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ABSTRACT

Fluorescence microscopy imaging 1s a common biomedical tool for researchers malke use in the
study of active processes occurring inside live cells. Although fluoresecent confocal microscopes are
consistent instruments, the acquired images are normally corrupted by a severe type of poisson
noise owing to the small amount of acquired radiation (low photon-count images) and also the huge
opto-electronics amplification. These effects are still more destructive when very low intensity
incident radiation is employed to avoid photo toxicity. To validate various standards of denoising
algorithms to denoising the cardio fibroblast cells, in which all the flucrescence images are affected
by Poisson Gaussian noise. These images are considered especially as a cardio fibroblasts contribute
to structural, biochemical, mechanical and electrical properties of the myocardium. The denoising
approaches employed here can directly act on Poisson noise like PURELET or use approaches
wherein Gaussianize the noise by means of standard VST algorithms and then Gaussian denoising
algorithms like BLS_GSM, BEM3D and OWT SURELET are proposed. The experimental results are
carried out on how the ISNE changes with the change in algorithms and inverse transforms for
cardio fibroblasts.
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INTRODUCTION

Fluorescence live-cell imaging is generally used to study intracellular molecular dynamics. In
live cell microscopic imaging there is always exists a compromise between image quality and cell
viability (Kumar and Arun, 2011). The prerequisite to image rapidly and in numerous dimensions,
to capture dynamic intracellular procedures also constrains illumination and exposure regimes and
requires fast camera readout. This 1s in turn results in low Signal to Noise Ratio (SNER) flucrescence
images with mixed Poisson-Gaussian noise. Under such conditions effective denoising techniques
are indispensable and become a critical tool to improve quantitative investigation of these images
in order to understand dynamic intracellular processes and their fundamental mechanisms. In this
study, an efficient appreoach is proposed to determine the impact of various standards of denoising
approach on fluorescence images.

Cardiac fibroblast cells structured one of the largest cell populations, in terms of cell numbers,
in the heart. However, they are frequently disregarded by tn vive and in vitre studies into cardiac
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funetion. Fibroblasts give to cardiac development, myocardial structure, cell signaling and
electro-mechanical function in healthy and diseased myccardium, Cardiac fibroblasts are significant
determinants of both structure and function of the myocardium. They add to structural,
biochemical, mechanical and electrical characteristics of cardiac function. Heart failure affects over
all 14 million people worldwide and 1s a primary cause of death in adults and in children. Because
postnatal cardiomyocytes (CMs) have small or no regenerative ability, current therapies are
restricted. Fibroblast cells also lead to a new generation of reprogramming proficiency which
involves trans-differentiating one adult somatic cell type directly into another (Anscombe, 1948),
We reported direct reprogramming of fibroblasts into CM-like cells in vitro. The cardiac fibroblasts
may reprogram more fully in vive in their native environment which might encourage survival,
maturation and pairing with adjacent cells. If so, the vast pool of cardiac fibroblasts in the heart
could serve as an endogenous source of new CMs for regenerative therapy. Considering the
impartance of cardio fibroblasts we reflect on various denoising strategies for diminution of noise
in the images which could lead to some life saving observations. Taking into consideration the
potential of fibroblasts consider denoising these i1mages and wvalidate them using some
standard denoising strategies. The methods considered either work on the Poisson noise or they
(raussianize the Paoisson process and then dencise the Gaussianized image (Fryzlewicz and Nason,
2004).

For Gaussianizing the image process the variance stabilizing transform (VST) by applying the

f:zaZJz-&-E
8

to the data which will Gaussianize the noise which is then removed by means of a conventional
denoising algorithm for additive white Gaussian noise which in this case 1is OWT_SURELET and
BLS_GSM algorithms. An inverse transformation is applied to the dencised signal, obtaining the

Anscombe root transformation:

estimation of the signal of interest.

Proper inverse transformation 1s fundamental in order to diminish the bias error which arises
when the nonlinear forward transformation is applied. Both the algebraic inverse and the
asymptotically unbiased inverse proposed by Anscombe (1948) lead to a significant bias at low
counts.

Also learn the effect of the PURELET algorithm where PURE is an unbiased, defined in the
Haar wavelet domain (Kolaczyk and Dixon, 2000) of the mean-squared error between the original
image and the estimated image. PURE-LET estimates the true image from the noisy image by
minimizing PURE.,

THEORY

Poisson noise: Let z, 1 = 1,......... , N, be the observed pixel values attained by an image
acquisition device. Let us consider each z; to be a self-governing random Poisson variable whose
mean v;20 is the fundamental intensity value to be anticipated. Clearly, the discrete Poisson
probability of each z; 1s:

Bz lyip = (1)
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As well to being the mean of the Poisson variable z, the parameter y, is also its variance:
E{Zi|yi} = yi = var{z | yi} (2)
Poisson noise can be defined as:
i = 7~ B 1) )

Therefore, trivially have Ei|yi}=0and var{ni|yi} = var{zi|yi} = vi. In view of the fact that the noise
variance reliant on the true intensity value, Poisson noise is depend on the signal. More purposely,
the standard deviation of the noise ni equals fyi . Owing to this, the effect of Poisson noise increases
{(i.e., the signal-to-noise ratio decreases) as the intensity value decreases.

Variance stabilization and the anscombe transformation: The underlying principle behind
applying a variance-stabilizing transformation is to remove the data-dependence of the noise
N.

Furthermore, if the transformation is besides normalizing (i.e., it results in a Gaussian noise

variance, as a result that it becomes constant throughout the entire data =z1, 1 = 1

3o )

distribution), can calculate approximately the intensity values y1 with a conventional denoising
technique designed for additive white Gaussian noise. Neither exact stabilization nor exact
normalization is possible then, in actual fact, approximate or asymptotical results are used.

One of the most accepted wvariance- stabilizing transformations is the Anscombe

f:ZA)ZJZ-‘r% (4)

By {4) to Poisson distributed data provides a signal whose noise is asymptotically

transformation (10):

additive standard normal. The denoising of f(z) produces a signal D which 1s an estimate of

E{f(z) |y}

DENOISING

Gaussian denoising

Gaussian denoising-BLS-GSM: This approach is for removing noise from digital images, is
depend on a numerical maodel of the coefficients of an over absolute multiscale orented origin.
Neighborhoods of coefficients at neighboring positions and scales are represented as the product
of two self-governing arbitrary variables: a Gaussian vector and a hidden positive scalar multiplier.
Beneath this model, the Bayesian least squares calculate each of coefficients which reduce to a
weighted average of the local linear estimates over all potential values of the hidden multiplier
variable (Zhang et al., 2008; Lefkimmiatis et af., 2009). The process of image denoising uses the
same top-level formation as:

*  Decompose the image into pyramid sub bands at different scales and orientations

* Denoise each sub band, apart from the low pass residual band
* Invert the pyramid transform, ocbtaining the denocised image
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A vector related to a neighborhood of cbserved coefficients of the pyramid illustration can be
defined as:

y=x+w=-\/z_u+w (5)

Observe that the assumed GSM structure of the coefficients, coupled through the assumption
of independent additive Gaussian noise, means that the three random variables on the right side
of (B) are self-determining.

Both u and w are zero-mean Gaussian vectors, with related covariance matrices Cu and Cw.
The density of the observed neighborhood vector conditioned on a zero-mean Gaussian by way of
covariance C(y|z) = zCu+Cw:

57 (zCu2+ cw) 'y (6)

2m" ||zCu+ Cw ||

p(¥|z) = exp

The neighborhood noise covariance Cw, is obtained by decomposing a delta function eNyNxzé(, m)
into pyramid sub bands where, (Ny, Nx) are the image dimensions. Elements of Cw may then be
calculated directly as sample covariance. This process is simply generalized for nonwhite
naise, by replacing the delta function with the inverse Fourier transform of the square root of the
noise power spectral density. For given Cw, the signal covariance can be computed from the
observation covariance matrix Cy. Compute from Ciy|z) by taking expectations over z:

C(y)=E{z}CutCw

Without loss of generality, set K{z} = 1, resulting in:

Cu = Cy-Cw (7
Bayes least squares estimator: For each neighborhood, need to estimate x_, the reference
coefficient at the middle of the neighborhood, from the set of cbserved (neisy) coefficients. The

Bayes Least Squares (BLS) estimate 1s presently the conditional mean:

E{x, |y} = [x.pix, | y)ds,
= [T xpx, 2| y)dzdx,
= [ =ptx, 1y, 2) plzly)deds,
[ pel9E, |y, 2)dz (8)

where alsc even assume the convergence in order to change the order of integration. Moreover,
describe about each of these individual components.

113



Res. oJ. Inform. Technol.,, 6 (2): 110-123, 2014

Local wiener estimate: The main advantage of the GSM model 1s that the coefficient
neighborhood vector x is Gaussian when conditioned on z. The fact that, coupled with the
assumption of additive Gaussian noise means that the expected value inside the integral of (8) 1s
merely a local linear (Wiener) estimate, were for the full neighborhood vector as:

E{x|y,z} = zC, (zC, + Cw)ily (9)

By solving:
_WZm AV 10
E{le’2}72“=1 zZh, +1 ( )

Posterior distribution of the multiplier: The other module of the sclution given in (8) is the
distribution of the multiplier, conditioned on the ebserved neighborhood values. Bayes’ rule is used
to compute this:

Bz |¥) = mP(YIZ)Pz(Z) (11)
["pylap. (@yda

The proposed denaising algorithm as follows:

¢ Decompose the image into sub bands
*  For each sub band (except the low pass residual):
+  Compute neighborhood noise covariance, C_, from the image-domain noise covariance.
+ Estimate noisy neighborhood covariance,C,
+  listimate C, from C, and C, using (7)
+  Compute A and M
*+  Foar each neighborhood
*+  For each value z in the integration range:
+  Compute E{x |y, z} using (10)
+  Compute piy|z)
+  Compute (z|y) using (11)
+  Compute E{x |y} numerically using (8)
*  Reconstruct the dencised image from the processed sub bands and the low pass residual to
get. D

Gaussian denoising OWT_SURELET: In SURE, no a priori image model is needed to optimize
the dencising process which then purely amounts to solving a linear system of equations in each
wavelet sub band (Luisier et «l., 2010). The general denoising approach comprises of expressing
the denoising process, F(y) as a linear combination (LET: Linear expansion of thresholds) of given
elementary processes, F | (¥):

Fy) = i akFk(y) (12)

k=1
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At this point, the unknown weights ak are specific by minimizing the SURE. It 1s also likely,
to evaluate the performance of the algorithm, to compare the result with what the minimization of
the MSE would supply.

The linearity {12) is a vital advantage for sclving the minimization problem, since the SURE
is quadratic in F(y). The coefficients ak are, thus, the solution of a linear system of equations:

S k@) Fi(y)at = Fk(y)"y - o’div{Fk(y)} y
Mk, 1 [cJk fork=12,.K

(13)

This approach suggests that, a set of dissimilar dencising algorithms are also preferably selected
with balancing dencising behawviors and optimize a weighting of these algorithms to obtain the best
of them at once.

Point wise SURE-LET transform denoising: Initially, define a couple of linear transformations
D-decomposition and R is the reconstruction such that ED = Identity: Typically D is a bank of
decimated or undecimated filters. Once the size of the input and output data are frozen, these
linear operators are characterized by matrices, respectively D = (di, j); ;1o @nd B =, 1)y jcpgag
that satisfy the perfect reconstruction property RD = ID. Then, the whole denoising process boils
down to the following steps.

« Apply D to the noisy signal y = x+b to get the transformed noisy coefficients w = Dy = ({wi)); 1,

* Apply a point wise thresholding function (0i(wi)),

+ Revert to the original domain by applving R to the thresholded coefficients 8(w), vielding the
denoised estimate ¥ =R0(w)

This algorithm can be summarized as a function of the neoisy input coefficients:

% =F(y)=RO(Dy) (14)
The SURE-LET approach recommends that expressing F as a linear expansion of denoising
algorithms Fk, according to:

Fly) = — FEy)

where, Ok(.) are the elementary point wise thresheolding functions. This linear parameterization
does not entail a linear denocising; certainly, the thresholding functions can be chosen as a
nonlinear function.

A point wise thresholding funetion is possible to be efficient if it satisfies the following properties
such as differentiability, anti-symmetry and linear behavior for large coefficients. A fine selection
has been experimentally establish to be:

Oi(w) = ai, 1t1{w)+ai, 2t2(w)
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Where:

]

H(w) = w and (2(w) = w(l—¢ = )
in each band 1.

Summary of the algorithm:

. Perform a boundary extension on the noisy image
. Perform an UWT on the extended noisy image
. For i=1... J(mumber of band pass sub bands), Fork =1, 2
. Apply the point wise thresholding functions defined in (16) to the current sub band wi.
. Reconstruct the processed sub band by setting all the other sub bands to zero to obtain Fi, k(y)
. Compute the first derivative of tk for each coefficient of the current sub band wi and build the corresponding coordinate of ¢ as
exemplified by Kq. 13
end

end

Gaussian denoising BM3D: The procedure is a transform domain enhanced sparse
representation denocising method. Block Matching and 3-Dimensional filtering (BM3D) can achieve
a high level of sparse representation of the noise free signal; therefore, the noise can be set
independently from signal by shrinkage. In this way, the transform displays all the tiny details of
image by grouped fractions simultaneously the essential unique feature of each individual
fragment 1s protected (Portilla et al., 2003).

The general 1dea of the BM3D denoising algorithm 1s the following:

+ Block-wise estimates: For each block in the noisy image the filter performs:

*+  Grouping: Finding blocks that are similar to the presently processed one and then stacking
them together in a 3-D array (group)

+  Collaborative filtering: Applying a 3-D transform to the formed group, attenuating the
noise by shrinkage (e.g., hard-thresholding) of the transform ceefficients, inverting the 3-D
transform to produce estimates of all grouped blocks and then returning the
estimates of the blocks to their original places. Because the grouped blocks are similar, Block
Matching and 3- Dimensional filtering (BM3D) can achieve a high level of sparse
representation of the noise-free signal, thus, the neise can be set apart well from signal by
shrinkage

« Aggregation: The cutput image is estimated by weighted averaging of all achieved block

estimates that have overlap

Poisson denoising

Poisson Denoising PURELET: The fundamental theory behind this is to find a statistical
approximation of the Mean Square Error (MSE), or “risk”, between the (unknown) noiseless image
and the processed noisy image. Owing to the Poisson noise theory, referred to this outcome as the
PURE; this 1s analogous to the Stein’s Unbiased Risk Kstimate (SURKE) which holds for Gaussian
statistics (Blu and Luisier, 2007).
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The objective 18 Minimization of MSE estimate over a collection of acceptable denoising
processes to find the best one, in the sense of the Signal-to-Noise Ratio (SNE) which is a common
quantifier of restoration quality. The efficiency of the method stems from the use of a simple
normalized Haar-wavelet transform and from the perception of LET the acceptable denoising
processes are expressed as a linear combination of basiec denoising processes, from which only the
weights are unknown (Willett and Nowak, 2003).

In this weights that are then computed by minimizing the PURE, through the resolution of a
easy linear system of equations. This means that all the parameters of the algorithm are adjusted
totally by design, without the need of user key in. For each sub band, our restoration functions
involve several parameters which offer more flexibility than standard single-parameter
thresholding functions. Importantly, the threshelds are meoedified to local estimates of the
(signal-dependent) noise variance {Willett, 2008).

Similarly to what has been proposed for SURE-based denoising we describe the denoising
function as the Linear Expansion of Thresholds (LET) defined as:

F(y) = i akRek(w, w )

Where:
ROk(w, w™) = Fk(y) (16)
Linear parameterization, in which PURE turn cut to be quadratic in the ak’s. Hence,
the search for the optimal (in the minimum PURE sense) wvector of parameters

a =[al, a2... ak]? boils down to the solution of the following system of linear equations: Fork = 1. K,
have:

> tky) fly)a =(y) "t (v) - o div{£; ()}

[M]k, 1 [c]k
Fork=1,2,. K
Ma=c¢ (17

By means of the first-order Taylor-series approximation of PURE obtain a comparable system
of linear equations given by:

& =[y'(f(y)-of (yn-o*divify(y)-of,(y)}] ke[1.. k] (18)

Inverse transformation: Apply an inverse transformation to D in order to get hold of the desired
estimate of yv. The direct algebraic inverse of is:

fa(D) £ (D) = [ST 75 (19)
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but the consequential measure of y is biased, because the nonlinearity of the transformation f
means generally have:

Eif(z) [yi#f(Eiz|vhH (20)
and therefore:
= (E{f(z) | yh =Edz |y} (21)

Another possibility is to use the adjusted inverse:
2
1b(D) = [9} L (22)
2 8

which provides asymptotical unbiasedness for large counts. This i1s the inverse typically used in
applications.

While the asymptotically unbiased inverse (22) provides good results for high-count data,
applying it to low-count data leads to a biased estimate.,

Exact unbiased inverse: Provided a sucecessful denoising, i.e., D is treated as E{f(z)|y}, the exact

unbiased inverse of the Anscombe transformation Ic f1s an inverse transformation that maps the
values E{f(z)|y} to the desired values E{z|v}:

le: Bif(z)|y}~Bizly} (23)

As E{z|y} =y for any given y, the drawback of finding the inverse Ic reduces to computing the
values K{f(z)|y} which is done by numerical evaluation of the integral corresponding to the
expectation operator E:

E(f(2)]y) = | t@p(z|y)dz (24)

where p(z|y) is the generalized probability density function of z conditioned on y. In this
case the discrete poisson probabilities p(z|y) were used so can replace the integral by
summation:

R{f(z)|y} = iﬂf(z)p(z B (25)

Additionally, since here f(z) is the forward Anscombe transformation that can be written
(25) as:

E{f(z)|y}_2f[ z+§.E} (26)
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Let us state that if the exact unbiased inverse (23) 1s applied to the dencised data D with some
errors (in the sense that D=Ei{f(z)|v}, then the estimation error y = le(D)an comprise variance with
bias components. In general, the unbiasedness of Ic holds only provided that D = E{f(z)|y} exactly,
as it is assumed.

EXPERIMENTS

All the experiments consist of both the Gaussian based denoising strategies and poisson based
denoising strategy. To implement the exact unbiased inverse Ic in practice, it is sufficient to
compute (26) for a limited set of values y; for arbitrary values of y then use linear interpolation
based on these measured values of (26) and for large values of v approximate Ic through Ib. Also
compute the PURELET approach for the same images. The performances of these algorithms are
evaluated by the peak signal-to-ncise ratio (PSNR). The PSINR is calculated using the Eq:

10log, , _ maxy)’ (27)
% [2(@13@21\0}

where N is the total number of pixels in the image.

RESULTS
The test images used in the experiments are below.

The test images used for this experiment were shown in Fig. 1, 2, 2, 4, 5 and 6 and evaluate
the performance in terms of PSINR. The approaches used here are the OWT-SURELET, BLS_GSM,
BM32D and FURELET for the dencising and the inversion is done with either the exact unbiased
inverse or the asymptotically unbiased inverse.

The denocising performance is evaluated in terms of PSNER. Table 1 shows the results of
BLS GEM. Table 2 shows the results of OWT-SURELET. Table 3 shows the results of BM3D and
Table 4 shows the results using PURELET. The plots of the PSNR wvalues obtained using
BLS_GSM, OWT SURELET and PURELET at a glance shows that PURELET and BLS_GSM
provide more regular performances when compared to the other two strategies in general for cardio
fibroblasts.

100 pm

Fig. 1: Adult human heart cultured in confluent state allowing for KCM deposition
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Fig. 2: Rat Cardiac Fibroblasts (RCF) provided by Innoprot isolated from sprague

Fig. 3: Human Cardiac Fibroblasts (HCF)-immunostaining for fibronectin, 100x

Fig. 4: Human Cardiac Fibroblasts-adult atrial (HCF-aa)-Relief contrast, 200x
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Fig. 5: Mouse Cardiac Fibroblasts (MCE)

Fig. 6: Mouse Cardiac Fibroblasts (MCF)-Phase contrast, 100x

Tahble 1: Test results using PLS-GSM

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Images ISNR ISNR ISNR ISNR ISNE ISNR ISNR ISNR ISNR SNR ISNR ISNR

o ASYIN EUINV ASYIN EUINV ASYIN® EUINV ASYIN EUINV ASYIN EUINV ASYIN EUINV
1 34.56564 34.5653 41.6428 41.6422 37.8428 37.8531 37.9952 380036 30.68656 39.6923 41.1431 41.1550
2 20,4393 29.4393 37.2229 37.2222 31.0561 31.0581 30.1327 30.1338 35.7140 35.7146 30.3146 30.3154
5 249042 249042 31.6840 31.6837 285991 28.6002 24.7699 24.7702 30.1588 30.1586 22.4679  22.4680
10 21.9601 219601 269561 269561 25.7441 257448 220206 220208 258725 258724 21.2964  21.2965
15 20.1473 20.1473 23.9288 239288 23.56622 23.5626 20.5237 205238 23.1554 23.1554 20.4956  20.49566
20 18.6603 18.6602 21.6706 21.6706 21.7441 21.7443 193212 193212 21.1499 Z21.1498 19.5207 19.5207
25 17.4140 17.4140 19.8794 19.8794 20.2357 20.2358 184129 18.4129 104554 194554 18.4913 18.4913

Table 2: Test results using BLS-GSM

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6
Images ISNR ISNR ISNR ISNR ISNR ISNR ISNR ISNR ISNR SNR ISNR ISNR
o ASYIN EUINV ASYIN EUINV ASYIN EUINV ASYIN EUINV ASYIN EUINV ASYIN EUINV
257181 257174 206224 20.6219 46.7551 46.8816 464218 464831 461928 6.2214  46.3353 46.3773
2 10.2719 10.2718 -0.7081 -0.7081 41.4257 414612 41.2272 41.2434 41.0873 1.0897 41.1747 41.1852
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Tahle 2: Continue

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Images ISNR ISNR ISNR ISNR ISNR ISNR ISNR ISNR ISNR SNR ISNR ISNR

a ASYIN  EUINV ASYIN EUINV ASYIN EUINV ASYIN EUINV ASYIN EUINV ASYIN EUINV
5 -22.5462 -22.5462 -32.9253 -32.9253 33.8798 33.8860 33.7914 33.7941 33.7277 33.7272 33.7676 33.76093
10 -43.7697 -43.7697 -58.7133 -58.7133 279955 27.9971 279496 279504 27.9164 279163 27.9373 279377
15 -50.6547 -69.6547 -74.2782 -T4.2782 245189 245196 244880 244883 24.4654 244654 24.4796 24.4798
20 -71.7144 -71.7144 -85.55647 -85.5547 220427 220431 220193 22.0195 22.0023 220023 22.0130 220131
25 -81.2521 -81.2521 -94.4419 -94.4418 20.1180 20.1183 20.0993 20.0954 20.0856 20.0856 20.0942 20.0943

Table 3: Test results using BM3D

Figure (BM3D)

Images o 1 2 3 4 5 6

1 11.4163 5.6117 8.7798 7.8703 6.0967 6.7974
2 6.9800 2.6525 7.9604 6.8301 4.5631 5.2761
5 3.2037 0.2437 7.1867 £.1280 2.8780 3.5804
10 2.0582 0.2434 6.6650 4.0626 1.3885 2.7446
15 1.7767 0.2434 6.3493 3.6150 0.8184 2.3628
20 1.6773 0.2434 6.1268 3.3263 0.3661 2.1032
25 1.6320 0.2434 5.9379 3.1314 0.3659 1.9062

Table 4: Test results using PURE-LET
Figure (UWT PURELET)

Images o 1 2 3 4 5 6

1 22,6255 31.1791 20.8908 8.3625 11.0595 43.7163
2 22,4838 30.1113 35.7760 7.0933 16.5616 40.4506
5 21.9430 26.9641 32.1599 3.2432 26.6556 33.8005
10 20.8010 23.1698 27.4417 -3.3539 25.8080 28.0298
15 19.5560 20,4871 24.2312 -10.1915 22.9631 24.5648
20 18.3351 18.4292 21.8843 -25.3550 -4.4466 22.0833
25 17.1897 16.7638 19.9718 -23.9359 9.3490 20.1667
CONCLUSION

Results from the wvarious denoising algorithms show that the BLS GSM denaising and
PURE-LET dencising provides stable performance when compared to BM3D and OWT-SURELET
for almost all fibroblast images. OWT-SURELET approaches provide higher ISNR when the low
sigma value. As the sigma value increases there is a sharp decrease in the signal to noise ratio.
BM3D has shown variations which kept back fluctuating based on intensity of input images. They
did not provide significant improvement in the SNR and showed poor performance as sigma
increased. All algorithms show deterioration in SNE as sigma increased. The BLS_GSM and
OWT-SURELET showed improvement when using the exact unbiased transform when compared
to asymptotic inverse transform. The performance improvement gets slow when there 1s increase
in sigma values. The total comparison of results shows that the PURELET BLS_GSM or OWT
SURELET strategies can be used for low sigma values. As standard deviation increases it is better
to stick on to BLS_GSM or PURELET strategy. Dencising strategies is an essential tool for cardio
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fibroblast images as cardiac fibroblasts are important determmnants for both structure and function
of the myocardium. Cardio fibroblasts contribute to structural, biochemical, mechanical and
electrical characteristics of cardiac function. They are sources and targets of bio-chemical and
electro-mechanical signaling pathways. Future research focusing on cardiac fibroblasts will improve
the understandability of cardiac function in normal and patho-physiolegical states. Therefore the
study of denoising fibroblasts will be equally crucial for proper understanding of cardiac function.
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