@

Academic
Journals Inc.

j '
1l

Research Journal of
Information

Technology

ISSN 1815-7432

www.academicjournals.com




Research Journal of Information Technology 3 (1): 61-87, 2011
ISBN 1815-7432 / DOIL: 10.3923/jit.2011.61.687
© 2011 Academic Journals Inc.

Cache Oblivious Matrix Multiplication Algorithm using Sequential
Access Processing

'P.S. Korde and *P.B. Khanale

'Department of Computer Science, Shri Shivaji Ceollege, Parbhani (M.S)), India
Department of Computer Science, Dnyanopasak College, Parbhani (M.S.), India

ABSTRACT

Hardware implements cache as a block of memory for temporary storage of data likely to be
used again. Cache Oblivious Algorithms are typically analyzed using an idealized model of cache,
but it is much easier to analyze than a real cache memory. Researchers have used cache oblivious
algorithms for element ordering, matrix multiplication, matrix transposition and fast Fourier
transform. In this study an efficient technique is proposed to manage cache memory. The new
technique uses block recursive structure of two types only. The algorithm is tested on famous

problem of matrix multiplication. It aveids jumps and cache misses are reduced to the order of

NLM
Key words: Cache memory, Cache oblivicus, Cache hit, Cache miss, tag, sequential processing

INTRODUCTION

(Cache memory 1s a high-speed, relatively small memory that represents a critical point in
computer systems, since it eliminates the gab between a Central Processing Unit (CPU) and main
memory speed. It has an access time smaller than that for main memory. So, the average access
time is decreased in a great deal. Every time the CFU generates a reference for a specific word, the
cache memory will be accessed to get that word if it is there; ctherwise, the main memory is accessed
to retrieve the line containing that word.

A Cache Oblivicus Algorithm is designed to exploit the CPU cache without having the size for
cache or the length of the cache lines as an explicit parameter. Cache Oblivious was conceived by
Charles E. Leiserson as early as 1996 and first published by Harald Prokop in his master thesis at
Massachusetts Institute of Technology in 1999 (Prokop, 1999,

The Cache Oblivious Algorithm is a simple and elegant meoedel to design algorithm that
perform well in hierarchical memory models ubiquitous on present hardware platforms.
This model was first formulated in 1999 (Charles et al., 1999) and since then 1s the topic of
research.

Optimal cache oblivious algorithm 1s widely used in the Cooley-Tukey Fast Fourier Transform
(FF'T) algorithm, matrix multiplication, sorting, matrix transposition and several other problems
(Bader et al., 2002). Typically a cache cblivicus algorithm works by a recursive divide and conquer
methodology, where the problems are divided into smaller and smaller sub-problems. The resource
uses can be optimally used by using recursive block structure algorithms. They are simple and
portable. They use cache effectively because once the sub-problem fits into cache, its smaller sub

problems can be solved into cache and with no cache misses (Frigo, 1999).

61



Res. oJ. Inform. Technol., 3 (1): 61-67, 2011

Matrix multiplication 1s one of the most studied computation problem {(Coppersmmth and
Winograd, 1990). Consider the two matrices of size N x N, Matrix X = (X, X) and Y = (Y, Y). The

proeduct Z of these two matrices is given by:
z,=%X, Y, (1

We can also assume that 99% of matrix multiplication resulting algorithms are similar to
algorithm 1. But this algorithm involves a lot of memory jumps and makes bad use of cache
memory. The cache misses in this algorithm are of high order.

Algorithm 1: Multiplication of two n-by-n matrices

forifrom 1 to N do

forj from 1 to N do

Cli,jl:=0

fork from 1 to N to
ClLil=ClLjl+AlLKk]*B[kj];
enddo;

enddo;

enddo;

To improve cache performance, the temporal and spatial locality of the access to the linearized
matrix elements has to be improved. Most linear algebra libraries, like implementations of ATLAS
{(Whaley et al., 2001), therefore use techniques like loop blocking and loop unrolling (Goto and
van de Geijn, 2004). A lot of fine tuning 1s required to reach optimal cache efficiency on a given
hardware and very often the tuning has to be repeated from scratch for a new machine. Recently,
techniques have become popular that are based on a recursive block matrix multiplication
(Gunther et ¢l., 1999). They autematically achieve the desired blocking of the main loop and the
tedious fine tuning is restricted to the basic block matrix operations. Such algorithms are called
cache oblivious (Demaine, 2002), emphasizing that they are inherently able to exploit a present
cache hierarchy, but do not need to know about the exact structure of the cache.

Several approaches have bheen presented that use an element ordering based on the peano
curve (Bader et al., 2002), The peanc curve results from a recursive construction idea. It totally
aveids jump in the access to all matrices involved and shows optimal spatial locality but still this
problem is open for research and modifications can be performed.

SEQUENTIAL ACCESS PROCESSING

In this study, we present an approach that uses a sequential access processing. The sequential
acecess (Fig. 1) technique that converts the two dimensions into single. It is very easy to manipulate
different matrix transformation operations.

However, our presented scheme totally avoids jumps in access to all matrices involved and
reduces cache miss. It also uses only two types of recursive blocks.

We will demonstrate the general idea of sequential access based algorithm for 3-by-3 matrices.
Initially we will convert a matrix of two dimensions into a single one. Algorithm 2 gives conversion

algorithm.,

62



Res. oJ. Inform. Technol., 3 (1): 61-67, 2011

B
[y

Fig. 1: Sequential access processing

Algorithm 2: Conversion of two dimensions into single dimension

counter =0;
for (i =0;1=<n;i++)
for(j=0;j <n;j++o
cin==al i, j];

d[counter] = a[1i,]]

Now it 1s easy to access the matrix element levels. It gives better element access from the cache
memaory.
Lets consider the multiplication of 3-by-3 matrices. The elements matrices are combined as

single matrices:

b
. blle o o (2)
b

The elements C, of matrix C are computed as sum of products of a and b:

C,=2XZa .b, (3)

Where each set C, contains multiplication of both pair elements. Figure 2 gives the graph
representation of operations of 3-by-3 matrix multiplication. The nodes of graph are triples @, j, k).
In Fig. 2, two nodes are connected if the difference between two indices of nodes is not larger than
one., Observe that all the nodes are connected and there are no jumps at all. It can be traversed in
forward or backward direction.

The multiplications scheme presented can be easily extended to multiplication of 5-by-5, 7-by-7
and so on. It can be used on any matrix multiplication as long as the matrix dimensions are odd
numbers. It is necessary to use a block recursive approach. In case of a large matrix, the matrix can
be divided into 3-by-3 recursive blocks as shown in Fig. 3.

Recursive blocks for 9-by-9 matrices are shown in Fig. 4. Observe that we have used only two
types P and Q recursive blocks for the complete 9-by-2 matrix, This is the best possible way to divide
the 9-by-9 matrix.

Also, observe that the range of indices within a matrix block 1s contiguous. So, it fulfills the

basic requirement of recursive block and avoids the jumping of blocks.

63



Res. oJ. Inform. Technol., 3 (1): 61-67, 2011

¥ ¥
1] o1 |1|s|4| |l|6|7|
¥ 4 ¥
[2]°]2] ] 513] |2|6|E|
BB BTaT3] [3]7]s]
T L) ¥
AR |4|4|4| NERE
¥
T 9 [e]5] Lslzls]
T D) L
EERD
T oL
[#] 2|2|—.|8| SE (8] 8] 8]

Fig. 2. Graph representation of operations of 3-by-3 matrix multiplication. For example, the

element C.= {{a,, by), {a,, b)), (a,, by} and that of C,={(a,, by}, (a, b}, (a,, by}

Fig. 3: 3-by-3 recursive blocks

N ianGananisas g Iss1 ==l Isallas
=g e s diRIINQE Mgy [T
] H 110 M1 Ml
1 I I¥] ]l

L} | — — — - L1 L. L1
e SRR
[INDRALIEIgIINEM EigpingEeEnpENinil

Fig. 4: Recursive blocks for 9-by-9 matrix

RECURSIVE SEQUENTIAL MULTIPLICATION
Now we will show the use of recursive blocks P and Q in case of 9-by-9 matrix multiplication.
The two 9-by-9 matrices and their resultant matrix is given by Eq. 4:

Pa, Qa, Pa,\(Pb, Qb, Pb,)(Pc, Qc;, Pg,
Pa, Qa, Pa, || Pb, Qb, Pb ||Pc Qc, Pc, (4
Pa, Qa, Pa, )\ Pb, Qb, Pb,/IPc, Qc, Pg

We can write the equations for elements of resultant matrix as given in Eq. b:

Pc¢,=Pa, Pb, + Qa, Pb, + Pa, Pb,
Qo,= Pa, Qb, + Qa, Qb, + Pa, Qb, (5)
Qc¢,=Pa, Qb + Qa, Qb, +Pa, Qb,

64



Res. oJ. Inform. Technol., 3 (1): 61-67, 2011

Similarly we can write equations for Pe; Pe, Qe, Peg Pe; Pe, If we consider the ordering of the
matrix blocks , there are exactly four types of block multiplications as given in Eq. 6:

P« P.P
Qet—P.Q ©)
Pet QP

Qe——QQ

P<«*—P PmeansP=P+PP

Thus we have a closed system of four multiplication schemes. Observe that we have got only
four multiplication schemes which are much less than other works (Bader ef al., 2002).

We need to compute matrix operations for all five multiplication schemes. The matrix operations
for P = P+P.P can be same as that given in Fig. £. The matrix operations for @ = @+Q.Q is given
in Fig. b.

After carefully examining all matrix operations we can prepare the table for sequential access
operations for all matrix multiplication schemes as given in Table 1.

[Pl CLL—CLIe
| 1 1
[P0 GhE L
: |
L] BRG] BB
] i ]
i G GoG
! |
onnEEnnoenan
i |

L Gl GoLe
| { l

LT CLE e
i 1

OO G Gl
T |

l
[s]o]2}——]8]5]3] 8]6] 8

Fig. B: Matrix operations for Q@ = Q + Q.Q

Table 1: Sequential operations of all matrix multiplications

C<* A.B C A B
Pe* P.P + +
Q(*'iPQ + +
Per @Q.P + +
Qe—Q.Q + +

+ sign indicates that block scheme is executed in forward direction and - sign indicates that the block scheme is executed in reverse

direction

65



Res. oJ. Inform. Technol., 3 (1): 61-67, 2011

Algorithm 3: Implementation of sequential access recursive scheme
Mult{int 8A, int SB, int SC, int dim)

{

If (dim==1)

{

Cle] = Cle]+A[a].B[b]

}

else

{ Mult (SA, SB, 8C, dim/3); a +=8A; ¢ += 8C
Mult (SA, 8B, 8C, dim/3); a += SA; ¢ += 8C
Mult (SA, 8B, 8C, dim/3); a += SA; b =SB

Mult (SA, -SB, SC, dim/3); a += SA;c-=8C
Mult (SA,-SB, SC, dim/3); a += SA;c - =8C
Mult (SA, -SB, 8C, dim/3); a +=8A; b += 8B

Mult (SA, SB, SC, dim/3); a += 8A; ¢ += 5C
Mult (SA, 8B, 8C, dim/3); a += 8A; e +=8C
Mult (SA, 8B, 8C, dim/3); ¢ += SC; b += 8B

Mult (SA, SB, SC, dim/3); a -=8A; ¢ +=SC
Mult (SA 8B, 8C, dim/3); a -=8A; ¢ += SC
Mult (SA, 8B, 8C, dim/3); a -= 8A; b += 5B

Mult (SA, -SB, SC, dim/3); a -= SA; ¢c-=58C
Mult (8A,-SB, SC, dim/3); a -= 8A; ¢ - =SC
Mult (84, -SB, 8C, dim/3); a-=84; b +=8B

Mult (SA, SB, 8SC, dim/3); a-=8A;e+=SC
Mult (SA, 8B, 8C, dim/3); a -=8A; c+= SC
Mult (SA, 8B, 8C, dim/3);; b+-= SB; ¢ += 8C

Mult (SA, 8B, 8C, dim/3); a += 8A;c += 8C
Mult (SA ,SB, SC, dim/3); a += 8A; ¢ += 5C
Mult (8A, 8B, 8C, dim/3); a += SA; b +=SB

Mult (SA, -SB,SC, dim/3); a += SA; ¢ - =BC
Mult (SA,-SB, SC, dim/3); a += SA; ¢ - =8C
Mult (SA, -SB, -SC, dim/3); a +=8A; b +=SB

Mult (SA, 8B, 8C, dim/3); a += 8A; ¢ += 8C
Mult (SA, SB, SC, dim/3); a += SA; ¢ += SC
Mult (SA, SB, SC, dim/3);

}

IMPLEMENTATION

The sequential access recursive scheme can be implemented as given in algorithm 3. This
algorithm takes four parameters SA, 5B, 5C and dim. SA, SB and SC indicates sequential access
scheme. These parameters can take only +1 or -1 value. Parameter dim specifies the current matrix

66



Res. oJ. Inform. Technol., 3 (1): 61-67, 2011

size. A, B and C are actual matrices and their indices are a, b and ¢. Matrix C is the resultant
matrix. The name of the recursive function is Mult. The algorithm can be easily implemented by
writing appropriate program in C or C++,

Data access locality and cache efficiency: During 3-by-3 block multiplication, the algorithm
will perform 27 operations. Normally, for multiplication we require access of n?elements for n®
operations (Bader ef al., 2002). But in this algorithm we need to access only 9 elements of all the
three matrices. That is, we are accessing only k*elements during k? operations. So, we are getting
k2/k?®, that is, k #® ratio. Hence, data access locality is of the order of k %2,

The ideal cache model assumes a computer consisting of a local cache of limited size and
unlimted external memory. The cache consists of M words that are crganized as cache lines of L
words each. The replacement strategy is assumed to be ideal in the sense that the cache can foresee
the future. Hence, if a cache line has to be remaoved from the cache, it will always be the one that
is used farthest away in the future.

For a matrix multiplication of two NxIN matrices, N being a power of three, out of NxN bleck,
only nxn block 1s processed and will remain in cache. This block 1s also reused in next multiplication.
Hence, only two blocks will be required to be transferred. Therefore, the number of cache lines

transfers are given by T(n) =2 n?/L.
Therefore, for N x N, T(N) = (N/n)® T(n) which is of the order of (NWLJI\_:I).

CONCLUSION

We present here the problem of optimization of cache memory dene by implementation of
optimal oblivious matrix multiplication. Our algorithm uses only two types of recursive blocks. All
the elements are accessed sequentially and there are no jumps at all. The number of cache miss are

of the order of O(N% Jﬁ) .

REFERENCES

Bader, M.A., Z. Duan, J. Iacono and J. Wu, 2002. A locality-preserving cache-oblivious dynamic
dictionary. Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Jan. 6-8, San Francisco, California, pp: 29-38.

Charles, M.F., E. Leiserson, H. Prokop and 5. Ramachandaran, 1999, Cache oblivious algorithm.
Proceedings of the 40th Annual Symposium on Foundation of Computer Science, (FOCS'99),
New York, pp: 32-40,

Coppersmith, D. and 8. Winograd, 1990, Matrix multiplication via arithmetic progression. J.
Symbolic Computation, 9: 251-280.

Demaine, E.D., 2002, Cache-Oblivicus Algorithms and Data Structures. University of Aarhus,
Denmark.

Frigo, M., 1999. A fast fourier transform compiler 1999, ACM SIGPLAN Notices, 34: 169-180.

Goto, K. and R. van de Geijn, 2004. On reducing TLB misses in matrix multiplication. FLAME
Working Note, University of Texas at Austin.

Gunther, F., M. Mehl, M. Pogl and C. Zenger, 1999. A cache-aware algorithm for FDEson
hierarchical data structures based on space-filling curves. SIAM J. Sci. Comput.., 28: 1634-1650.

Prokop, H., 1999, Cache-oblivious algorithms. Master's Thesis, Massachusetts Institute of
Technology.

Whaley, R.C., A. Petitet and J.J. Dongarra, 2001. Automated empirical optimization of software
and the ATLAS project. Parallel Computing, 27: 3-35.

67



	Research Journal of Information Technology.pdf
	Page 1


