@

Academic
Journals Inc.

j '
1l

Research Journal of
Information

Technology

ISSN 1815-7432

www.academicjournals.com

Research Journal of Information Technology 4 (4): 235-240, 2012
ISBN 1815-7432 / DOI: 10.2923/1jit.2012.235.240
© 2012 Academic Journals Inc,

The Evolution of Reusable Programs Using Genetic Algorithm

Yousif Al-Bastalki

Department of Computer Science, Information Technology College, University of Bahrain, Bahrain

ABSTRACT

Genetic programming is an automatic programming technique that is used to evolve computer
programs by applying genetic algorithm. There are a number of representation methods to
illustrate these programs, such as LISP expressions. This study investigates the effectiveness of
genetic programming in solving the symbolic regression problem by using different representation
scheme, in which, the population programs are expressed as integer sequences rather than lisp
expressions. This approach is called Genetic Algorithm for Developing Software (GADS).
Furthermore, this study introduces the conecept of reusability to GADS and explains how to evolve
reusable programs using GADS. Different architecture altering operations are applied such as
function deletion and arguments duplication.

Key words: Genetic algorithm, genetic programming, automatically defined functions

INTRODUCTION

One of the central challenges of computer science is to get a computer to solve a problem without
explicitly programming it. Genetic Programming (GP), (Koza, 1992; Weijie et al., 2011) is a domain-
independent problem-solving approach in which computer programs are evolved to solve, or
approximately solve, problems. It is an application of Genetic Algorithm {(GA) (Moesavi, 2011;
Mahi and Izabatene, 2011), which 1s a search algorithm based on the mechanies of natural
selection and natural genetic and based on the Darwinian principle of reproduction and survival
of the fittest and analogs of naturally occurring genetic operations such as crossover and mutation.
(5A was suggested by Holland in the seventies (Holland, 1975). Over the last twenty years, it has
been wused to solve a wide range of search, optimization and machine learning problems
(Goldberg, 1989),

(7P 1s adaptive algorithm, where the structure under adaption is a population of chromosomes
represent the candidate programs (sclutions).

There are different representation methods used to represent the chromoseomes, the most
common on the Lisp expressions (Koza, 1992, 1995, 1999) uses LISP expressions to represent the
population programs. However, there is ancother representation method, which 1s proposed by
Paterson and Livesey (1996, 1997), They introduced a new method for program representation.
He suggested a different approach using Backus Naur Form (BNF) definition which is a notation
for expressing the grammar of a language in the form of production rules. He used a fixed length
chromosome which encodes production rules, where the genotype (genetic search space element,
i.e., chromosome) is distinet from the phenotype (solutions space element i.e., program). This
approach 1s called Genetic Algorithm for Developing Software by Peterson (GADS). The GADS
(Al-Bastaki and Awad, 2010) genotype is a list of integers which, when input by a suitable
generator, causes that generator to output the program that is the corresponding phenotype. The
mapping from genotype to phenctype is called ontogenic mapping.

235

Res. oJ. Inform. Technol., 4 (4): £55-240, 2012

In this study, we use the representation method of GADS in order to represent the programs.
The main cbjective is to investigate effectiveness of applying different architecture altering
operations introduced by Koza (1999) with GADS. Thus, by using the proposed approach, more
complex structured programs can be evolved efficiently comparable with traditional GADS and GF.

The symbalic regression problem has been chosen as case study here. GP has been used in wide
area of applications (Pugazhenthi and Rajagopalan, 2007), one of them 1s to solve the symbolic
regression problem. Symbolic Regression can be viewed as the process of shaping an equation from
a given set of points.

Many efforts have been made to use genetic algorithms to solve symbolic regression problems.
One of the problems that plagues most of the efforts is finding a way to efficiently mutate and
cross-breed symbolic expressions so that the resulting expressions have a valid mathematical
syntax. One approach to this problem is to perform a mutation, check the result and then try a
different random mutation until a syntactically valid expression 1s generated. Obvicusly, this can
be a time consuming process for complex expressions. A second approach is to limit what type of
mutations can be performed-for example, only exchanging complete sub-expressions. The problem
with this approach is that if limited mutations are used, the evolution process is hindered and it
may take a large number of generations to find a solution, or 1t may be completely unable to find
the optimal sclution (Gene expression programming, 2008). In this study constrained GADS, which
is inspired from the conecept of strongly-typed GP (Haynes et al., 1995), with automatically defined
functions (ADF) is presented.

GA AND GP

One of the component methodologies of computational intelligence 1s evolutionary computation.
There are number of evolutionary computation techniques, such as GA, Genetic Programming (GP)
{(Kumarci ef al., 2010), Cultured Algorithms and Differential Evolution algorithms. Regardless of
the technique used, evolutionary computation applications follow a similar procedure:

* Initialize the population

« Kvaluate each individual in the population

« Select individuals

* Produce a new population by applying a number of operations on selected individuals
* loop to step b until some condition is met

GA is ageneral, probabilistic and adaptive search algorithm. GA is a stochastic search algorithm
that 1s based on the Darwinian principle of survival of the fittest. It works on population of
individuals (chromosomes) that represent the candidate solutions.

(ras have been applied to solve complex problems (Christy and Thambidural, 2006;
Chettih et al., 2008) which has been used in a large number of scientific and engineering problems,
such as optimization, automatic programming and machine learning.

GP is an application of GA in which the chromosomes are the candidate programs. It used to
solve problems by generating the program that can be used to solve this problem. Thus, with GP
the structure under adaption is more complex.

GADS WITH ADF
To work with GF, we have to determine the function library and representation scheme, in
addition to the fitness function.

236

Res. oJ. Inform. Technol., 4 (4): £55-240, 2012

Table 1: The ssmtax rules

Syntax rules RuleNo.
<Sexp> : = < Input> 0
<Sexp> : = < Application> 1
<Inpute>: =X 2
<Input>=:=n 3
<Application> : =n Call P 4
<Application> : = <Sexp=+<Sexp= 5
<Application> : = <Sexp=-<Sexp= 3]
<Application= : = <Sexp=*<Sexp= 7
<Application> : = <Sexp=%-<Sexp> 8
<Application= : =n ADF<Sexp= 9

The representation method used here is variable length chromosomes, where the genes are
integer numbers represent the number of the syntax rules. The syntax rules (BNF) used is
presented in Table 1 and the function and terminal sets, F and T are:

T={X n}
F=4+,-,%,%}

Automatically Defined Functions (ADF) has been introduced by Koza {1995), where GP will
automatically and dynamically evolve a combined structure containing ADF and a calling program
capable of calling the ADF. In this work ADF is a technique used with GADS.

When an ADF is encountered in a genotype, a random number is generated which represents
the number of function parameters, then the body of the function 1s constructed. Therefore, the
phenotypes consists of: the root (ADFI, where iis the identification number of the function which
is incremented whenever a new ADF is introduced), the list of parameters (the number of these
parameters is generated randomly) and function definition.

In this Table 1, n represent an integer number, X 1s a variable, P 1s the list of parameters and
“n Call P” represents calling the function ADFn with the parameter list P, in which P should be a
list of constants (integers). Also, n of rule (9) represents the number of parameters (number of
variables in the function definition).

In order to generate a well formed expression, constrained GADS is used. Thus, The syntax of
the programs should be preserved during the initial population generation and by the gensetic
operation used to modify the population. Therefore, the generation of a gene in the chromosomes
is simply based on some constraints {according the syntax rules defined in Table 1, such that.: if a,,
a,,....,a; 18 the genotype, the selection of gene a;,, is not randomly, instead, it is dependent on the
gene a;. Therefore, each gene has a number of allowed genes to appear after it.

The process of generating an ADF in a genotype of the initial population can be performed as
follows:

* (enerate a random number n which the number of function parameters
* Define the hody of the function recursively, where the primitives that composed the function
is either a function, or an integer number in the range 1...n

We need to mention here that wherever an ADFi is defined in a chromosome, it is replaced by
the function 1 call P”, 1.e., rule number 4 and the function definition is stored in a separate array.

237

Res. oJ. Inform. Technol., 4 (4): £55-240, 2012

Furthermore, it is not allowed to include the gene (4) in the chromosome unless an ADF 1s found
in this chromosome,

GENETIC OPERATIONS
In this study, different genetic operations (Wasan, 2008) can be used to modify the populations.
The operations used are as follows:

*+ The crossover operator: It must be implemented so that two chromosemes (genotypes) that
are syntactically correct to produce two offsprings that are also syntactically correct. The
following are the steps needed to perform the modified brood crossover operator:

Step 1: Select two parents from the population

Step 2: Select a gene randomly from the first parent and select a gene randomly from the second
parent

Step 3: Test that genes for the syntactic constraint

Step 4: If it is correct then exchange the genes, otherwise, select ancther gene from the second
parent until the correct gene 1s found

Step 5: Steps 2-5 is repeated NB times to generate 2*NB offspring

Step 6: Evaluate each of the children for fitness. Select the best two, they are considered as the
children of the parents. The remaining of the offspring are discarded

* The mutation operator: It involves the selection of a gene randemly from a genotype and
then generate a gene randomly to replace the selected gene. Check the left and right neighbors
of that gene, if it satisfies the syntactic rules, then replace it, otherwise, select another gene

In this method, the genotypes have a variable length. Thus, lengths of genotypes in the
population are selected randomly and the max. length must be specified beforehand by the user
and depends on the problem

* The function deletion operator: It used to delete an ADF. A random ADF is selected
randomly

+ Altering the AFD definition be changing the number of parameters: This can be
performed as follows: when an ADF is selected for this cperation, a random number is
generated to be the new p of the ADF. Then, change the body of the ADF by replacing the
integer numbers that represent the parameters by new numbers generated randomly

EXPERIMENTAL WORK

The proposed modified GADS has been implemented to solve the symbolic regression problem
using C++ programming language. Kach chromosome has been implemented as a structure of the
following fields: one-dimensional array of integers (chromosome), ADF definitions (Gf any),
chromosome length and chromosome fitness value. Where the fitness function used 1is:

Fit {(x) = 1/{ABS(actualO-desiredO)+1) {1
where, actualQ 1s the actual output of the chromosome x and desiredO is the desired output.

238

Res. oJ. Inform. Technol., 4 (4): £55-240, 2012

Tahble 2: Results of different. experiments

Ex1 Ex2 Ex3 Ex4

Average number of generations 33 10 13 16

The genetic parameters used are: population size = 100, crossover probability = 1, mutation and
other operators are of probability = 0.05.
For example, the expression to be evolved 1s:

XHXHXHX

Using the syntax rules of Table 1, after 22 generations the following genotype has heen
obtained:

17150217020215180202170202

The corresponding phenotype is:
(G0 *(x%0x) ()
In ancther run, after two generations, the following genotype has been obtained:
171502170202191503170202
The corresponding phenotype is:
(x+GEO*((1) call 1))

where, ADF1 (1+(x*x)).

Table 2 presents the results of different experiments listed bellow and these results are the
average number of generations needed to find the correct solution (program) which are obtained
by executing the proposed methed 100 times:

« Ex1:. Without ADF

« Ex2: With ADF and the genetic operations used are crossover and mutation only

« Ex3: With ADF and the genetic operations used are crossover, mutation and ADF deletion

« KEx4: With ADF and the genetic operations used are crossover, mutation and changing the
number of parameters

It 1s clear that GADS with ADF gives the best results in term of number of generations and
GADS without ADF is inefficient especially for complex problems and expressions.

CONCLUSION

In this study, GADS has been used in which the structure under adaption 1s a population of
strings, while in GF, the structure is a population of programs (LISP expressions). Thus, GADS
uses the GA engine and works on simpler structure, Hence, we expect an improvement in the

239

Res. oJ. Inform. Technol., 4 (4): £55-240, 2012

efficiency in terms of time and storage space, in addition to simplify the implementation of genetic
operations such as crossover and mutation.

The main cbjective of this study is to introduce the concept of reusability and ADF to GADS
which can improve the efficiency especially for complex problems. The function reusability has been
introduced by using ADF with the “call” function, in addition to different altering architecture
operators. The symbolic regression problem 1s considered here and we have observed that the
number of generations needed to find the correct solution is minimized comparable with GADS
without ADF. For future work, other genetic operations and applications will be studied.

REFERENCES

Al-Bastaki, Y. and W. Awad, 2010. GADS and reusability. J. Artaf. Intell., 3: 67-72.

Chettih, S., M. Khiat and A. Chaker, 2008. Optimal distribution of the reactive power and voltages
control in Algerian network using the genetic algorithm method. Inform. Technol. .,
7:1170-1175.

Christy, A. and P. Thambidurai, 2006, Efficient information extraction using machine learning and
clagsification using genetic and C4.8 algorithms. Inform. Technol. J., 5: 1023-1027,

Goldberg, D.E., 1989, Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley, New York.

Haynes, T., E. Wainwright, 5. Sen and D. Schoenefeld, 1995, Strongly typed GP in evolving
cooperation strategies. Proceedings of the 6th International Conference on Genetic Algorithms,
July 15-19, Morgan Kaufmann, USA., pp: 271-278.

Holland, J.H., 1975. Adaptive in natural and artificial systems. Ann Arbor, University of Michigan.

Koza, J RK., 1992, Genetic Programming: On the Programming of Computer by Means of Natural
Selection. MIT Press, USA.

Koza, J.R., 1995, Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press,
USA.

Koza, J.R., 1999, Genetic Programming [II: Darwinian Invention and Problem Solving. Morgan
Kaufmann, USA, ISBN: 9781558605435, Pages: 1154,

Kumarei, K., P.K. Dehkordi and [. Mahmodi, 2010, Calculation of plate natural frequency by
genetic programming. J. Applied Sei., 10: 451-461.,

Mahi, H. and H.F. [zabatene, 2011. Segmentation of satellite imagery using REF neural network
and genetic algorithm. Asian J. Applied Sei., 4: 186-194.,

Mosavi, M.E., 2011. Applying genetic algorithm to fast and precise selection of GPS satellites. Asian
J. Applied Sci., 4: 229-237.

Paterson, N. and M. Livesey, 1998. Distinguishing genotype and phenotype in genetic
programming late breaking. Proceedings of the 1st Annual Conference on Genetic
Programming, July 28-31, 1996, Stanford University, San Francisco, CA., USA, pp: 141-150.

Paterson, N. and M. Livesey, 1997. Evolving caching algorithms in C by genetic programming.
Proceedings of the 2nd Annual Conference on Genetic Programming, July 13-16 1997,
Stanford University, San Francisco, CA., USA., pp: 262-267.

Pugazhenthi, D. and 5.P. Rajagopalan, 2007. Machine learning technique approaches in drug
discovery, design and development. Inform. Technol. J., 6: 718-724.

Wasan, A.8., 2008, Finding linear equivalence of keystream generators using genetic simulated
annealing. Inform. Technel. J., 7. b41-544.

Weijie, P., L. Shaobo, X, Qingsheng and Y. Guanei, 2011. Multi-objective optimization of RFID
network based on genetic programming. Inf. Technol. J., 10: 2427-24383.

240

	Research Journal of Information Technology.pdf
	Page 1

