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ABSTRACT

Scalar multiplication is a major operation in an elliptic curve cryptosystem. It is the mostly costly
and time consuming operations. This study proposes a new signed-digit {0,1,3}-NAF scalar
multiplication algorithm for elliptic curve over binary field with the scalar multiplier in base 2 and
using digits {0, 1, 3} The digit 3 requires tripling operations in the execution of the scalar
multiplication algorithm. Thus, a tripling formula is also proposed and the proof of the formula is
presented in this study. Complexity analysis is carried out te compare the proposed scalar
multiplication algorithm with the addition-subtraction algorithm. At average case analysis, the
proposed scalar multiplication algorithm has better performance than the addition-subtraction
algorithm exceptionally when only one digit 3 occurs in the scalar multiplier. When compared with
traditional NAF scalar, the proposed scalar has better performance except when the Hamming
weight and the bit-length of the proposed scalar and the traditional NAF are the same.

Key words: Elliptic curve cryptosystem, scalar multiplication, elliptic curve, binary field, Hamming
weight,

INTRODUCTION

Elliptic curve cryptography is proposed by Miller and Koblitz in mid 80's. Elliptic Curve
Cryptosystem (KECC) 1s used to secure digital information. The security of an elliptic curve
cryptosystem is based on Elliptic Curve Discrete Logarithm Problem (ECDLF) over the points on
the elliptic curves. Security services provided by EKCC are key agreement, digital signatures and
encryption (Morales-Sandoval and Feregrino-Uribe, 2006}, ECC is favourable in memory constraint
devices since KCC uses sharter key size for the same security level with its competitor the RSA
cryptosystem. Also, current mobile technology creates more challenges to ECC implementation
{(Paryasto et al., 2009).

In related studies, the major problem in the implementation of ECC is how to compute the
scalar multiplication kP efficiently. The scalar multiplication (kP) 1s also a major operation in Elliptic
Curve Cryptosystem (ECC). It is the most costly and time consuming operation. It is computed as
i = kP = P+P+... +P (k times), where P and G are points on an elliptic curve K and scalar k 1s a very
large integer. The operation is a consecutive sum of points that can be performed using elliptic
curve point additions when the sum is using two different point (P+Q) and using elliptic curve point
doublings when the sum is using the same point (P+P). Several methoeds have been developed to
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improve the scalar multiplication operation. Some of the method invelves with recording the scalar
into a different representation which gives result to a minimum number of nonzero digits in the
scalar. Some method consists of rewriting or formulation of the point operation formula.

The objective of this study is to reduce the complexity of the scalar multiplication by recording
the scalar into a new representation, formulation of a new tripling formula and introducing a new
scalar multiplication algorithm that utilizes the proposed scalar and the proposed tripling.

ELLIPTIC CURVE IN LOPEZ-DAHAB MODEL

There are two types of elliptic curve that are widely used in eryptography: Binary GF(2™) and
prime GF(p) fields. Scalar multiplication involved with elliptic curve peoint operations and field
operations. Elliptic curve point operations invelved with point additions and point doublings.
Whereas, elliptic curve field operation involved with multiplication, inversion, squaring and adding.
In most research, either Lopez-Dahab or Jacobian coordinates is used. Both coordinates are free
of inversion operation since inversion 1s the most costly field operation. Lopez-Dahab or Jacobian
coordinates are also called projective coordinates.

This study mainly focuses on elliptic curve over binary field. A non-supersingular elliptic curve
equation of characteristic 2 or defined over a binary field has the following form:

E: yHxy = x*+ax™b (1)

where, a, hbe GF(2™), b=0. If P = (x, y), then the inverse of Pis -P = (x, x+y).

For Lopez-Dahab coordinates, Eq. 1 is transformed to Lopez-Dahab projective form by
substituting x = X/Z and v = Y/Z?, then by clearing the denominator, Lopez-Dahab projective
equation is given below (Lopez and Dahab, 1999; Qingwei, 2008):

Y2 XYZ = X7 +aXZ>b 7 (2)

Every equivalent class of the triples (X, Y, 7), on the projective plane, with Z # 0, can be
mapped back to the affine point by x = X/Z* and v = Y/ZP. There is only one point at the infinity O
that can be represented with Z = 0. Also, there is only one element that can be represented with
7 =1, which is corresponding to the affine coordinates (Longa, 2007):

(X/77, Y/ZFP, 1) (3)
Lopez-Dahab point addition: Consider P = (¥, Y, Z,), @ = (X,, Y,, Z)) such that P # £Q then

PeQ = X, Y,, Z,. Lopez and Dahab (1999) proposed a general addition formula that needs
14M+65+84A, where M, S and A are multiplication, squaring and addition, respectively:

A,=YZ. D=B,+B G=D'(F+aE?)

A=Y,Z} E=Z7Z H =CF

B,=X7Z, F=DE X,=C'+H+G (4
B, =X7, Z,-F J=DA, + X,

C=A,+A, 1=DBE+X, Y,=HI+Z,]J
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Higuchi and Takagi (2000) improved Lopez-Dahab general addition formula to 13M+45+94A,
where, P=(X,, Y, 720, Q=X,, Y, 7%, and P & Q = (¥;, Y,, ;) where:

A=X7, G=Y7Z}

B=X,7, H=Y,7]

C=A? I=G+H

D=R’ J=1E

E=A+B 7,=FZ7,

F=C+D

X, = A(H+ D)+ B(C+G) 5)

Y, = (AT + FGF+ (] + Z,)%,

Al-Daoud et al. (2002) proposed point addition formula for mixed affine-Lopez-Dahab
coordinates. If ac{0,1}, then only eight general multiplications are required. Consider

P=X,Y, 1, Q=X, Y, Z)such that P+ Q, P is an affine and Q is a Lopez-Dahab
coordinates, then, P & Q@ = (X;, Y;, Zs) is given by:

A=Y, +YZ:  7,=C

B=X,+X7, X, =A"+C(A+B*+al) ®)
C=BZ, Y, =(D+XWAC+Z,)+ (Y, + X,)Z?
D=X7,

Lopez-Dahab point doubling: The doubling formula is given by Lopez and Dahab (1999) and
the cost is BM+HS8+4A. For a =1, the following equations requires 4M+55+3A. The doubling formula
is given below:

IfP=(X, Y, 7) then 2P = 2(X,, Y,, Z)) = (X,, Y,, Z,) where:

A=7; 7, =AC
B=bA’ X, =C'+B (7)
C=X' Y, =(Y!+aZ, +B)X,+7,B

Lange {2004) improved Lopez-Dahab doubling formula and it takes 5M+45+5A including one
multiplication by a. If P = (X, Y,, Z)) then 2P =(X,, Y., Z.), the Eq. 8 is as the following:

§=X’ 7, =T

U=8+Y, X, =U?+R+aZ, (8)
T=XZ, Y, =(Z, + )X, + §'Z,

R=UT

REVIEW OF SIGN-DIGIT RECORDING

Scalar representation can be improved by recording the scalar to a different representation with
a minimal Hamming weight. The Hamming weight is a measurement used on the number of
nonzero digit in a scalar. This study focuses on signed numbers representation similar with the
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traditional NAF scalar. There are two modes of recordings; right-to-left and left-to-right recording.
Selection of radix or digit set for a scalar must satisfies the characteristics of the scalar
multiplication algorithm or implementation technology (Phillips and Burgess, 2004). Proper
selection of radix and digit set for the scalar can promote an increment of the frequency of useful
digits such as zere and a reduction in the total number of nonzero digits to represent a number.,

Left-to-right recording is a real-time recording because the recorded scalar is used straight away
for scalar multiplication algorithm. This is possible because scanning digits of the scalar for
recording and scalar multiplication algorithm are done using the same mode, which is from left-to-
right. In the literature, this type of recording promotes better memory usage and mostly preferred
for memory constraint devices (Khabbazian et al., 2005). Whereas, in the right-to-left recording,
the recorded digits are saved hefore it 1s used in the scalar multiplication algorithm. This is because
scanning digits of the scalar for recording and secalar multiplication algorithm initiated from
different modes that 1s the recording mode is from right-to-left and the scalar multiplication mode
is from left-to-right. Generally, this type of recording needs an additional n-bit RAM for storage,
where n is the bit size of the scalar (Okeya et al., 2004).

Right-to-left {-1,0,1}-NAF recording: Reitwiesner (1960) proposed a right-to-left NAF recording
which converts a binary number into a traditicnal NAF using digit {-1,0,1}. In this study, it is
labeled as {-1,0,1}-INAF to differentiate with the proposed {0,1,3}-NAF. NAF means non-adjacent
form which ensures that there is no consecutive non-zero digit in the scalar k. In the {-1,0,1}-NAF
recording, a binary number of the formr = (r_, ..., ry), with r,€{0,1}, converted into a canonical
form 1 =(1,.15, ... )ep, With e {1,0,1} using Algorithm 1.

Algorithm 1: Right-to-left NAF recording

Input: A binary number r = (r,,4,..., o)z
e R W
Cpe—0r,, 0L <0

for i from 0 to m do

C1-¢-l — L(C1 +I" +I‘1+1)/2J
I;‘ ¢ +I;72C1+1

return (r .1 .5 g

Left-to-right recording: Joye and Yen (2000) proposed an optimal left-to-right signed-digit
recording algorithm. This algorithm used look-up table as shown in Table 1. This recording method
does not have NAF property but still has a minimal Hamming weight and as efficient as the
Reitweisner’'s Algorithm 2.

Algorithm 2: Left-to-right minimal weight signed-digit recording

Input: pi,..., To)s
Output: (£ ,1_,.....5 )gn,
b, <O, <01, <00, <0

for i from m down to 0 do
[ L(b1 o, L) ZJ

L < =2b +1+b,

return (r',, 'y ' 0)eps
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Tahble 1: Left-to-right signed-digit recording (Joye and Yen, 2000)
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METHODOLOGY

In this study, a new scalar multiplication algorithm is propoesed. In this study, the following
steps are carried out: Propose a new scalar representation; propose a new point operation and
propose a new scalar multiplication algorithm.,

Propose a new scalar representation: In this study, we propose a recording technique based
on Joye and Yen (2000) that converts a binary number into a new representation in base 2
with digit {0,1,3}. Mode of the recording is from Left-to-Right (LR). The new scalar adopted the
Non-Adjacent Form (NAF) property. Consider a binary number, v = (_,, ..., t,), where r.c{0,1} and
m is the bit length of r. Let h denotes the Hamming weight of r and p be the number of digit 3 in
r where:

m
Deps—
P 2

Algorithm 3 (Yasin et al., 2014) and Table 2 are used to convert a binary r into:

e} .
r'= Er1 2!
i-1

1

where, rec{0.1,3}. Then, h, denotes the Hamming weight of r'. Also, r’ can be written as

1= (1, _aTy) g sp-mar- SOpecial case in Table 3 is a special s-block is defined for the case where
T=(C ., oo Tipps ¥y Tigy Figyeens Togy Tareos Ty, Po)y sSUch that ry,, = 0 and r, = 0. Therefore, s-block consists
of consecutive digit ‘1’ wherer, =r,, =r,, = ... =r_, = 1. This special case occurs when the count of

digit ‘1" in the s-block 1s greater than or equal to 2.

Algorithm 3: Left-to-right {0,1,3}-NAF recording algorithm

Input: r = (ry1, ..., Te)e

Output: 1’ = (', ¥ur, o, ¥o) p1308F
bp =01y -0 11 -0 15 -0; 17, ~0
fori from m-1 down to 0 do
b - (’b,+1+r,+r,,1)/2J
if [(byiq, Tisp, Ty, Tig, b)) = {(rowl) or (row 3) or
(row 5) or (row B) or (row 8) or (row 9) or (row 10) or (row 13) ar (row 15)}] then
if [(Byrq, Tier, T, Tig, by) = {(row 2) or (row 4) or (row 7)}] then r’; =1
if [(Bysy, Tis1, T, Tig, b)) = {(row 11) or (row 12) or (row 14)}] thent’; =3

return (r'y, 'ma, ..o o)
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Table 2: New left-to-right signed-digit {0,1,3}-NAF recording

Input
by Tyt 1 Ty b Special case T
0 0 0 0 0
0 0 1 0 0 1
0 0 1 1 1 *(Count the number of consecutive ‘1’ in the s-block)

if (({no. of 1)%2) = =0)

thenr; =0 0
0 0 1 1 1 *(Count the number of consecutive 1" in the s-block)

if (({no. of 1)%2) = =1)

thenr;=1 1
0 1 0 X 0 0
0 1 1 1 1 ru,=10R3 0
1 0 1 0 1 1
1 0 1 1 1 0
1 1 0 0 0 0
1 1 0 1 1 rii=10R3 0
1 1 0 1 1 iy =0 3
1 1 1 0 1 Yy =0 3
1 1 1 0 1 =1 0
1 1 1 1 1 =0 3
1 1 1 1 1 rui—~10R3 0
x=0orl and b; =[(b,,+r+r)/2])

Table 3: Point operations using Lopez-Dahab and Jacobian coordinates for elliptic curve over hinary field

Paint operation

Cost operation

Laopez-Dahab

Jacobian

Addition

Doubling

Mixed addition

General tripling

Lopez and Dahab (1999)
Cost = 14M+65

Higuchi and Takagi (2000)
Cost = 13M+45

Lopez and Dahab (1999)
Cost = BM+58

Lange (2004)

Cost = BM+48

Al-Daoud et al. (2002)
Cost = 9M+55

None

Cohen and Frey (2006)
Cost = 16M+35

Cohen and Frey (2006)
Cost = BM+5S

Dimitrov ef al. (2005)
Cost = 15M+75

None

M: Multiplication and 8: Squaring, addition

The proposed recording algorithm 1s implemented in Visual C++ ver 6.0. The conversion of a

binary expansion to a new {0,1,3}-NAF representation is running successfully.

Hamming weight of the traditional {-1,0,1}-NAF scalar: Performance of a scalar is based on
the Hamming weight (H,) and bit-length of the scalar k. Heuberger and Prodinger (2007) studied
a relation between the expected Hamming weight of the {-1,0,1}-NAF scalar when recorded from

a binary expansion with length n and Hamming weight h. The expected Hamming weight of

{-1,0,1}-NAF satisfies the following theorem (Heuberger and Prodinger, 2007):
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Theorem 1: The expected Hamming weight of {-1,0,1}-NAF is asymptotically equal to:

Where:

1
1—4{o——)*
7% X1 &)
3+4((X.*5)
o=

and « is in the interval (0,1). The expected Hamming weight of {-1,0,1}-INAF is equal to n/3 when:

1
o=—
2

otherwise, the scalar is smaller.

Theorem 2: If h is fixed and n tends to infinity, the expected Hamming weight of {-1,0,1}-NAF
scalar is:

bt o%) (10)

Theorem 3: If h is large (i.e., at least n/2), the expected Hamming weight of {-1,0,1}-NAF
scalar is:

n 4 227+(D7)

1 ol (11)
3 9 o X\/H+O(n)

Theorem 4: Consider the Hamming weight of binary and the Hamming weight {-1,0,1}-NAF
scalars as two random vectors. Then, the covariance is:

2 n
—+ O{—
3 (2“)

The coordinates of the random vector asymptotically becomes independent and normally

distributed.

Non-adjacency property: Based on the proving technique used by Joye and Yen (2000}, each

row in Table 3 is examined for the non-adjacency property, r£i,=0 The proof of non-adjacency
property is as shown below (Yasin, 2011):

Row 1:

(bi+1s ri+1J I‘i, ri-l) = (O, O, O, X)
Henece, (b, vy, 1., v0) =(0,0, %, 1) andr,,=0or 1
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*  From Table 2, v, =0andr’, =0

s Therefore, it 1s proven that v, ', =0
Row 2:

. (bi+1s ri+1J I‘i, ri.l) = (O, O, ]-s O)
« Henee, (b, r,r 1) =0,1,0rgandr,=00or1
*  From Table 2, v, =1andr’, =0

s Therefore, it 1s proven that v, ', =0
Row 3:

* (bi+1: i T rirl) = (O: O: 1: 1)

+ (Refer special case)

« Henee, (b, r,r,rp=0,1,1,r)andr,=1
s+  Prom Table 2,7, =0 we haver,, =3

+  Therefore, it is proven that v, ', =0

Row 4:

. (bi+1: iy 1, rirl) = (O: O: 1: 1)

+ {Refer special case)

« Henee, b, r, v, v =(01,1,1,r)andr,=1
« From Table 2, ¥, =1,thent’ =0

s Therefore, it 1s proven that v, ', =0

Row &:

o (byyrg ) =010x%
« Henee, (b, 1, v, 1) =(0,0, %1, andr,,=00or1
* From Table 2, v, = 0 and four different cases for v’

Case 1: If (b, v, r |, r ) =(0,0, 1,0, thenr’ ;=1
Case 2: If (b, v, r |, r,,) =(0,0,1, 1}, thent’, , =00or1
Case 3: If (b, v, v, r) =(0,0,0,0), thenr’, =0
Case 4: If (b, v, v, r) =(0,00, 1), thenr’, =0

Therefore, it is proven that v, v, = 0.

Row 6:

* (bi+1s Yoo Iy ri.l) = (O, ]-s ]-s 1)
« Henee, (b, r,r,r)=01,1,1,rgandr,=00or1

* From Table 2, v, = 0 and there are two cases for 1’
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Case 1: If (b, v, v, r o) =(1,1,1,0), then ',

=3
Case 2: If (b, v, v, r ) =(1,1,1, 1), thent’ ;=3

Therefore, it is proven that v, v’ = 0.

Row 7:

* (bi+1: Fiepy Ty ri.l) = (]—s Os ]-s O)

« Henee, (b, r,r,r)=(01,1,0rgandr,=00or1
*  From Table 2, v, =1andr’, =0

+  Therefore, it is proven that v, ', =0

Row 8:

* (bi+1: Fiepy Ty ri.l) = (]—s Os ]-s 1)

« Henee, (b, 1, v, v =(1,1, 1, randr,,=0cr1
* From Table2, v, =0andr' ;=3

s Therefore, it 1s proven that v, ', =0

Row 9:

* (bi+1: i T rirl) = (1: 1: O: O)

« Henee, (b, 1, v, 1) =(00,0,0,randr,,=0cr1
s+  PromTable 2, . =0Candy ;=0

s Therefore, it 1s proven that v, ', =0

Row 10:

* (biﬂ: i Yo 1"i—l) = (1: 1: O: 1)
« Henee, (b, v, v, 1, =01,0,1,r,)andr,=0or1l
*  From Table 2, . =0 or 3 and there are two cases for r';:

Case 1: Forr, =0and ', =0/ thenr ;=1
Case 2: Forr, =3 and v’ ,=1,thent’ =0

Therefore, it is proven that v, v’ = 0.

Row 11:

¢ (bi+1s Fiepy Ty ri.l) = (]-s ]-s O, 1)
« Henee, (b, r,r,r)=(01,01rgandr,=0or1
*  From Table 2, we have 1, =0 or 3, there are two cases for v’

Case 1: Forr,=0and v’ ,=0 thenr, =1
Case 2: Forr, =3 and v’ ,=1,thent’ =0

Therefore, it is proven that v, v’ = 0.
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Row 12:

* (biﬂ: i Iy 1"i—l) = (1: 1: 1: O)
« Henee, (b, 1, v, v =(1,1,0,rgandr,,=0cr1
*  From Table 2, v, = 0 or 3 and there are two cases for v/,

Case 1: Forr, =0andr’,=0,thent’ ;=0
Case 2: Forr, =3 andr',,=1,thent’ =0
Therefore, it is proven that v, v’ = 0.

Row 13:

* (bi+1s Yiep) Ty ri.l) = (]-s ]-s ]-s O)
* Heneceilb,r,r,ro)=01,1,0rgandr,=00or1
+  From Table 2, ¥, = 0 or 3 and there are two cases for v/,

Case 1: Forr, =0andr’,,=0,thent’ =0
Case 2: Forr, =3 and v’ ,=1,thent’ =0
Therefore, it is proven that v, v, = 0.

Row 14 and 15:

* (biﬂ: i Iy 1"i—l) = (1: 1: 1: 1)
« Henee, (b, 1, v, v =(1,1, 1, randr,,=0cr1
*  From Table 2, v, = 0 or 3 and there are two cases for r';:

Case 1: Forr,=0andr’ ,=0,thenr’, =3

Case 2: Forr. =3 andr’,,=1,thent’ =0

Therefore, it is proven that v, v’ = 0.

From the above, each row in Table 2 1s proven to have the non-adjacency property.

Proposed §0,1,3}-NAF vs. traditional {-1,0,1}-NAF scalars: Analysis of the scalar k 1s carried
out. using 144 data of binary number with 24 bit-length. Each binary data (k) is converted into
traditional {-1,0,1}-NAF and proposed {0,1,3}-NAF scalars by using Algorithm 1 and 3, respectively.
Then, at average case, the Hamming weight and bit-length of each data is compared and analyzed.
The average case is defined as:

—| =

1
2

where, h is the Hamming weight of binary and 1 is the corresponding bit-length. Table 4 shows the
average case for Hamming weight differences after conversion from binary.
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Table 4: Hamming weight of {0,1,3}-NAF and {-1,0,1}-NAF after conversion from binary of 1 = 24 bit-length (Average case)

P h h, h,
1 12 11 12
2 12 10 12
3 12 9 9
3 12 9 10
3 12 9 12
3 12 9 9
3 12 9 10
3 12 9 12
3 12 9 9
3 12 9 12
3 12 9 9
4 12 8 12
5 12 7 7
5 12 7 10
5 12 7 10
5 12 7 7
6 12 6 10
6 12 6

6 12 6

p = No. of digit 3 in the {0,1,3}-NAF, h, h; and h, are Hamming weight of binary, {0,1,3}-NAF and {-1,0,1}-NAF, respectively

This data are derived from 144 data and for values h =12, In Table 4, as we go down the table
p varies from 1-6 and 6 1s the maximum value of p when h = 12. The values of h and | are fixed so
that the variation of p, h; and h, can be monitored. Cases for the Hamming weight h; =h, only
occur for data No. 3, 6, 9, 11, 13 and 16. Whereas, the remaining data are having the Hamming
weight h,<h,. This indicates an improvement in the Hamming weight when using the proposed
scalar,

Propose new point tripling operation: This section focuses on elliptic curve point operations.
Research development on point operations mostly inveolved with reducing the number of
multiplications in the point operation. Some research involved with formulation of new formula
with reduced number of multiplications. Review on Lopez-Dahab and Jacobian cocordinates for
elliptic curve over binary field are shown in Table 3.

Traditionally, a tripling can be computed as 3P = 2P+P where one doubling (Eq. 8) followed by
one general addition (Kq. 5). The cost 15 (EBM+45)+{13M~+45) = (18M+85). In this study, a tripling
operation is proposed using one doubling (Eq. 8) followed by one mixed addition (Eq. ). The mixed
addition (Al Daoud ef al., 2002) is using affine and Lopez-Dahab coordinates since it has better cost,
than the general addition. Theoretically, the cost for the proposed tripling is given below:

(SMHASYHOM+53) = (14M+93) (12)
When Eq. 12 is compared with the cost of traditional tripling, the tripling with mixed addition
has better cost than the traditional tripling.

The proposed point tripling formula is shown below. Let P = (X, Y,, 1), then,
3P =2P+P =(X,, Y,, Z)+(X , Y,, 1) =(X,, Y,, Z;) where:
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A ={Z,+E)X,+ZIU

B =X,+X7Z,

C =PRZ,

D =XZ,

E =U¥X,

Z, =X

=?

X, =U'+E+aZ,

X, = A"+ C(A+B") +aZ,

Y, =(D+XHAC+Z)+{Y, +X)Z}

(13)

w

A

w

By treating the field addition cost as negligible, the cost of Eq. 13 is (12M+78). When compared
with Eq. 12, it saved 2M+25. Also, when compared with traditional tripling, the new formula saved

6M+1S. For NIST curve, the value of a is equal to 1 and the cost of the proposed tripling formula
becomes (10M+75).

Proof of the proposed tripling formula: We need to show that the proposed tripling formula
is equivalent with the affine tripling formula. Since there is no existing tripling formula in affine,
we need to derive the affine formula first, then we will compare the formula with our tripling
formula and they should be equivalent.

Consider P = (x;, v;) and Q = (x,, ¥4, where P and Q are affine coordinates in elliptic curve
over binary field, Q # -P and Q # P. Then, R = (x;, y5) = F+Q has the following Eq. 14 (Cohen and
Frey, 2005):

7\':(3(2 +y1)/(x2 +X1)
X, =A +A+x,+%,+a (14)
Vs =AMX X)X Y,

If @ =P, then R = P+P = 2P is called as elliptic curve peint doubling has the following Eq. 15
(Cohen and Frey, 2008):

A=x 1y, /X
X, =AM +h+a (15)
¥s :(X1 +X3)}‘*+X3+Y1

For affine coordinates, to generate an affine tripling formula, we need one doubling (Kq. 15),
followed by one addition (Kq. 14). Then, consider F = (xy, v;}, then using Eq. 15, then 2P = (x,, v,)
is as the following:

x, =Al 4+ ta
¥, = (X XA X, 4y, (16)
A, ZY1+X12

1
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Secondly, using Eq. 14 and 16 compute point tripling as:

3P=2P+P=(x,y,) t(x.y,)=(x,.y,)

Then, the tripling in affine 3P = (x5, y;) is given below:

X,=A A, TX X ta
¥ =X H XA, X,y

Nty
A, =——%
X1+X2

Thirdly, using Kq. 13, we need to prove that.:

235
7z,
and:
Y3
7 ¥;
3
The processes are shown below:
X, A*+C(A+BY+aZ, A’ A B’
== . =—t—t—+a
2 C ¢ ¢

L@, +B)X, + Z3UF | [(2,+B)X, +22U) | (X, +X2.)

L+ X Z, Y ZL 3L +X 2,07, (3, +XZ2,)Z,

L N7 (G YZ) (% X2
(X2+X1Z2)ZZ§ 3L+X 202, (X, +XZ,)Z,

UseZ, =1, also:

2\ Yty

, =
X, tX,

Then:

:(Y1+Y2)z+(Y1+YZ)+(X1+X2)2 ta
(x, +3,) (X +x,) (%+x;)

2
X, =A; T A, + X, + X, +a(proven)
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Y, _ DX NACHZ )+ (Y, + X )7
VA VA
(X2, + X[ (Y, + VZDBZ, +Z, |+ (Y, +X,)Z
- (XE + XIZE )4 Z:
| (XZ +X)[ (Y, + YZ)BZ, | X7 1 X)Z

44 il (D
(X, +XZ, )2, (X, + X272,
_ X2, +X3)|:(Y2 +Y1Z§ )] . (X,Z, +X,) Y%
X, +X.2,7Z; X, +X2,07

Use X;=x,. Z;, then substitute 2, =1 and Z, = 1:

X Xy ty,)

3
(% +x,)

+X1+X3+YI+X1 (19)

¥y = (%, %, 0A; + X, +y,(proven)

Thus, the tripling Eq. 13 in Lopez-Dahab coordinates is the same as the affine tripling formula
in Eq. 17. Algorithm 4 for the proposed tripling is shown below:

Algorithm 4: Point tripling with mixed addition
Input: Two points P = (X;, ¥, D) and 2P = (X, Y,, Z;) where, P iz in affine and 2P is in Lopez-Dahab coordinates.
Output: Point 3P = (X, Y3, Z2)

1. T,

2. Tyt

3. Zg(T)?

4. Ty+Z+Ty

5. TTs*T,

6. Te-a

7. Ky (Ty)*

8. KX 4T, +(Te*Zy)
9. Te—(Zo)*

10, TeTg*T,

11, Te=TeHZ+TH*E)
12, TXHT*Zy)
13. ZyT*Z,

14, Ty(Ty)?

15, Tq(Ty)?

16, T+TATeH(Ts*Zy)
17. TTFxZ,

18. Xy T, +T,

19, Zo(Zp)?

20. TT,\*Z;

21, TgA(Te*Z)+2Zs

22, T+TH+X;

23.  TgTg*T,

24, Ty (Z;)?

25, Ty (T, +Te)*T;
26, Y« Tet+T;

27, return (3F)
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Propose new scalar multiplication algorithm: In this study, a new scalar multiplication
algorithm is proposed namely signed-digit {0,1,3}-NAF scalar multiplication algorithm.

Algorithm 5: New signed-digit {0,1,3}-NAF scalar multiplication
Input: k is recarded as {0,1,3}-NAF,
£ .2 where, be{0,1,3}, PeE(FS")
Oufput: kP

Pr=PGu,y0)

3P: = Tripling (P)

if (by.1 = 1) then

Q=P

if (b, = 3) then

@Q: =3P

for i from m-2 down to 0 do

@ = double ()

if b; = 1 then
. Q= add (P,Q)
. if by = 3 then
. Q= add (3P, @)
. return (@ = kP)

@ oo W

—_ =
W M= O

In Algorithm 5, line 7 performs exactly m-1 times. In general, if the Hamming weight of the
{0,1,3}-INAF sealar is h,, then the expected running time of Algorithm 5 is given below:

Cost, (Algorithm 5) = (h;-1) A+(m-1) D+1T (20)

where, h, and m are the Hamming weight and bit length of the signed-digit {0,1,3}-INAF scalar,
respectively. Aso, A, D and T are point addition, doubling and tripling, respectively. Equation 20
is proven true when it is tested on 144 data.

Algorithm 6: Addition-subtraction algorithm
Input: warg)- 3 k2 and PeE(F,)
Output: § = kP, where, QeE(F,)

1. Q-

2. fori=1-2 downto 0

3. Q=2Q

4. if (k; = 1) then @ = Q+P
5. if (k; = -1) then Q = Q-P
6. return @

In Algorithm 6, line 3 performs exactly 1-1 times. In general, if the Hamming weight of the
{-1,0,1}-NAF scalar is h,, then the expected running time of Algorithm 6 is given below:

Cost (Algorithm 6) = (h,-1)A+({£-1)D (21)

where, A and D are point addition and peint doubling, respectively.

Complexity analysis: Complexity analysis provides running time estimation for performing scalar
multiplication for any system specification with any parameters (Sullivan, 2007). The complexity
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Table 5: Kstimation cost of the addition-subtraction and the proposed scalar multiplication algorithms at average case ¢h and 1 are fixed)

Estimation cost (usec)

P hy hg 1; 1, Addition-subtraction Proposed signed-digit {0,1,3}-NAF Cost reduction (%)
1 11 12 24 24 49211.3 49894.0 -1.4
2 10 12 24 24 49211.3 47964.8 2.5
3 9 9 24 24 43423.8 46035.6 -6.0
3 9 10 23 25 46570.0 44818.7 3.8
3 9 12 24 25 50428.3 46035.6 8.7
4 8 12 24 25 50428.3 44106.5 12.5
5 7 7 24 24 39565.5 42177.3 -6.6
5 7 10 24 24 45353.0 42177.3 7.0
6 6 10 23 25 46570.0 39031.2 16.2
6 6 23 25 42711.6 39031.2 8.6
6 6 23 25 44640.8 39031.2 12.6

is based on the number of point operations involved per scalar throughout the execution of the
scalar multiplication algorithm.

In scalar multiplication operation, the traditional {-1,0,1}-NAF scalar using addition-subtraction
algorithm (Hankerson et al., 2004) and the proposed {0,1,3}-NAF scalar using the proposed
signed-digit {0,1,3}-NAF scalar multiplication algorithm. In this study, complexity analysis is carried
out to compare performance of the proposed scalar multiplication algorithm with the traditional
addition-subtraction algorithm.

For complexity analysis, there same 144 random binary data of 24 bit-length. Cost of the
Algorithm 5 and 6 are measured based on the expected cost in Eq. 20 and 21. For average case
analysis, only data with h = 12 are selected and displayed in 5. Cost estimation in Table 51is derived
by using the following point operation cost:

A = OMF5S; D = (SM+45) and T = (12M+78)

Also, the following field operation cost of Multiplication (M) and Squaring (S) as used in Edoh
(2009):

M = 148.34 microseconds; S = 118.82 microseconds

(p = No. of digit 3; h;, h, = Hamming weight of the proposed {0,1,3}-NAF and {-1,0,1}-NAF,
respectively; 1,, I, =bit size of the proposed {0,1,3}-NAF and {-1,0,1}-NAF, respectively).

RESULTS

Table 4 provides overall cost estimation for addition-subtraction and the propesed scalar
multiplication algorithms. The values of p, Hamming weight and bit length of a scalar k are
significant parameters in the performance of the scalar multiplication algorithm. To study the
behavior of these parameters, the values of h and 1 are fixed (1.e.,, h=12 and 1 = 24),

Based on Table 5, the value of p is increasing from 1 to 6, that is from data (a) until data (k).
The wvariation of h;, hy, |, and 1, are monitored. For all cases, the values of h; are lower than h,,
(i.e., h;<hy), indicate that the Hamming weight of the proposed {0,1,3}-INAF scalar is better than
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the Hamming weight of the traditional {-1,0,1}-NAF. Also, by observation, the values of h, are
decreasing from data (a) to data (k). For some cases, the values of 1, are lower than 1, indicate that
the bit length of the proposed {0,1,3}-NAF scalar is better than the bit length of the {-1,0,1}-NAF
scalar. By observation, for cases 1, =1,, means that there is no changes in bit length after the digit
conversion.

From Table 5, the percentage of cost. reduction helps to identify significant improvement of the
scalar multiplication algorithms. The highest percentage of cost reduction is 18.2, which happens
when p = 6. Negative percentage of cost reduction of -1.4, -6 and -6.6 indicate no improvement in
the cost of the proposed algorithm. The value p = 1 may be the reason for the negative value in
percentage of cost reduction in data (a). Thus, the value h; =h, and 1, =1, may be the reason for the
negative values in the percentage of cost reduction in data (¢) and (g).

Cases where, 1, <1, (i.e., ], = 23) happens in data (d), (1), () and (k). Table 6 shows tracing of
Algorithm 5 and 6 using data (d). In Table 6, Algorithm 6 has 24 iterations whereas Algorithm 5
has 22 iterations. The same cases happen for data (1), (j) and (k). In conclusion, reduction of bit
length G.e., 1, = 23) oceurs because 3 is the MSD for the proposed {0,1,3}-NAF scalar. At the same

Tahble 6: Tracing algorithms using p=3;hy = 9 hy, = 10;1;, = 23; 1, = 25

Addition-subtraction (Algorithm 6) {0,1,3}-NAF scalar multiplication (Algorithm 5)
i NAF (k) = ikﬂi i 0,1 ,HS}-NAF,
i=0 i
ke 1,0, 1) kfg;‘b'z
k =10-10010-100-10010-100-1000101 b {0,1,3}
k = 30001010300010103000101
24 P 22 3P
23 op 21 2(3P) = 6P
22 2(2P)-P = 3P 20 2 (BP) = 12P
21 2(3P) = 6P 19 2(12P) = 24P
20 2 (BP) = 12P 18 2 (24P)+P = 49P
19 2 (12P)+P = 25P 17 2 ¢49P) = 08D
18 2 (25P) = 50P 16 2 (98P)+P = 197P
17 2 (50P)-P = 99P 15 2 (197P) = 394P
16 2 (99P) = 198P 14 2 (394P)+3P = 791P
15 2 (198P) = 306P 13 2 (791P) = 1582P
14 2 (396P)-P = 791P 12 2 (1582P) = 3164P
13 2 (791P) = 1582P 11 2 (3164P) = 6328P
12 2 (1582P) = 3164P 10 2 (6328P)+P = 12657P
11 2 (3164P1+P = 6320P 9 2(12657P) = 25314P
10 2 (5320P) = 12658P 3 2 (25314P)+P = 50620P
9 2 (12658P)-P = 25315P 7 2 (50629P) = 101258P
8 2 (25315P) = 50630P 6 2(101268P)+3P = 202519P
7 2 (50630P) = 101260P 5 2(202519P) = 405038P
6 2 (101260P)-P = 202519P 4 2 (405038F) = 810076P
5 2 (202519F) = 40503 8P 3 2 (810076F) = 1620152P
4 2 (405038P) = 810076P 2 2(1620152P+P = 3240305P
3 2 (810076F) = 1620152P 1 2 (3240305F) = 6480610P
2 2(1620152P+P = 3240305P 0 2 (6480610P)+P = 12961221P
1 2(3240305F) = 6480610P
0 2 (6480610P)+P = 12961221P

Cost = 9mA+24D Cost = 8mA+22D+1T
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time, increment of bit-length (i.e., 1,= 25) oceurs in data (d), (i), (j) and (k) for the traditional NAF
scalar. Thus, when digit 3 is at the MSD, the proposed scalar multiplication algorithms has less
number of iteration than the addition-subtraction algorithm. Thus, the proposed scalar
multiplication algorithm achieved higher percentage of cost reduction than in normal cases.

DISCUSSION

(Generally, at average case:

+ The cost of the proposed scalar multiplication algorithm is better than the cost of the
addition-subtraction method exclusive for the following cases:

Case 1: Whenp =1
Case 2: When h, =h,and 1, =1,

+  When the Most Significant Digit (MSD) of the proposed {0,1,3}-INAF scalar is 3:

+  Reduction of bit length oceurs in 1, (i.e., 1 <l)

« The proposed scalar multiplication algorithm has less number of iteration than the
addition-subtraction algorithm illustrated in Table 8. Thus, the percentage of cost reduction 1is

better than in normal cases

From Table 5, parameters h, and h, affect the cost of the scalar multiplication algorithm.
Therefore, the following mathematical analysis is carried out in order to identify the behavior of
h, and h,.

From Kq. 20:

= Cost (Algorithm 5) = (9h,+51,-2)M+(5h +41,-2)3 (22)
where, 1, =1l orl-1 and h; =h-p. The case 1, =1-1 happens in Table 5 for data (d), (1), ) and (k). For
this case, the proposed scalar multiplication algorithm has 1-1 number of instructions.

From Kq. 21:

= Cost (Algorithm 6) = (h,-1) A+{1-1) D (23)
The point operation cost such as mixed Addition (A), Doubling (D) and Tripling (T) are

(OM+55), (BM+45) and (12M+75), respectively.
Then, from KEq. 23:
Cost (Algorithm 6) = (h, -D(OMA53 (1, -1)(5M+43)
= 9(h,- M+5(h-1)8+5(1,-1MF4(1- 138
= (Sh,+51-14)M+(5h,+41,-3)3 (24)

where, 1, =1 or1+1. The case 1, =141 happens in Table 5, for data (d), {e), {f), (i), () and (k). For this

cases, the addition-subtraction algorithm has 1+1 instructions to be executed.
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Suppose that.:

Cost (Algorithm 5)<Cost (Algorithm 6)

Then, from Kq. 22 and 24

={(9h,+51 -2)M+(5h +41,-2)S<(Oh,+51,- 14 M+(Sh,+41,-5)8
=(%h,+51,-%h,-51,+1 2)M<(5h,+41-5h,-41,-3)3
=(%h,+51,-%h,-51,+1 2)M<(5h,+41-5h,-41,-T)3 (25)

In some cases, when a binary of length | is recorded into the proposed {0,1,3}-NAF
representation, either 1 is maintained (.e., 1, =1) or reduced by 1 bit d.e., 1, =1-1). Also, when a
binary of length 1 is recorded into a {-1,0,1}-INAF representation, either 1 is maintained (i.e.,, 1, =1)

or increased by 1 bit (i.e., 1, = I+1). Therefore, we need to consider analysis of the scalar
multiplication cost for two cases:

Case 1:1,<l, (where 1, =1-1 and 1, =1+1)
Case 2:1=1,=1

Case 1:1,<l, where ], =1-1 and I, = 141

From Eq. 25:

={Oh,+5(1-1)-%h, -5(1+1 #12)M<(Sh,+4(1+1}-5h -4{1-1)-7)S
=(%h -Oh +2)M<(5h-5h +1)8
:’(9(h1'h2)+2)M<'(5 (hl_h2)+ 1 )S

Using M =148.24 and S = 118.82 (Edoh, 2009):

—(9(h,-h, 1 2)(148.34)<(-(5(h,-h, )+ 1)(118.82)
= 1335.06(h,-h,)+296.68<-594.1(h,-h,)}+118.82
= (1335.06+594.1)(h,-h,)<118.82-296.68
= (1929.16)(h,-h,)<-177.86
— (h,-h,)>177.86/1929.6
= (h,-h,)>0.09 (26)

In eonclusion, for case 1,< 1, (e, 1, =1-1 and 1, = 141}, from Eq. 26, the proposed scalar
multiplication algorithm has better cost than the addition-subtraction algorithm when th,-h,)=0.09:

Case 2:1,=1,=1
From Kq. 25:

—(9h,+51-9h,-51+12)M<(5h, +41-5h,-41-7)S
—(9h,+51-9h,-51+12)M<(5h, +41-5h,-41-7)S
=(9(h-hy, ) H12)M<(-5(h,-h,)-7)8
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Using M =148.34 and 5 = 118.82 (Kdoh, 2009):

= (9(h,-h,)+12)148.34)<(-5(h,-h,)-7)(118.82)
— 1335.06(h,-h,)+1780.08<-594.1(h,-h,)-831.74
= (1335.06+594.1)(h,-h,)<-831.74-1780.08
= (h,-h,)<2611.82/1929.16
= (h,-h,)>1.35 27)

In conclusion, for case 1, =1, =1, from Kq. 27, the proposed scalar multiplication algorithm has
better cost than the addition-subtraction algorithm (Hankerson et al., 2004) when (h,-h )>1.55.

From Eq. 26 and 27, for average case, we can conclude that the proposed scalar multiplication
algorithm has better cost than the addition-subtraction algorithm for the following cases:

Case 1: For {,< 1,, the Hamming weight of h; and h, must satisfy: (h,-h)>0
Case 2: For 1, =1, =1, the Hamming weight of h, and h, must satisfy: (hy-h)>1

When the proposed tripling is compared with Eq. 12, it saved 14% multiplications and 22%
squarings. Alse, when compared with traditional tripling, the proposed tripling saved 33%
multiplications and 12.5% squaring. For NIST curve, the value of a is equal to 1 and more

reduction in scalar multiplication cost 1s achieved.

CONCLUSION

The digit 3 in the {0,1,3}-NAF scalar need tripling operations in the execution of the proposed
scalar multiplication algorithm. At average case, the digit 3 also helps to minimize the Hamming
weight of the scalar multiplier. From the result, at average case the proposed signed-digit
{0,1,3}-NAF scalar multiplication algorithm is better than the addition-subtraction algorithms
except when only one digit 3 in the proposed scalar. Finally, the proposed scalar multiplication
algorithm is better than the addition-subtraction algorithms when the Hamming weight and the
bit-length of the propesed {0,1,3}-NAF scalar is not equal to the Hamming weight and the
bit-length of the {-1,0,1}-NAF scalar.
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