@

Academic
Journals Inc.

j '
1l

Research Journal of
Information

Technology

ISSN 1815-7432

www.academicjournals.com

Research Journal of Information Technology 6 (4): 379-388, 2014
ISBN 1815-7432 / DOI: 10.2923/1jit.2014.379.388
© 2014 Academic Journals Inc,

An Effective Hybrid Scheduling for Checkpoint Based Grid

Environment

L. Rama Parvathy
Department of Computer Applications, SSN Callege of Engineering, Kalavakkam, Chennai, Tamil Nadu,
India

ABSTRACT

The main roles of utility grids are to carry out the user applications dynamically. To meet the
users’ quality requirement, scheduling the user jobs to proper rescurce in existence of fault, 1s the
one of the challenge in these grids. Providing fault tolerance is as important as scheduling to
minimize the workflow execution time and makespan. In this study, we propose an Effective Hybrid
Scheduling (KHS) algorithm for checkpoint based grid systems. It combines the best features of
various scheduling and checkpointing. It works under two phases namely training phase and
deployment phase. During training phase, KHS runs various schedulers for bags of task and build
the model based on their performance. In the deployment phase, this algorithm uses the model
developed during training phase for proper resource allocation. From the simulation results, it 1s
found that EHS always gives better performance in terms of reduced makespan and consistent
turnaround time with improved reliability.

Key words: Effective hybrid scheduling, makespan, utility grid and turnaround time

INTRODUCTION

Grid computing effectively uses the heterogeneous resources to get rid of computational
problems. It has the utmost concern in handling the enormous data produced by parallel
applications. Feasibility of multi-node failures gets increased as the number of computer nodes
increases. In order to reduce the multi-node failures, a checkpoint is needed that ends up in
performance degradation. In case of any failure, the job will be passed on to some other
computational node and begin the execution from previously stored checkpoint. One of the main
issues in distributed environment is to provide fault tolerance, while optimizing execution time.
Research efforts in design and implementation of fault detection services (Hwang and Kesselman,
2003; Subbiah and Blough, 2004) have been dedicated to fault tolerance. Failure prediction
{Derbal, 2006) and recovery schemes (Dogan and Ozguner, 2002; Da Silva et al., 2003) were
analyzed. In the failure situation, job checkpointing in combination with migration, improve system
performance. Their effectiveness mostly depends on optimizing runtime parameters such as the
checkpointing interval and the number of replicas (Oliner ef al., 2005; Bossie and Fiorini, 2008).
Determining optimal values for these parameters, requires good knowledge of the distributed
system. Most of these papers address the issues of reliability. The effectiveness in combining with
scheduling was not well addressed in those studies. As workflow job scheduling is a known problem,
many methods have been proposed for homogeneous (Kwok and Ahmad, 1999) and heterogeneous
distributed grid systems (Topcuoglu et al., 2002; Baja) and Agrawal, 2004; Daoud and Kharma,
2008). In this study, an effective hybrid scheduling for checkpoint based grid environment is
presented that provide suitable scheduler selection to reduce the runtime without compremising
reliability.

379

Res. /. Inform. Technol., 6 (4): 379-388, 2014

The proposed hybrid scheduling algorithm for checkpoint based grid system reduces the
makespan and turnaround time as compared to the performance of checkpoint based grid system
technique without scheduling algorithms. This algorithm works under two phases. They are
training phase and deployment phase. In training phase, KHS runs various scheduling algorithms
with job retry and checkpoint mechanism. It bulid a model based on their performance. In
deployment phase, it suitably allocates proper rescurces according to model developed in training
phase. The hybrid scheduler combines the advantages of New Threshold Based Scheduling (NTBS),
Easy backfilling and Fast Processor to Largest Task First (FPLTF).

SYSTEM MODEL

As shown in the Fig. 1, the grid model consists of 4 components. They are grid information
system, grid resources, grid user and grid job-scheduler. For resource allocation, the user sends
request to the scheduler. The GIS registers the availability of all grid resources. Depending on the
proposed algorithm, the job-scheduler chooses the most perfect resources to execute the job. The
user receives the processed results at the end. The resources differ from each other in system
processing speed, processing element ids, scheduling policy ete. The user jobs also differs in arrival
time, execution time, deadline, ete. The job failure model follows exponential distribution. In this
model, the risks between grid jobs and resources are considered. Job failure is generated randomly.
Job checkpointing 1s an intellectual scheme adopted for inserting fault tolerance in computational
grids. In case of any failure, the job will migrate to another computational node and starts the
execution from the previcusly stored checkpoint. For reliable computation, any computational node
can utilize one or more multiple fault-tolerance mechanisms.

CHECEKPOINT SERVER AND GRID SCHEDULERS

Checkpoint server: The main functions of checkpoint server is described below:

¢ [t receives resource failure history from GIS
* It prepares job checkpoints
« It dispatches jobs with checkpoints to grid resource

Grid clusteri=1..m
»
Ladl
Check-point
server
<
Grid resource 1 Grid resource 2 Grid resource R
A
Grid task Registration of
distribution grid resource
User SPbmits Grid information W
the jobs request
> <
Grid Results " »
users <4 Gril D Grid information|
scheduler server

Fig. 1: Checkpoint based grid system model

380

Res. /. Inform. Technol., 6 (4): 379-388, 2014

+ Grid resource sends the checkpoint status to checkpoint server
* In case of any failure, it is reported to GIS by checkpeint server
¢ GIS resubmit the job to grid scheduler to assign new resource along with last checkpoint status

Grid schedulers: Grid scheduler plays a vital role among the components of checkpoint based grid
system. The scheduler collects the job information like job number, job type and job size from the
users. Users surrender its QoS requirements of each job that comprises the deadline to complete its
execution, the number and type of required resources. Scheduler performance is to detect and sort
the appropriate rescurces that satisfy the user QoS requirements and job execution. Grid scheduler
joins with Grid Information Server (GIS) to gather the information of available grid resources for
job execution. In general, a scheduling system of grid computing environments aims to minimize
the execution time (Abramson et af., 1995) and fulfilling economic constraints (Buyyva ef af., 2000)
without affecting resource utilization. In this study, we have proposed an effective hybrid
scheduling to minimize the execution time and turnaround time without affecting reliability. When
checkpointing is done that takes an extra run time. By combining proper scheduler for checkpoint,
based grid system, this extra runtime is compensated. The makespan and turnaround time
performance of KHS 1s compared with various scheduling algorithms. In our model, N 1s the total
number of user jobs to be executed which are randomly generated and R is the total number of
resource available chosen from various cluster for executing jobs. The various existing scheduling
algorithms (Ramaparvathy, 2014) described below are modeled along with our proposed algorithms
for performance comparison.

First Come First Served (FCFS) scheduling: In FCFS (Ahmad et al., 2004; Ramaparvathy,
2014) scheduling algorithm, the resource is assigned based on queue order to maintain the fairness
among grid users. If the number of job 1s greater than available resource, FCFS schedules the jobs
based on its arrival. Then it assigns resource for first E number of jobs and keeps the remaining
jobs in the waiting queue.

Early Deadline First (EDF) scheduling: EDF scheduling algorithms (Doulamis ef al., 2007,
Ramaparvathy, 2014) compare all the new set of jobs and sort based on deadline time in ascending
order. The resources are assigned as per this sorted priority order to achieve better performance.
The fairness of the grid user of this scheduler is poor.

Easy backfilling scheduling: While the job at the head of the queue is waiting, it is possible for
other small jobs to be scheduled especially if they would not delay the start of the job on the head
of the queue. It is done in Easy backfilling scheduling (Wong and Goscinski, 2007; Ramaparvathy,
2014). Here small jobs in queue are allowed to go ahead to run on 1dle resources. This scheduling
satisfies the user jobs order and hence eliminate the starvation problems.

Fastest Processor to Largest Task First (FPLTF) scheduling: Fastest processor to largest
task first (Da Silva ef al., 2003; Ramaparvathy, 2014) scheduling may require two parameters such
as workload of job and resource speed. This schedule collects this information before scheduling.
During scheduling process, this scheduler assigns fastest processor rescurce to the largest job then
next largest job and so on. This scheduler is modified version of EDF scheduler. This scheduler
performance becomes poor if more number of jobs has heavy worklead.

381

Res. /. Inform. Technol., 6 (4): 379-388, 2014

Min-Min (Min-Min) scheduling: Min-Min algorithm (Song et af., 2006; Ramaparvathy, 2014)
starts with a set of all unmapped tasks. The machine that has the minimum completion time for all
jobs is selected. Then the job with the overall minimum completion time 1s selected and mapped to
that resource. The ready time of the resource is updated. This process is repeated until all the
unmapped tasks are assigned.

Largest Task First (LTF) scheduling: This largest task first (Menasce ef al., 1995
Ramaparvathy, 2014) scheduler schedule the task from the task domain which has largest task
size. Length comparator is used to identify the task size.

New Threshold Based Scheduling (NTBS): In DNew-Threshold based scheduling
(Ramaparvathy, 2014), the scheduler computes the threshold value based on current active grid
user’s jobs execution time. This threshold value is calculated based on the following equation:

(1)

;ﬂ
Il
A
b1z
=

where, E; is the execution time of ith job. This new-threshold based scheduler arranges the grid
user jobs based on this threshold value. It organizes the user jobs in a fair manner whose execution
time 1s below this thresheld value. It keeps the other jobs in weighting queue in fair manner.
Hence, the fairness of this scheduler is as better than EDF scheduler. Then it assigns the resources
fairly to scheduled user jobs first and then it assigns resources for the remaining user jobs those are
in waiting queue fairly.

PROPOSED ALGORITHM: AN EFFECTIVE HYBRID SCHEDULING (EHS)

The basic aim of computational grids 1s to carry cut the user applications or jobs. For this
reason, grid scheduler receives the user’s jobs with their QoS requirements and then it assigns each
job to proper resource. Depending upon the response time, the present scheduling systems select
resources for execution of the jobs. When a grid resource is not able to finish its job within a
specified duration, a fault occurs. In case of failure of the grid resouree at the time of execution, the
job is rescheduled to some other resource in which the execution of the job begins from scratch. This
method 1s described as Job Retry mechanism. This method consumes more time to complete the job
than expected, which, in turn, fails to satisfy the user’s oS requirements. The job checkpointing
mechanism is ultimately used to explain this problem. While checkpointing mechanism is adopted,
the partially completed job can be retrieved from the last checkpoint stored and thereby eliminates
to begin the job from scrateh. The main prospective of checkpointing 1s te enhance the performance
of the grid in the presence of faults. In our simulation, the both job retry and job checkpeinting
mechanisms are modeled. Generally, the performance of grid system will be better when there 1s
no resource failure. In this condition, depends upon scheduler, the run time performance varies.
Hence, choosing the best scheduler for checkpeoint based grid model will tend to give better run time
response. This is done in our proposed effective hybrid scheduling algorithms. Proposed hybrid
scheduler works under two phases named as training phase and deployment phase. In first phase
known as training phase, the scheduler runs the various schedulers to build the better performance
model. This model is referred in second phase known as deployment phase for proper rescurce
allocation to achieve better performance. Therefore, it adoptively chooses the best scheduler to give

382

Res. /. Inform. Technol., 6 (4): 379-388, 2014

better runtime performance. Since, this scheduling algorithm combines the quality of scheduling
and checkpointing, it achieves the better runtime performance and better job reliability. The
algorithm of EHS is given by:

+ User submits their jobs to the grid scheduler

¢ The scheduler runs various scheduling algerithms with and without checkpointing

+ Scheduler stores the computational results in its performance table

* Bcheduler assigns resource according to suitable scheduling algorithms based on number of
current active user jobs

Turnaround time and makespan of the scheduler is evaluated and compared with other
scheduling algorithms.

RESULTS AND DISCUSSION

Gridsim (Buyya and Murshed, 2002) is a simulation tool which is used to simulate grid
environment. Gridsim based simulations contain entities for the users resources, information
service, staties and network-based I/O. Job represents user’s application. Jobs are described with
additional information like job deadline, the maximum time limit, for execution, necessary machine
architecture, ete. In our grid simulation, we have taken MetaCentrum data set and the failure
model follows hyper exponential distribution. In this failure model, the number of resource failure,
failure time and its duration are defined randomly. There are 103656 jobs in defined data set. Here,
the number of active user jobs is generated randomly. Each result presented is the average value
that is derived from 5 simulation experiments with different seeds of random numbers. The
scheduling algorithms performed in ocur studies are FCFS, EDF, Easy back filling, FFLTF,
MIN-MIN, LTEF and NTBS and proposed EHS. These scheduler’s performances are observed under
Job retry and migration with checkpointing condition. Cne migration node is taken into
consideration in our simulation. The following performance metrics (Ramaparvathy, 2014) are used
for performance comparison.

Turnaround time: Let the total number of jobs be N, the completion time for job j. be ¢; and job
arrival time is denoted by a,. The turnaround time is defined as:

Turnaround time = %i(cl —a;) (2)
i=1

Makespan: Makespan (Ramaparvathy, 2014) is defined as the time spent from the beginning of
the first task to the end of the last task in the schedule. It assumes that the jobs are ready at time
zero and resources are continuously available during the whole scheduling. Then the makespan
is obtained by:

Makespan=C__ =max{C;, C},..., C.} (3)

where, ¢, is the processing time of task j, by the resource R, lesser the makespan means more
efficient 1s the algorithmi.e., less time 1s taken to execute the algorithm. The simulation parameters
{Ramaparvathy, 2014) are shown in Table 1.

383

Average turnaround time (min)

9000

8500

8000 -

7500 +

7000

6500

6000

Res. /. Inform. Technol., 6 (4): 379-388, 2014
—4-FCFS —g-EDF ~4—EASY = NTBS
—=FPLTF MIN_MIN ="~ LTF EHS

20

40 60 80 100 120 140 160 180

No. of jobs

Fig. 2: Turnaround time of KHS scheduler compared to other scheduling with job retry mechanism

Average turnaround time (min)

8500

8000

7500

7000

6500

6000

5500

5000

20

i FCFS ={=EDF =f== EASY s NTBS
==FPLTF MIN_MIN LTF EHS
40 60 80 100 120 140 160 180
No. of jobs

Fig. 3: Turnaround time of EHS with job checkpointing mechanism

Tahble 1: Simulation parameters

Parameters Values
No. of jobs (N) 20-180
No. of resources 14

Job workload
Node processing speed
Netwaork bandwidth

50-1000 (billion instruction)
20-200 (MIPS)
2-8 (Mbps)

Figure 2-b describe the experimental results. Turnaround time performance of the EHS

compared with other scheduling algorithms with job retry mechanism is shown in Fig. 2. From the

Fig. 2, it 1s observed that the FCFS scheduler turnaround time 1s high because it assigns resource

based on first come first serve basis without considering resource capability of executing the

assigned job in time. The EDF scheduler schedules the jobs based on deadline time in ascending

384

Res. /. Inform. Technol., 6 (4): 379-388, 2014

23500

= FCFS ~§=EDF - EASY e NTBS
23000 .~ FPLTF MIN_MIN LTF EHS
= 22500
3
8 22000
Qo
§
S 21500
21000
20500
20 40 60 80 100 120 140 160 180
No. of jobs

Fig. 4: Makespan of different scheduler with job retry mechanism

22500
22300
22100
21900
21700
21500
21300
21100
20900
20700
20500

4= [FCFS —§- EDF o EASY e NTBS
==|p_TF MIN_MIN

Makespan (min)

20 40 60 80 100 120 140 160 180
No. of jobs

Fig. 5: Makespan of different scheduler with job checkpointing mechanism

order and assigns suitable resource to complete the jobs. Hence, the turnaround time of this
scheduler is found to be low as compared to FCFS. This scheduler performance decays when the
number of user jobs increases.

Also, it 18 observed from the Fig. 2 that the Min-Min, FPLTF and LTF performance found to be
good when the number of active user jobs is nearby the available resource and its performance
falloffs when the resource is very less as compared to the user jobs. Fourteen resources of nodes
from various clusters are considered in our simulation. The turnaround time performance of EHS
scheduler found to be good in all condition because it combines the best features of all these
schedulers. The Turnaround Time performance of KHS compared with varicus schedulers with job
checkpointing mechanism is shown in Fig. 3.

From Fig. 2, it is observed that the performance of EHS is good compared to FCFS, Min-Min,
Fasy, EDF FPLTF and LTF. When the number of jobs 1s 80, the turnaround time of EHS with job
checkpointing is found to be 7000 min, whereas it is 7250 min in EHS with job retry mechanism.
This is around 3.5% improvement. The makespan performance of varicus schedulers with job
retries and job checkpeinting mechanism is shown in Table £ and 3, respectively.

From the table it is clearly observed that the EHS scheduler always gives better performance
in terms of low makespan. Figure 4 and 5 shows the makespan performance of EHS with job retry

mechanism and job checkpointing mechanism, respectively.

385

Res. /. Inform. Technol., 6 (4): 379-388, 2014

Tahble 2: Makespan performance in minutes of various schedulers with job retry mechanism

No. of jobs

Schedulers 20 40 60 80 100 120 140 160 180

FCFS 21435 21556 21731 21870 22018 22180 22400 22623 22970
EDF 21081 21355 21610 21836 22021 22151 22218 22260 22223
EASY 20986 21170 21340 21500 21621 21710 21711 21701 21528
NTBS 21313 21376 21431 21473 21476 21440 21320 21185 20003
FPLTF 20918 21425 21843 22201 22420 22490 22325 22100 21506
MIN_MIN 21196 21256 21383 21466 21543 21616 216595 21770 21863
LTF 21225 21481 21663 21830 21943 22018 22048 22061 22025
EHS 20918 21170 21340 21466 21476 21440 21320 21185 20903

Tahble 3: Makespan performance in minutes of various schedulers with job checkpointing mechanism

No. of jobs

Schedulers 20 40 60 80 100 120 140 160 180

FCFS-CP 21125 21311 21475 21635 21780 21913 22033 22150 22255
EDF-CP 20830 21143 21393 21626 21805 21940 22016 22076 22063
EASY-CP 20830 21016 211565 21280 21366 21423 21443 21453 21421
NTBS-CP 20995 21088 21135 21165 21151 21101 21003 20890 20715
FPLTF-CP 20806 20968 21088 21158 21275 21328 21351 21366 21350
MIN_MIN-CP 21113 21246 21356 21463 21551 21626 21685 21738 21770
LTF-CP 20950 21148 21311 21463 21581 21670 21720 21758 21745
EHS-CP 20806 20968 21088 21165 21151 21101 21003 20890 20715

From Fig. 4, it is observed that the makespan performance of Min-Min algorithm, Easy
algorithm and NTBS 1s found to be improved compared to FCFS and EDF. It is also observed that
the NTBS performance is improved when the number of available resource less than 17% of active
users. Here, the 14 number of resources are considered. When the number of jobs 1s 80 and above,
NTBS performance 1s found to be good. Under resource constraint enviroinment, the performance
of NTBS is good. In other region, Min-Min and Easy algorithm gives good makespan performance.
EHS makespan performance is found good always sinee it combines the best scheduler.

The makespan performance of various schedulers along with KHS with job chekpointing
mechanism is shown in Fig. 5. From Fig. 5, it 1s observed that the makespan of new-threshold based
scheduler is found to be good compared to FCEFS, EDF, Easy backfilling, LTF and FPLTF when the
number of jobs i3 60 and above. FPLTF scheduler performance is found to good when the numbers
of active jobs are 60 and less. The makespan performance of EHS scheduler is found to be
enhanced by 0.5% when the number of jobs are 60 and less. When it is above 80, the performance
of EHS 1s improved by 9%.

CONCLUSION

Scheduling and job migration is combined in our proposed effective hybrid scheduling to
achieve better runtime performance with improved job reliability, The EHS scheduling with job
retry mechanism and job checkpointing mechanism is implemented using GridSim and the runtime

performance like turnaround time and makespan is computed for MetaCentrum data set. The

386

Res. /. Inform. Technol., 6 (4): 379-388, 2014

makespan performance of KHS scheduler 1s compared with varicus scheduling algorithms. It
is found that the propesed EHS achieves 9% improvement compared to other scheduling
algorithms.

ACKNOWLEDGMENT

The author thanks the management of SSN College of Engineering, Chennai, India for
funding the High Performance Computing Lab (HPC Lab) where this research was carried ocut. The
author expresses the sincere thanks to Prof. Dr. Chandrabose Aravindan for his encouragement
and valuable guidance,

REFERENCES

Abramson, D, K. Sosic, J. Giddy and B. Hall, 1995, Nimrod-(3, A tool for performing parametised
simulations using distributed workstations. Proceedings of the 4th Symposium on High
Performance Distributed Computing, August 2-4, 1995, Washington, DC., USA., pp: 112-121.

Ahmad, I, YK Kwok, MY. Wu and K. Li, 2004, Experimental performance evaluation of job
scheduling and processor allocation algorithms for grid computing on metacomputers.
Proceedings of the [EEE 18th International Parallel and Distributed Processing Symposium,
April 26-30, 2004, Santa Fe, New Mexico, USA., pp: 170-177.

Bajaj, R. and D.FP. Agrawal, 2004. Improving scheduling of tasks in a heterogeneous environment.
IEEE Trans. Parallel Dist. Syst., 15: 107-118.

Bossie, C. and P.M. Ficrini, 2008, On checkpointing and heavy-tails in unreliable computing
environments. SIGMETRICS Perform. Eval. Rev., 34: 13-15.

Buyya, R. and M. Murshed, 2002. GridSim: A toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing. Concurrency Comput. Pract. Exp.,
14: 1175-1220.

Buyya, R., D. Abramsen and J. Giddy, 2000, Nimrod/G: An architecture for a resource
management and scheduling system in a global computational grid. Proceedings of the 4th
International Conference and Exhibition on High Performance Computing in Asia-Pacific
Region, May 14-17, 2000, Beijing, China, pp: 1-7.

Da Silva, D.P., W. Cirne and F.V. Brasileiro, 2003. Trading cycles for information: Using replication
to schedule bag-of-tasks applications on computational grids. Proceedings of the 9th
International Eurco-Par Conference, August 26-29, 2003, Klagenfurt, Austria, pp: 169-180,

Daoud, M.I. and N. Eharma, 2008. A high performance algorithm for static task scheduling in
heterogeneous distributed computing systems. J. Parallel Distrib. Comput., 68: 399-409,

Derbal, Y., 2006. A new fault-tolerance framework for grid computing. Multiagent Grid Syst.,
2:115-133.

Dogan, A, and F. Ozguner, 2002, Matching and scheduling algorithms for minimizing execution
time and failure probability of applications in heterogeneous computing. IEEE Trans. Parallel
Distrib. Syst., 13: 308-323,

Doulamis, N.D., A.D. Doulamis, E.A. Varvarigos and T.A. Varvarigou, 2007. Fair scheduling
algorithms in grids. [EEE Trans. Parallel Distrib. Syst., 18: 1630-1648,

Hwang, 5. and C. Kesselman, 2003. A flexable framework for fault tolerance in the grid.
J. Grid Comput.,, 1: 251-272,

387

Res. /. Inform. Technol., 6 (4): 379-388, 2014

Ewok, Y.K. and I. Ahmad, 1999. Static scheduling algorithms for allecating directed task graphs
to multiprocessors. ACM Comput. Surv., 21; 408-471,

Menasce, D.A., D. Saha, S.C.D. Porto, V.A.F. Almeida and S.K. Tripathi, 1995. Static and dynamic
processor scheduling disciplines in heterogeneous parallel architectures. J. Parallel Distrib.
Comput., 28: 1-18,

Oliner, A.J., R.K. Sahoo, J.E. Moreira and M. Gupta, 2005, Performance implications of periodic
checkpointing on large-scale cluster systems. Proceedings of the 19th TEEE International
Parallel and Distributed Processing Symposium, April 4-8, 2005, Denver, CO., USA.

Ramaparvathy, L., 2014, A new threshold based job scheduling for grid system. J. Comput. Sei.,
10: 1069-1076.

Song, 8., K. Hwang and Y.K. Kwok, 2006. Risk-resilient heuristics and genetic algorithms for
security-assured grid job scheduling. IEEE Trans. Comput., 55: 703-719.

Subbiah, A. and D.M. Blough, 2004, IDhistributed diagnosis in dynamicfault environments.
Parallel Distrib. Syst., 59: 453-467,

Topecuoglu, H., 8. Hariri and M.Y. Wu, 2002, Performance-effective and low-complexity task
scheduling for heterogeneous computing. IKEE Trans. Parallel Distrib. Syst., 13: 260-274,
Wong, A.K.L. and A.M. Goscinski, 2007, Evaluating the KASY-backfill job scheduling of static
workloads on clusters. Proceedings of the TEEE International Conference on Cluster

Computing, September 17-20, 2007, Austin, TX,, pp: 64-73.

388

	379-388_Page_01
	379-388_Page_02
	379-388_Page_03
	379-388_Page_04
	379-388_Page_05
	379-388_Page_06
	379-388_Page_07
	379-388_Page_08
	379-388_Page_09
	379-388_Page_10
	Research Journal of Information Technology.pdf
	Page 1

