are written, they are pushed m advance.

210

Res. J. Inform. Technol., 2 (4): 201-214, 2010

x10*
H Tuple size = 500 kB
540 Tuple size = 10 kB

1 IH

0 ﬂ ﬂ

S0 RC(0.2) RC(0.8) FR(0.2) FR(0.8) Lime2
Replication policy

Operation content
iy

Fig. 7: The count of rdp with various replication policies. The x-axis means different
replication policy while the y-axis means the operations’ count that are executed in the
samme period time

120007 Tupe size = 500 kB
1000040 Tuple size=10kB

80001
6000+
4000-

Operation comtent

20004

0

50 RC({0.2) RC{0.8) FR (0.2) FR (0.8) Lime2
Replication policy

Fig. 8: The count of out with various replication policies. The x-axis means different
replication policy while the y-axis means the operations’ count that are executed i the
same period time

MR also affects the performance of rdp under RC. In Fig. 3 and 4, lines for RC with MR
0.2 indicate that RC has more opportunities to hit local replicas and thus handle more remote
rdp locally compared to the ones with MR 0.8. However, lines for FR show that FR wasn’t
affected by MR because a replica should be at local node, no matter whether it had been read
before or not.

Figure 5 shows local out’s latency distributions. As per the model specified earlier, out
behaves in the same way with 3O and RC, proved by the lines whose dominated peales stand
in the same position. The optimization we did for transferring large tuples works is shown by
the 500 kB out line in Fig. 5. However, when FR 1s applied, local out 1s responsible for
pushing all tuples to other nodes who registered FR. In the current implementation, a simple
one-by-one push is adopted because application-level multicast is beyond this paper’s
purpose. In the 10 kB case, approximate 300 m sec~1 sec was consumed to finish this job; in
the 500 kB, the main latency was beyond 1 sec. These data indicate that FR will greatly hurt
the performance of local out when lots of tuple needs to be transferred. Figure 8 also proves
the performance penalty that the out count with FR is highly decreased.

Figure 6 gives the latency distributions of up. As the distribution lines shown in Fig. 6,
the dominated latency for SO stands at 10%7sec in the 10 kB case and 10" ™sec in the
500 kB case. This 1s because up with SO 1s purely a local operation. In other policies where,

211

Res. J. Inform. Technol., 2 (4): 201-214, 2010

replication is introduced, the dominated latency of up lays at 10°% sec in the 10 kB case and
10°-10""sec in the 500 kB case. In these cases up pushes those tuples of new versions one
by one to other nodes who add replica request. Figure 5 and 6 together expose that a small
mcrement of out and up will incur larger penalty.

DISCUSSION

The experiment results showed that the replication’s effects on the typical operation’s
performance. The measurements confirmed that the impact of replication management module
itself 1s negligible compared to the original LIMEZ2. Replication essentially moves part of the
burden from tuple readers to writers. Therefore, if the read operations are far more than
writers (out or up), replication successfully reduced latency. Collaborative applications may
gain many benefits from it since, the collaborative algorithm requires less time to finish the
communication. However, when writers are dominant, replication brings large overhead. In
this case, replication should be shutdown.

Many tuple space systems used for data sharing assumes that the data written are
immutable. LIME also adopts this paradigm. In this kind of systems, keeping the
replica-master link 1s unnecessary and update is no longer needed. However, lots of data
keep changing in collaborative applications, for which we cannot malke that assumption. An
alternative strategy 1s to explicitly classify mutable and immutable data and only manage
mutable ones with full replication support. Our replication management actually follows this
strategy and separates tuple classification and replication policy classification. One certain
replication policy applying to one certain tuple category controls the burden balance
between readers and writers. Under different scenarios, users can choose the most suitable
replication policy.

Another worthy concern is the implementation of tuple push. Because, the network layer
of LIMEZ2 currently only support sending tuple to one target, we simply beyond it
umplemented a one-by-one push, which was not scalable since, 1t 1s related to the number of
push targets. The more targets, the more time is spent on tuple sending. Even worse, the
push imtiator cannot decide how meny to push. This contradicts the RDTS™ original
intention: every node is responsible of controlling itself. In this perspective, a push
targets-unrelated multicast 1s absolutely necessary before RDTS is ready for practical use.
A degree-limited tree-based multicast is an ideal approach to improve our system.

CONCLUSIONS AND FUTURE WORK

In this study, we made the following contribution for RDTS. First, by introducing tuple
lookup and remote transfer, we exposed the detailed actions taken by RDTS non-blocking
primitives. We also provided a simple replication management mechanism and added it into
DTS; and defned the primitive’s behavior under three replication policies. The result was
that different replica distributions were achieved according to policies to leverage different
characteristics in operation latencies.

Second, we implemented a complementary replication management component following
RDTS model and lided replication under tuple space primitive operations. Shared and signal
tuples were used as the generic foundation for all collaboration usage, beyond which
RPtuple and command tuples were created and employed in replication information
maintenance and interactive protocols. Furthermore, RPtuple’s flooding was also done by
replication itself. From the above, this implementation demonstrated that RDTS model’s
venerability in building collaborative applications.

212

Res. J. Inform. Technol., 2 (4): 201-214, 2010

Finally, we conducted the experiments and measured the benefits in rdp while, overhead
i out and up n different replication policies. The conclusion was that the gain of enabling
replication overcomes the overhead if proportion of reads and writes reaches certain
threshold.

The experiments showed two mnprovement pomts on which further pomnts we will
concentrate on:

+ Configuring the replication policy for each tuple category is a tight job because it may
be relevant to the dynamic changed running status of tuple space, such as the
proportion of reads and writes as well as the replica miss rate. These parameters can be
monitored or calculated within tuple space and enable running of a self-adaptive
replication manager. Owr model and experiments’ results could be the foundation to
define a set of adaption rules

+ Simple one-by-one application-level multicast incurs too much performance overhead,
so it 1s necessary to employ a more efficient multicast structure, such as a dynamic mesh
with degree limited multicast tree

As part of our future work, we plan to implement Decentralized Replicable Adaptive
Tuple Space for Collaboration Work, or DracoTS, a middleware for decentralized
collaboration applications, such as collaborative task execution of detection range-limited
Unmanned Aerial Vehicle (TAV) without central command. The challenge of DracoTS is to
make tradeoff between providing a collection of easy-to-use API which allows users to avoid
thinking about the internal of RDTS and leaves a configuration interface for fine-grained
tuning for performance.

ACKNOWLEDGMENTS

This study 15 part of simulator of decentralized UAV (Unmanned Aerial Vehlicle)
collaboration project and is supported by National Defense Pre-research Plan of China
(No. 402040202); and many thanks to the review of Amanda Dotson, in Applied Physics
Department of Physics, Umiversity of Maryland, Baltimore County.

REFERENCES

Balzarotti, D., P. Costa and G.P. Picco, 2007. The LighTS tuple space framework and its
customization for context-aware applications. J. Web Intell. Agent Syst., 5: 215-231.

Bellini, L., 2004. Lime IT: Reengineering a Mobile Middleware. Politecnice di Milano, Milano,
Ltaly.

Busi, N., C. Manfredini, A. Montresor and G. Zavattaro, 2003. PeerSpaces: Data-driven
coordination in peer-to-peer networks. Proceedings of the ACM Symposium on Applied
Computing, Melbourne, Florida, March 09-12, ACM, New York, USA., pp: 380-386.

De Nicola, R., G.L. Ferrari and R. Pugliese, 1998. Klaim: A kernel language for agents
interaction and mobility. IEEE Trans. Software Eng., 24: 315-330.

Freeman, E., 1999. TavaSpaces Principles, Patterns and Practice. Pearson Education,
New Jersey, ISBN: 0201309556.

Gelernter, D., 1985. Generative communication in linda. ACM Trans. Programm. Languages
Syst., 7: 80-112.

213

Res. J. Inform. Technol., 2 (4): 201-214, 2010

Graft, D., R. Menezes and R. Tolksdorf, 2008. On the performance of swarm-based tuple
orgamzation m LINDA systems. Proceedings of the IEEE World Congress on
Computational Intelligence, (CCI"08), IEEE Press, Hongkong, China, pp: 2709-2716.

Mamei, M. and F. Zambonelli, 2005. Spatial Computing: The TOTA Approach. Springer,
Berlin, pp: 307-324.

Murphy, AL. and G.P. Picco, 2004. Using Coordmation Middleware for Location-Aware
Computing: A Limme Case Study. In: Coordimation Models and Languages,
De Niconla, R. et al. (Eds.). LNCS. 2949, Springer-Verlag, Berlin, Hamburg,
ISBN: 978-3-540-21044-3, pp: 263-278.

Murphy, A. and G.P. Picco, 2006. Using Lime to Support Replication for Availability in
Mobile Ad Hoc Networks. In: Coordination Models and Languages, Ciancarini,
P.and H. Wiklicky (Eds.). LNCS. 4038, Springer-Verlag, Berlin, Heidelberg,
ISBN: 978-3-540-34694-4, pp: 194-211.

Murphy, A., G.P. Picco and G.C. Roman, 2006. LIME: A coordination model and middleware
supporting moebility of hosts and agents. ACM Trans. Software Eng. Methodol,
15: 279-328.

Russello, G., M. Chaudron and M. van Steen, 2005. Dynamically Adapting Tuple Replication
for Managing Availability in a Shared Data Space. Springer, Berlin, pp: 109-124.

Russello, G., M.R.V. Chaudron, M. van Steen and . Bokharouss, 2007. An experimental
evaluation of self-managing availability in shared data spaces. Sci. Comput. Prog.,
64: 246-262.

Tolksdorf, R. and R. Menezes, 2004. Using Swarm Intelligence in Linda Systems. Springer,
Berlin, Heidelberg, pp: 49-65.

Wyckoft, P., SW. McLaughry, T.J. Lehman and D.A. Ford, 1998. T spaces. IBM Syst.
I.,37: 454-474,

214

	Research Journal of Information Technology.pdf
	Page 1

