@

Academic
Journals Inc.

j '
1l

Research Journal of
Information

Technology

ISSN 1815-7432

www.academicjournals.com

Research Journal of Information Technology 4 (4): 228-234, 2012
ISBN 1815-7432 1 DOI: 10.3923/rit.2012,228.234
© 2012 Academic Journals Inc.

Criticality Estimation for Software Components: An Empirical
Approach

"Pooja Batra, Arun Sharma and 'Maitreyee Dutta

"Department of Computer Science, National Institute of Technical Teachers' Training and Research,
Chandigarh, India

Department of Computer Science and Engineering, Krishna Institute of Engineering and Technology,
Ghaziabad, India

Corresponding Author: Dr. Arun Sharma, Professor of Head-Department of Computer Science and Engineering, Krishna
Institute of Engineering and Tech., Ghaziabad, India

ABSTRACT

Components are developed by different programmers in different environment; interactions
among components can be characterized by the use of component interface or through other
component interactions. Interactions results dependencies, any modification to component can cause
the change of component functionality, because the composite functionality is reflected in different
components. Also day by day the complexity of software applications growing and there is more
emphasis on reusability and maintenance, to maintain these aspects there is a need to identify the
highly dependent component which is called as critical component. This paper introduced an
approach to find critical components in a component based system. The proposed approach is also
validated on existing metric and results have been found very positive.

Key words: Component, dependency, criticality, functionality, software applications

INTRODUCTION

Component-based software systems are built by assembling preexisting components, which
provides high flexibility and reusability. The major work with Component-Based Development
{CBD) is component. integrating rather than writing code and developing everything from scratch.
Fazal-e-Amin et al. (2011) advocates software reuse which yields benefits such as a reduction in
the development time, cost and effort required and an inecrease in the productivity and quality. In
conventional software development, the concept of complexity is related to the difficulty to analyze
source code, modify and maintain its modules. However, this concept is different in CB systems
because the maintenance and reconfiguration only involves replacing, adding and deleting
components rather than source code changes. Alhazbi and Jantan (2007) illustrated that
component. 1s usually configured only once during the build-time. Thereafter, versions of component,
Based Systems are generated by adding a new component, deleting a component, or replacing a
component with a new version. Therefore, in Component Based systems, the complexity resides in
the dependencies among components,

Dependency is a relationship involving two or more components, where a change of state in one

or more component leads to a potential for a change of state in one or more other Components.

228

Res. oJ. Inform. Technol., 4 (4): 228-234, 2012

In the simplest case of dependency, a unidirectional dependency between two Entities, d (A, B),
implies that A depends upon B. If A depends upon B, then a change in B implies a potential or
possible change in A. A is referred as dependent and B as the Antecedent. In this study we have
used this information to find Critical Component in a Component Based System. Critical
components are those which should be properly taken care of at the time of maintenance or at the
time of updation. While adding a new component, while deleting a component. or while replacing
a component with new version dependent components must be known. So, more dependent
compoenents are more critical. As criticality depends upon the dependencies and dependencies
promote interactions so proper dependency analysis is required (Sharma et al., 2007, 2009),

Graph based approach has been widely used by researchers for representing Dependency. Lisa
and Delugach (2001) represented the dependencies in terms of conceptual graphs. Conceptual
graphs are formal, logic based and semantic network language and are used in domain modeling
and requirement modeling. A conceptual graph is made up of concepts, relations and a possible
value. Relations are connected to concepts with directed arrows. Hierarchies represent the
subtypefsuper type. The proposed methodology also implemented by taking three examples and
compared it against other existing methodoloegies, including UML.

Y1 and Nahrstedt (2001) categorized the dependency into functional dependency and resource
dependency and directed graph based approach 1s used to represent these dependencies. Guo
{2002) suggested a category theory based framework to model component dependencies. Category
theory is a branch of Mathematics, designed to describe various structural concepts from different.
mathematical fields in a uniform way. So, the work defined several definitions and represented
component dependencies by using these definitions. The proposed model and definitions are very
much similar to object oriented data model to represent various elements like subtypes, attribute
inheritance ete. the proposed framework, However, 1s not being implemented empirically.

Vieira and Richardson (2002) represented the dependency relationships by using pomsets
description. Pomsets define a set of labeled events in a sequence and is able to express what can
take place after a particular component aceess peint is called by ancther component. In other words,
it is a sequence of one or more actions in the form of concurrent regular expressions. Pomsets are
considered to be compact and low computational overhead and therefore can be used to describe the
component dependency effectively.

Stafford et al. (2003) represented dependency relationship between two or more components
by a graph. This directed graph is further used to form an adjacency matrix AM [i, j]. If there is a
dependency between two components Ci and Cj, then AM [1, j] is 1, else it is 0. This representation
is used to compute the total dependencies of a component and of the system. Only the presence of
the dependency is stored, not the type of the dependency or the eventhinterface through which
these components are dependent.

L1 (2003) described the dependency in terms of adjacency matrix and component. dependency
graph. He categorized dependency into eight categories, namely, data, control, interface, time,
state, cause and effect, input/foutput and context dependencies. Author considered these eight
dependencies to measure the final dependency by using Boolean cperators. By using this approach,
several dependency relationships can be deduced. Like, if adjacency matrix obtained by all these
dependencies 1s upper triangle matrix, it means that all the dependencies are umdirectional.
Similarly, if adjacency matrix is a diagonal matrix, it means that there is no relationship and
components are isolated. However, except these two information, it is failed to extract other
important details like number of interaction parameters, types of these parameters, interaction
complexity and others.

229

Res. oJ. Inform. Technol., 4 (4): 228-234, 2012

Alhazbi and Jantan (2007) illustrated why dependency analysis is required while adding,
deleting and replacing a component in component based system, also author propoesed that beside
direct dependencies indirect dependencies can also be stored using matrix representation.

Wu and Offutt (2003) performed static analysis to identify the interface events and the
dependence relationship by using UML notation. The work provided a UML based framework to
evaluate the similarities among old and new components.

Sharma et al. (2009) proposed a link-list based approach to represent the dependency
relationship in CBS. Every component is represented by a node, consisting of all its required and
provided interfaces. The provided interfaces of a component are accepted by other components as
required interfaces. Component with required interfaces is called as dependent on component with
provided interfaces. By using link-list based representation, along with the dependency, other
information like name, number and type of interfaces, which are responsible for interaction can also
be extracted. This information can further be used to measure the complexity of interaction,
incoming and outgoing interaction density, most critical components and isclated components. All
this information can be helpful in understanding, testing, debugging and maintaining the system.

PROPOSED APPROACH

Criticality depends upon dependencies or interactions; we can measure interactions among
components by weight assignment, which is based upon type and number of interactions between
components. Steps fellowed in approach are:

Step 1: We follow linked list based approach proposed by Sharma et al. (2009) to represent
dependency. In this approach along with dependency, we can store information about
dependency also

Step 2: We assign different weight values to the edges of graph, based on number and type of
interactions, used in between components. We classify data types in three categories,
namely, Simple, Medium, Complex. Structured Data types like integer, float, character can
be taken as simple. Structured data types like date, string, array list and vector can be
taken as medium and data types like class type, built-in and user-defined components,
pointersfreference and others can be taken as complex. Depending upon number and type
of interactions we can assign weight to the edges, which are given in Table 1.

Step 3: After assigning the weights according to their number and types, these are added together
to get total criticality of a component

Implementation: To implement the propesed methodolegy, we tock a case study of Security

System which has total nine modules as shown and described in the Fig. 1 and in the following
section:

* Login component depends upon Hierarchy Management and both interact each with four
interface methods with arguments

Table 1: Interaction weights

Data type mamber Simple Medium Complex
1-2 0.1 0.25 0.5
3-5 0.2 05 0.75
=5 0.3 0.75 1

230

Res. oJ. Inform. Technol., 4 (4): 228-234, 2012

Tahble 2: Criticality with proposed approach

Name of component

Criticality
Server 2.50
Time management 2.06
Alarm management 2.06
Access management 2.00
Caleulation script 1.45
Door management. system 1.20
Devices 0.85
Login 0.75

Frim def (Class)
Dept def (Class)
Section def (Class
Group (Class

[Tierarchy
management

Frim def (Class)
Dept def (Class)
Section def (Class

User id (int) ‘ Group (Class
Data id (int) User id

Frim def (Cla3

Dept def (Class)
\ Section def (Clas:
Qroup (Class

inf
M G binie a0
Time management | Access management — Alarm management

system _system system
Int time (str) Lo
Out time (str) Alarm id (int)
Break time (str) 'Array of employee Confirmation code
Absence id (int) Checklist (int) id (string)
Correction id (int) Checkist (str) namg
Card validity (int) ‘Alarm id/int
Dior id (int)

Calculation Alarm location
[Sever R Alarm type

cmp id (int)

card no (int)

info passed by %
Card no (int)
\ccess group (str)
AXcess time group (sgr
Val¥ity (str)
Card \Xalidity (e

Account it (int)
Account name (str)
Employee id (int)
User name (str)
Validity (str)

Fig. 1. Component diagram of security system

« Firm def (class)

* Dept def (class)

*« Section def (class)
* Group (class)

Alarm id (int)
Alarm (string) name

Alarm id (int)

DMS
Alarm id (int)
Door status (int)
Employee id (int)
Employee name (string)
Access point id (int)
Access point type (string)

Devices

Alarm id (int)
Door status (int)

And class is a complex type argument so from Table £ criticality of login components is 0.75:

231

Res. oJ. Inform. Technol., 4 (4): 228-234, 2012

* Time Management component depends upon three components login, caleculation seript and
hierarchy management.

For login component, there are two Interface methods with simple arguments:

¢« Userid{nt)
« Dataid(int)

So, contribution of these two arguments towards criticality is 0.1 and these components share
one interface method with complex argument menu {class).

Criticality of Time management component with login component is 0.1+0.5 = 0.6,

For Caleculation Seript component there are interactions with four Interface methods with simple
arguments and three interface methods with medium type arguments.
Therefore, eriticality of Time management component with this component is 0.2+0.5=0.7.

For Hierarchy Management interactions are with interface method with four complex type
variables:

¢« Firm def (class)

¢ Dept def (class)

*« Section def (class)
* Group (class)

Therefore, criticality of Time management compoenent with this component is 0.75.
Thus, total criticality is 0.6+0.7+0.75 = 2.05.
Similarly, eriticality of other components can be obtained.

RESULTS

Criticality of all components from proposed approach is calculated by assigning weights to the
interactions depending upon their number and type. After assigning weights to all interactions of
other components to which a component 1s dependent these weights are added to get final eriticality
which 1s given in Table 2.

From the above Table 2, we find that in terms of number for interactions and type of arguments
Server component is most dependent in the above Component Based System. Obviously most
dependent is most critical component. If we can find it in a component based system this can be
helpful while maintaining and reconfiguring a system.

Tahble 3: CpIM values

Name of component CpIM Correlation coefficient with proposed approach
Server 3.44 0.89

Time management. 2

Alarm management 211

Access management, 297

Caleulation script 1.88

Door management. system 1.44

Devices 1

Login 1.44

232

Res. oJ. Inform. Technol., 4 (4): 228-234, 2012

Validation of proposed approach: Correlation analysis is performed for validation of proposed
approach with interaction metrices available. The available metrics are Component Interaction
Metrics, Actual Interaction metrics and Complete Interaction Metrices. Amongst these, complete
interaction metrices will estimate actual interaction of a component and our approach is also giving
weights to interaction which is based upon number and their type. So we will use complete
interaction metric for validation proposed by Chen et al. (2009):

CpIM:IC+OC (1)

where:

Ie = Sum of Complexity of incoming interaction
Oc = Bum of complexity of outgoing interactions
C = Total No. of components

Table 3 shows CpIM values for given case study. Correlation coefficient calculated is 0.89 which
is a very high positive correlation value. It shows that there is strong association between
interaction calculated by metric and interaction calculated by our proposed weight assignment
method. These values will be helpful during testing maintenance and reconfiguration of system.
These correlation coefficients and their interpretation validate the proposed complexity metric for
components complete interaction metric for each component.

CONCLUSION AND FUTURE WORK

To experiment the proposed approach, a small case study is taken with nine components, but
a component based application may consist of hundreds of components. In future a big application
may be taken to experiment the approach. If the criticality of compenent is high then its
maintainability 1s high, reusability 1s low and testing efforts are high. The proposed approach can
be used to identify the nature of critical components in eBS which in turn may be helpful in
maintaining system on later stages.

REFERENCES

Alhazbi, 8. and A. Jantan, 2007, Dependency management in dynamically updateable component.
based system. J. Comput. Sei., 7: 499-B08.

Chen, J., W.K. Yeap and 5.D. Bruda, 2009, A review of component coupling metrics for component-
based development. Proceedings of WRI World Congress on Software Engineering, May 19-21,
2009, Xiamen, pp: 65-69.

Fazal-e-Amin, A K. Mahmood and A. Oxley, 2011. A review of software component reusability
assessment approaches. Res. J. Inform. Technol., 3: 1-11.

Cruao, J., 2002, Using category theory to model software component dependencies. Froe. IEEE Int.
Conf. Workshop Eng. Comput. based Syst., 9: 185-192,

Li, B, 2003. Managing dependencies in component-based systems based on matrix model.
Proceedings of Net Object Days (NOD), AgeS Workshop, September 22-25, 2003, Erfurt,
Germany, pp: 22-25,

Lisa, C. and H.5. Delugach, 2001. Dependency analysis using conceptual graphs. Proc. Int. Conf
Concept. Struct., 9: 117-130.

233

Res. oJ. Inform. Technol., 4 (4): 228-234, 2012

Sharma, A., P.5. Grover and R. Kumar, 2009, Dependency analysis for component-based software
systems. ACM SIGSOFT Software Eng. Notes, 34: 1-6.

Sharma, A., K. Kumar and P.S. Grover, 2007, Managing component-based systems with reusable
components. Int. J. Comput. Sci. Sec., 1: 60-65,

Stafford, JA., AL, Wolf and M. Caporuscio, 2003. The application of dependence analysis to
software architecture descriptions. Lect. Notes Comput. Sei., 2804: 52-62,

Vieira, M. and D. Richardson, 2002. Analyzing dependencies in large component-based systems.
Proceedings of the 17th IEEE International Conference on Automated Software Engineering,
September 22-27, 2002, Edinburgh, UK., pp: 241-244

Wu, Y. and J. Offutt, 2003, Maintaining evclving component-based software with UML.
Proceedings of 7th European Conference on Software Maintenance and Reengineering, March
26-28, 2003, Benevento, Italy, pp: 133-142,

Y1, C. and K. Nahrstedt, 2001. QoS-aware dependency management for component-based systems.
Proceedings of 10th IEEE International Symposium on High Performance Distributed
Computing, August 07- 09, 2001, S5an Francisco, USA, pp: 127-138,

234

	Research Journal of Information Technology.pdf
	Page 1

