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Abstract
Background and Objective:  Inspecting  all  packets  to  detect  intrusions faces challenges when coping with a high volume of traffic.
Packet-based detection processes every payload on the wire, which degrades the performance of intrusion-detection systems. This issue
requires the introduction of a flow-based IDS approach that reduces the amount of data to be processed by examining aggregated
information of related packets in the form of flow. However, flow-based detection still suffers from the generation of false positive alerts
due to lack of completed data input. This study proposed a model to improve packet-based performance and reduce flow-based false
positive rate by combining flow-based with packet-based detection to compensate for their mutual shortcomings. This proposed model
is named as conditional hybrid intrusion detection. Materials and Methods:  In this model, only malicious flows marked by flow-based
must be further analyzed by packet-based detection. For packet-based detection to communicate with flow-based detection, input
framework approach was used. To evaluate the proposed detection methods, public datasets were replayed in different traffic rates into
both the proposed method and default Bro implementations in a testbed controlled environment. Results:  Experimental evaluation
shows that the proposed approach was able to detect  all infected hosts reported and corresponding datasets. At 200  Mbps rate,
proposed approach can save 50.6% of memory and 18.1% of CPU usage compared with default Bro packet-based detection. Experiments
demonstrated that the default Bro packet-based can handle bandwidth up to 100 Mbps without packets drop, while 200 Mbps in the
proposed approach. Conclusion: Experimental evaluation showed that the proposed model gains a significant performance improvement,
in term of resource consumption and packet drop rate compared with a default Bro packet-based detection implementation. The
proposed approach can mitigate the false positive rate of flow-based detection and reduce the resource consumption of packet-based
detection,  while preserving detection accuracy.  This study  can be considered as skeleton model to be applied for intrusion or monitoring
detection systems.
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INTRODUCTION

Fast  increase  of  devices,  users  and services connected
to  the  internet  has  resulted  serious   threats   against  the
security countermeasures such as network Intrusion Detection
Systems (IDSs). Inspecting every packet to detect intrusions
faces challenges when coping with a high volume of traffic. As
stated by Liao et al.1, packet-based detection degrades the
performance of intrusion-detection systems. This challenge
requires the introduction of a flow-based IDS approach that
reduces the amount of data to be processed by examining
only aggregated information of related packets in the form of
flow. According to Golling et al.2, since flow-based detection
has lack of complete processed information, it reports
significant number of false positive alerts. However, enhancing
the detection algorithm accuracy of IDS has been a hot issue
in study, while relatively less for reducing the false positive3.
Several studies intended to reduce false positive rates via
variety approaches. Such approaches include specializing
NIDS to detect certain types of attacks and signature4, building
profile for understanding the environment of the networks5-7,
cleaning and filtering traffic to relevant data8,9, verifying and
correlating alerts10,11 and combining signature-based and
anomaly-based using packet-based only12-14.
Limmer  and  Dressler15  proposed  a new monitoring

technique  that  combines  the  flow  records  and  their
corresponding (part of) payloads in pre-processing stage.
However, false positive rate are not studied in their analysis. In
addition,  in  their   approach,   every   portion   payload of
every flow, whether suspicious or not is processed by
signature-base, which means more consumption is needed for
processing. Another study involve in combining flow-based
and packet-based was conducted by Schaffrath and Stiller16.
The researchers   developed  only   a   conceptual   framework 
for combining the approaches to to reduce the amount of
packets to be processed  by  NIDS   and enhance alert
confidence.  Golling et al.2  also  attempt  to   take  the
advantages of combining flow-based and packet-detection.
However, no results were reported since the implementation
is under deployment. This study proposed a model to reduce
the false positive rate of flow-based detection by combining
flow-based with packet-based detection to compensate for
their mutual drawbacks. In other words, only packets
corresponding  to  the   alerts   generated   by  flow-based
detection are further analyzed by packet-based detection. This
combination approach can reduce resource consumption of
packet-based detection while preserving detection accuracy.
Open-source   Bro IDS17  for intrusion detection is used for
each  flow-based  and  packet-based  detection  method.   For

packet-based detection to communicate with flow-based
detection, input framework which is provided by the Bro is
used.
The IRC-bot and P2P-bot scenarios for the proposed

model are implemented. To evaluate the proposed detection
method,  different  recent  labeled  datasets  that represent
real traffic are replayed into Bro with different traffic rates
ranging from 100-1000 Mbps. The experimental evaluation
shows  that  the  hybrid  approach  gains  a significant
performance improvement when using input framework and
BPF techniques compared with default Bro packet-based
detection implementation.

MATERIALS AND METHODS

Packet-based and flow-based overview:  In packet-based, a
detecting engine has to inspect per packet header and
payload in order to determine the existence of intrusion. This
approach is mostly used by signature-based IDS which
compares the incoming traffic to the given list of signatures in
the database. On the other hand, a flow-based IDS does not
inspect payload content for inspection and analysis, however,
it depend on information and statistics of network flows. Such
information includes number of packets and bytes transferred
over a particular time and duration of a flow.
A flow can be defined as a unidirectional data stream

between two nodes where all transmitted packets of this
stream share the following 5-tubles; source and destination IP
address and source and destination port number and protocol
type18. This approach is mostly used by statistical and anomaly
based IDS which identifies any significant deviations fall
against the predefined normal profile or threshold. Nowadays,
routers are equipped with ability to be configured to generate
flow statistics records in form of so called netflow18.
Promising results are achieved by researchers to detect

attacks (such as denial of service, worms, SSH etc.) with
focusing only on flow-based detection19.  Table 1 summarizes
the comparison between packet-based and flow-based
detection. Alaidaros et al.20 presented more details and
overview on the comparison between these approaches.

Proposed approach: This  explains   how  the combination of
two approaches, flow detection and packet detection can
reduce false positives of flow-based detection and reduce the
resource consumption of packet-based detection while
maintaining the level of detection accuracy. The idea of the
proposed approach design is to obtain the advantages of a
flow-based NIDS approach by having a small amount of data

56



Res. J. Inform. Technol., 8 (3): 55-65, 2016

Suspicious
lPs log file 

Traffic 

Packets Packets

Captured filter 

Match?Do nothing

Yes

Flow aggregation

Flow records

Bro flow-based 

detection (FL)

Packets

WriteBro packet-based
detection (PH)

Yes

Yes

No

No
Intrusion? Suspicious?

Increment
false positive

counter

Update intrusion logs Do nothing

to be processed and the advantages of a packet-based NIDS
approach by having a higher detection accuracy rate. With
these two approaches, the model is based on the following
strategy: One approach is used for first inspection (to mark
traffic as suspicious) and the second one is used for further
inspection to confirm the decision made by the first
inspection.
In the combined approach theory, two candidates are

possible. The first candidate is to set flow-based detection as
first inspector and packet-based as second inspector. The
second candidate is the opposite. The first approach is
anticipated  to  have  better  scalability  and  alert  verification 

Fig. 1: Conditional   Hybrid    Intrusion    Detection  (CHID)
approach. This method can reduce the false positive
alerts generated from flow-based detection. When
flow-based detection generates suspicious IP
addresses, these IP addresses are added into the
capture filter so that from now on, only incoming traffic
that matches these suspicious IP addresses is subject to
inspection by packet-based detection for further
analysis

level. On the other side, when placing packet-based detection
in the second inspector, low scalability level might occur with
low alert verification from flow-based detection. Thus, the first
approach is chosen as candidate for the combined approach
and named as Conditional Hybrid Intrusion Detection (CHID).

Design: The  practical  requirements   for   designing  and
operating the CHID approach are presented. The goals of this
approach are to verify alerts that are produced by flow-based
detection  and  to  reduce  the  resource  consumption  of
packet-based detection. Bro is used as platform for detection
system. This approach is designed in conditional combination.
In other words, only packets corresponding to (or triggered)
the flow  alerts  are  retrieved  for  further inspection by
packet-based detection. In fact, repetitive attacks frequently
send similar traffic and patterns in future connections21. This
result was verified for IRC-bot and P2P-bot traffic in the
experiments. Moreover, this result implies that these malicious
activities can be detected and verified by inspecting their
future packets using packet-based detection. With this fact in
mind, these activity characteristics are utilized in order to
verify the flow-based alerts by inspecting related packets in
the corresponding future traffic.
Figure 1 illustrates how the CHID approach works. Initially,

Bro in packet-based is adjusted with the Berkeley Packet Filter
(BPF) to exclude all traffic. Later, when flow-based detection
generates suspicious IP addresses, the packet-based detection
adds these IP addresses into the capture filter so that from
now on, only incoming traffic that matches these suspicious
IP addresses is subject to inspection by packet-based
detection for further analysis. If packet detection finds an
intrusion, it updates the intrusion log file. Bro is used in the
implementation. Bro is a unix-based, open-source network
intrusion-detection system that monitors, analyzes and
inspects  all  traffic  to  detect  suspicious  activity,  even in
high-speed networks. Henceforth in the remaining of this
study, PH represents packet-based detection in CHID, FL
represents flow-based detection and PO represents the
default   packet-based   only   detection  that inspects all
packets.

Table 1:  Comparison between packet-based and flow-based detection system
Comparison items Packet-based IDS Flow-based IDS
Data to be analyzed Header and payload Flow records
Size of data to be analyzed Mostly large Small
Detection method mostly used Signature-based Anomaly-based
Size of network preferred Small network Small and large network
Extra device needed No need extra device Extra device is required to reform the traffic
Delay before detection analysis No delay Has delay since packets need to be aggregated
Allow to access raw packet data for further analysis Can access raw packet Cannot access raw packet
Privacy Confidential data in payload is read Confidential data in payload is not available
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Implementation:  The communication mechanism between
PH and suspicious flow information that is generated from
flow-based detection (FL)are presented. Filtering mechanism
in the PH is also explained in this section. Basically, when FL
detects suspicious flows, it writes corresponding IP addresses
into a log file. In the log file, every entry has an expiry time.
Once this expiry time is reached, the entry (suspicious IP
address) is deleted. This process ensures that entries are
updated with only recent suspicious traffic. To ensure that PH
is only capturing the suspicious IP addresses, PH should
communicate with FL to read the suspicious log file. Although
broccoli API can be used for this purpose, because it
subscribes to events of other Bro instances, its high overhead
consumption is reported. Alternatively, the most recent novel
framework  developed  by  the  Bro team, which is called
“Input framework22”  is used in this study. Input framework
generally integrates external information in real-time into an
IDS source without  negatively  affecting  the IDS’s main task,
even in high-volume environments. For CHID case, it allows PH
Bro instance to import the suspicious log file from FL Bro
instance and store it as a table.
Because the suspicious log file is in dynamic mode-which

means it is continuously being changed by the addition of
new suspicious IP addresses-a re-reading mechanism is
required to update the table in PH. Input framework provides
a file reader that can read a file once at startup and then
continuously monitor it for any changes and trigger the
update operation automatically. In other words, input
framework performs a modification by (1) Adding any values
to the corresponding table, (2) Updating any entries whose
values have changed and (3) removing entries that no longer
exist.
Figure 2 illustrates how the filter reads the suspicious log

file through input framework communication. To minimize PH
Bro consumption, this re-reading process should be called
only when there is a new entry added into the log file. The
advantage of using input framework for re-reading processes
is avoiding PH Bro instances being launched multiple times to
update the table, causing extra overhead. After input
framework updates its table, PH Bro captures the packets that
correspond to the IP addresses found in the table. When the
table is empty, BPF excludes all traffic. The BPF filter frequently
reads the entries from the table and updates the filter to add
them to the capturing process. To perform this function,
compilation is needed. To avoid unnecessary filter compiling
overhead occurring when updating the filter, this update (or
filter re-compilation) should occur only when the table is
changed.   In    order   to   implement   CHID   approach,  attack

Fig. 2: Input framework as intermediate between suspicious
log and filter. To study illustrates how the filter reads
the  suspicious  log  file  through  input  framework
communication. To minimize  PH Bro consumption, the
re-reading process should be called only when there is
a change in suspicious log file. After input framework
updates the table, filter captures the packets that
correspond to the IP addresses found in the table. The
FL  represents  flow-based   detection   while  PH
represents packet-based in CHID approach

scenarios should be selected and FL and PH should be
individually implemented which are explained in the following
sections.

Attack scenarios: To evaluate the proposed model, attack
scenarios that fit the CHID model should be prepared. Based
on literature, flow-based detection yields promising results
when detecting botnet activities that perform repetitive traffic
patterns23. Repetitive attacks imply that the attacks generate
similar traffic patterns in future connections. With these points
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in mind and rather than review general botnet detection in
this study, the following bot-related malicious types are
considered in this study: IRC-bot and P2P-bot. These type are
the most popular active botnets. More details on the
characteristics of these malicious activities are presented by
Zhu et al.21.
The other reason behind selecting these attacks is that

they match the model strategy. Thus, an attack can be marked
as suspicious in the first inspector (flow-based detection or FL)
and can be detected and verified in the second inspector
(packet-based detection or PH), which can access data
(payloads)  not  available  in  FL.  However,  in    this  study,
flow-based detection scripts for IRC-bot and P2P-bot were
adopted  from  the  previous  study24.  For  packet-based
detection scripts, rules obtained from literature25,26 are
combined to form “Signatures”. For example, one of the
common payload signature  for  P2P-bots  is such information
form as ”*.mpg; size = *”, where, * represent decimal
numbers27. These signatures are then converted into Bro
format syntax. Basically, payloads of incoming packets are
compared with these signatures. If these payload match with
these signatures, then it is considered as intrusion. Signature
engine of Bro provides high-performance pattern matching
that is separately from the normal script processing. In
addition, Bro provides default and built-in signature-based
detection scripts28 which are useful for the implementations.

IRC-bot scenario: With  reference  to  IRC-bot,  flow-based
includes significant information about IRC and IRC-bot
connections21.  An  IRC  connection  such  as  a ping-pong
message  exchange  is  easily  identified  in  flow-level
information. A ping-pong message or so-called keep-alive
function is used by an IRC server to see whether the user
computer is alive. This ping-pong message generally holds a
fixed amount of packets and bytes per flow. In addition,
typically no messages are exchanged when a bot is
communicating with the controller other than ping-pong
messages because IRC-bot is mostly in idle mode; it usually
waits for commands from the controller. The absence of any
messages other than ping-pong messages could be a
significant indication of the existence of an IRC-bot. For packet
level or PH, the payload information for IRC-bot also contains
potential information for detecting such attacks. With this
information, it is possible to identify whether an IRC
connection is used for benign communication such as
chatting or for malicious communication such as connecting
to an IRC-bot command and control server.

P2P-bot   scenario:    Similarly    to    IRC-bot,   P2P-bot
communication can be marked by FL as suspicious and then
detected by PH. However, in P2P-bots, peers do not receive
commands from a central server as they do in IRC-bot; 
instead, they receive commands from peers. Based on the
experiments, P2P-bot involves higher numbers of connections
between peers compared with the normal communication in
P2P such as e-Donky and bit-torrent applications21. A higher
number  of  connections   means   higher   flows   occur  in
P2P-bot,  which  can  be easily marked by an FL process. For
PH, payloads include significant information for P2P-bot
intrusion  detection.  For  example,  in command and control
(C and C) communication, a payload could contain the
instructions (e.g., what task to perform) sent to peers. If this
communication is encrypted, spam mails, sent by a bot for the
distribution botnet could be a sign of a P2P-bot net.

Evaluation: Having  shown  the  implementation  of  the
combined approach in the selected scenario, presents how
this implementation is evaluated. This is to ascertain the
possibility of CHID to reduce resource consumption while
maintaining detection accuracy when compared with the
default Bro packet-based detection (PO). It is challenging to
evaluate an IDS with realistic traffic with an approach that is
repeatable and reproducible. Since series of measurements
are run in the experiments, running the experiments on live
traffic approach is not possible because that will not yield fair
comparisons when different configurations run in sequence.
In other words, live traffic approach has limitations, in terms of
repeatability of experiments for any systematic performance
evaluation study.
Executing the experiments in offline-mode approach to

receive datasets (traces) also not practical. This is because Bro
would process the packets as quickly as possible at 100% CPU
utilization. To address the aforementioned issues, a method
that combines the best of both mentioned approaches is
used. In this method, Bro reads the input from a dataset but in
live mode, which can be achieved by replaying the traces into
Bro. This approach results in a reproducible procedure that is
comparable to using the data in the experiment on live traffic.
All of the tests were run three times to avoid any anomalies or
noise in results.
However, compare the new results with other’s studies

were proven hard to accomplished29. However to obtain the
original implementation of other methods is difficult due to
copyright issues. In addition, most of the study in IDS field do
not share their dataset due to privacy reasons. In addition,
Tavallaee et al.30 stated that most of detection proposals lack
of proper documentation of their methods and experiments.

59



Res. J. Inform. Technol., 8 (3): 55-65, 2016

Background and
data sets Pcap files 

FL
Bro-IDS

PH
Bro-IDS

PO
Bro-IDS

Flow
records

Collector Flows

Packets

Packets

Softflowd 

Packets

Packets
PCAP
trace

Traffic generator 

Gbps NIC
(tcpreplay linux tool)

Gigabit switch
port mirror

Fig. 3: Experimental testbed. The experimental environment run on two machines interconnected through the Gigabit switch.
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The second machine is installed with softflowd and Bro

 In this study, local comparative analysis is performed between
CHID approach (FL+PH) and PO in terms of detection rate,
memory and CPU usage and packet drop rate. In other words,
total resource consumption for Bro in the combined approach
is calculated to perform a direct comparison with Bro PO.
However, PH and PO share the same signature detection. The
difference between them is that PH is involved in input
framework and BPF techniques, while PO is left with default
configurations. The following subsections initially introduce
the network testbed environment in which the evaluation is
performed and then present the dataset used in this
measurement.

Experimental testbed: The proposed implementation run on
a testbed depicted in Fig. 3. The experimental environment
run on two machines interconnected through the Gigabit
switch. Both machines are running 12.04 Linux-based Ubuntu
desktop 64 bit with intel i7 3.1 GHz with 32 GB of RAM. Both
machines NICs support Gbps. The first machine is used for
traffic generation; the machine replays real (previously
captured) network traffic datasets (presented in the next
section) using tcpreplay31 v 4.0.5 and sends the traffic to the
second machine for further analysis. The second machine is
installed with softflowd32 v 0.9.9 and Bro 2.3.
The experiments are repeated by replaying the datasets

at the following rates: 100, 200, 500 and 1000 Mbps using
tcpreplay. The switch supports Gigabit speed with port mirror

enabled to forward all traffic to the analyzing (second)
machine. Softflowd is used as the flow aggregator with default
parameters to generate flow records from the dataset packets
received and to export those records to the collector.
Softflowd is also capable of generating Cisco netflow export
format. In the evaluation, the resource consumption of
netflow aggregation is not considered because it is assumed
to exist in a production network2. Bro is used for malicious
detection using the policy script. In addition, Bro is configured
to collect the flow records by reading the flows for Bro
analysis. All Bro instances experimented in this study in
identical environment in term of input source, platform and
traffic speed.

Dataset: The  greatest  challenge  in  validating a detection
method is the lack of standard public datasets29. The DARPA
1999, which is believed to be the most standard public trace
was criticized due to its age and inability to reflect real-world
traffic by Shiravi et al.33. At this writing, only a small number of
datasets is publicly available. Datasets presented in Table 2 are
collected which have been made public for the research
community and will be used in the experiments. The first
dataset used is the information Security and Object
Technology (ISOT) dataset34, generated by the University of
Victoria in 2011. The ISOT dataset has a combination of
malicious P2P-bot and normal traffic (Table 3). The other
datasets were generated by Czech Technical University (CTU)
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in different scenarios and were published in 201329. Three
individual scenarios are selected, CTU-51, CTU-52 and CTU-53,
from the CTU datasets29.
These datasets consist of real traffic in the PCAP format.

However, these datasets are labeled, i.e., IP addresses of
malicious and non-malicious hosts are known. Labeling this
traffic is useful to validate the accuracy of the detection
methods. However, these existing recent public datasets are
limited to certain types of attacks. For IRC-bot, it was
performed on CTU-51 and CTU-52 datasets, whereas P2P-bot
activities are generated in both ISOT and CTU-53 datasets. For
the non-malicious traffic, unfortunately none of the datasets
mentioned in Table 4 (except for the ISOT dataset) contains
full-payload background traffic for privacy reasons. Therefore,
a one-day complete payload trace is used. The trace was
captured at Alfaisal University, Prince Sultan College Jeddah
(PSCJ), Information Technology Center, at the main gateway
link that connects hundreds of hosts with an educational
network to the Internet. The size of this trace is 8 GB and
contains 32 million packets, corresponding to approximately
1.9 million flows. This trace is named as “PSCJ” and it contains
a variety of network activities. The PSCJ dataset involves
everyday activity usage such as HTTP web behavior, popular
sharing file packets, IRC traffic, emails and streaming media.
However, PSCJ trace is combined and injected along with each
of the datasets listed in Table 2.

Table 2: Total number of packets and flows on data sets
Dataset Total No. of packets Total No. of exported flows
ISOT* 157 millions 5.2 millions
CTU-51** 66.3 millions 31.7 millions
CTU-52*** 3.9 millions 1.7 millions
CTU-53**** 351,537 11,117
#Information security and object technology dataset, generated for P2P-bot
scenario, **Czech technical university CTU-51 dataset, generated for IRC-bot
scenario, ***Czech technical  university  CTU-52 dataset,   generated  for IRC-bot
scenario  and  ****Czech  technical  university  CTU-53 dataset, generated for
P2P-bot scenario

Table 3: Packet drop rate percentage in P2P-bot scenario
100 200 500 1000

Traffic rates --------------------------------(Mbps)-----------------------------------
PH# 0.00 0.16 5.40 21.12
PO** 5.04 9.32 29.79 48.45
#PH: Packet-based detection in the approach and **PO: Default packet-based
only detection that inspects all packets

Table 4: Packet drop rate percentage in IRC-bot scenario
100 200 500 1000

Traffic rates --------------------------------(Mbps)-----------------------------------
PH# 0.00 0.00 7.98 27.47
PO** 2.50 5.12 26.02 48.55
#PH: Packet-based detection in the approach and **PO: Default packet-based
only detection that inspects all packets

RESULTS

Evaluation results of the measurement performance are
presented.  In  all  measurements,  similar to PO, PH in CHID
was able to detect all IRC-bot and P2P-bot infected IP
addresses that were reported and labeled in the traces. With
this result in mind, PH yields a high accuracy rate with a zero
false  positive  rate.  Concerning  resource  consumption, in
Fig.  4  and  5 plotted the average percentage of memory and 

Fig. 4: Average memory usage with different traffic rates in
P2P-bot scenario. To study how resource consumption
effect  the  proposed  approach,  traffic  were  replayed
at  100,  200,  500  and  1000  Mbps,  FL:  Flow-based
detection, PH: Packet-based detection in theapproach,
FL+PH:  Total  memory  consumption  of  FL and PH
and PO: Default packet-based only detection that
inspects all packets and PO generates generally higher
memory usage compared with the hybrid method
(F+PH)

Fig. 5: Average  CPU  usage  with  different  traffic rates in
P2P-bot scenario. To study how resource consumption
effect the proposed approach, traffic were replayed at
100, 200, 500 and 1000 Mbps, FL: Flow-based
detection,  PH: Packet-based detection in the
approach, FL+PH:  Total CPU consumption of FL and
PH and PO:  Default packet-based only detection that
inspects all packets and PO generates generally higher
CPU usage compared with the hybrid method (F+PH)
until traffic rate reaches 500 Mbps
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Fig. 6: Average memory usage with different traffic rates in
IRC-bot scenario. To study how resource consumption
effect  the  proposed  approach,  traffic  were replayed
at  100,  200,  500  and  1000  Mbps,  FL: Flow-based
detection,  PH: Packet-based detection in approach,
FL+PH: Total memory consumption of FL and PH and
PO:  Default packet-based only detection that inspects
all   packets   and   PO   generates   generally  higher
memory usage compared with the hybrid method
(F+PH)

Fig. 7: Average  CPU  usage  with  different  traffic  rates in
IRC-bot scenario. To study how resource consumption
effect  the  proposed  approach,  traffic were replayed
at 100, 200, 500 and 1000 Mbps, FL: Flow-based
detection, PH: Packet-based detection in the approach,
FL+PH: Total  CPU  consumption  of  FL  and PH and
PO: Default packet-based only detection that inspects
all packets and PO generates generally higher CPU
usage compared with the hybrid method (F+PH) until
traffic rate reaches 500 Mbps

CPU usages while replaying the P2P-bot trace with speeds
ranging from 100-1000 Mbps, respectively. When sending
packets at a constant rate of 200 Mbps for example, CHID
method (or FL+PH) dropped CPU usage average from 97.7%
with PO to 72.4% with the CHID approach. Figure 6 and 7
showed average percentage of memory and CPU usages in
IRC-bot scenario. At a 200 Mbps rate, CHID approach can save
50.6% of memory and 18.1% of CPU usage (Fig. 4 and 5). In
both  scenarios  as  shown  in  Fig.  5  and  7,  PH had less CPU

Fig. 8: Drop packet rate with different traffic rates. To study
how packet drop rate effect the proposed approach,
traffic were replayed at 100, 200, 500 and 1000 Mbps,
PH-IRC and PH-P2P:  Packet-based detection in the
approach in IRC-bot and P2P-bot scenarios,
respectively,  PO-IRC and PO-P2P: Default packet-based
only detection that inspects all packets in IRC-bot and
P2P-bot scenarios, respectively and PO generates
generally  higher     packet   drop   rate   compared 
with PH

resource consumption compared with PO until 1000 Mbps
rate. However, the total CPU consumption of CHID approach
(FL+PH) reached at almost the full CPU capacity when the
traffic rate was about 500 Mbps.
With concerning packets drop issues (Fig. 8, Table 3, 4)

compared   the    packet    drop    with    traffic    rates  from
100-1000  Mbps  for P2P-bot and IRC-bot. Drop packet rate
was  calculated  in  relation  to the total packet received. At
500 Mbps in IRC-bot scenario for example, PH reported 7.98%
of drop packet while 26% in PO. Experiments demonstrated
that when P2P-bot scenario is measured, Bro PH solution
could handle bandwidth up to 200 Mbps with little drop of
0.16%. With the same traffic rate, no drop was reported when
IRC-bot was tested.

DISCUSSION

Since CHID was able to detect all infected hosts reported
in the datasets, PH is not only able to detect intrusion activities
but also means that FL detection plays an important role for
detection accuracy as supported by Sperotto et al.19. This is
because  PH  filtered  incoming packets depend primarily
upon  the  suspicious  list  generated  from  FL detection.
According  to  Alaidaros   and   Mahmuddin24,  implemented
flow-based detection only and reported significant number of
false positive alerts. However, when the same dataset input
into CHID approach, no false positive alerts were identified.
This is due to the extra layer (PH) added after flow-based
detection in CHID.

62



Res. J. Inform. Technol., 8 (3): 55-65, 2016

Findings also show that PO generates higher memory and
CPU usage compared with CHID approach. Unfortunately, this
holds true until traffic rate reaches 500 Mbps. This means that
the CHID  approach  can  save  resource  consumption until
500 Mbps rate take place. Before traffic rate reach 500 Mbps,
the mentioned observation is expected because PH in CHID
processes only potential (filtered) packets rather than
inspecting all incoming traffic. In addition, resource
consumption of packet-based in CHID can be reduced
compared with default packet-based that inspects all packets.
This implies that the resource consumption of input
framework mechanism, which is used for multi-Bro instances
communication does not affect negatively on intrusion
detection as stated by Amann et al.22.

Number of filtered hosts in PH also affects the resource
consumptions.  When  comparing   between   P2P-bot  and
IRC-bot cases, it was observed that the memory and CPU
usage of P2P-bot scenario are higher compared with IRC-bot
scenario.  This  holds  until  the  traffic  rate   reaches  about
500 Mbps. The reason for this is the increased number of
filtered hosts reported from the P2P-bot scenario. With the
same reason, when receiving packets at 500 Mbps onwards,
IRC-bot scenario consumes higher resources compared with
P2P-bot case. The more hosts that are in the filter, the more
traffic is received and consumed and vice versa. However,
these filtered hosts require more filter compilation overhead.
This compilation is needed to apply filters in the packet
capturing operation. In other words, the filter compilation or
BPF update resource usages increases when the number of
hosts added to filter increases, which might destroy the
advantage of the combination method.
In addition, input framework might contribute a negative

effect  to  resource  consumption  if  the filtered host number
is high. More filtered hosts require more updates to the
corresponding table. Moreover, the re-read function must be
called every time a new host is added to the log file generated
by FL. Unfortunately, an optimum value of filtered hosts
cannot be easily identified. This is because such identification
largely depends upon the data in the network traffic
characteristics in the traces themselves, i.e., session length,
protocols and the ratio of malicious traffic to benign traffic.
Concerning packet drop rate, it is expected that PO has

higher drop rate compared with PH even at 1 Gbps rate. This
is because of light CPU usage in PH as stated early in this
section.  Based  on  findings,  PO  detection can handle up to
80 Mbps rate. This observation was also stated by Pihelgas35

and Bro official documentation36. Comparing with these
studies, on the other hand, Bro in CHID approach can handle
higher rate up to 200 Mbps.

It is also observed that PH in P2P-bot starts to drop
packets faster than when IRC-bot scenario is tested. The
reasons behind this may refer to (1) The higher CPU
consumption at the early traffic rates when P2P-bot scenario
is  measured  as  mentioned  earlier  in  this  section and (2)
Per-packet processing time which might occur when Bro
spends much time on a single packet.
However, both Bro PO and PH have shown to dropped

packets increase when the speed rate of the packets increase.
This is because Bro is single-threaded technique which means
Bro only fully utilize one processor core and is not taking
advantage of multi-core CPU. This will lead to overloading the
Bro with a big amount of traffic. Bro provides an option to
spread workload across many cores using cluster-mode36.
Another solution should be used to decrease the packet drop
rate is PF_RING31 instead of standard pcap library which was
being used in this study. The PF_RING is packet capture
mechanism that improves the packet capture speed.
Pihelgas35 studied the packet drop of Bro when PF_RING was
implemented, the study concluded better packet drop rate.
However, in order to enable PF_RING in Bro, cluster-mode
must be run.
However, CHID is not designed as a suitable solution for

enhancing the performance of IDSs in all scenarios. The CHID
just  demonstrates  the  possible  approach  of combining
flow-based and packet-based detection in specific scenarios.
Similar to IRC-bot and P2P-bot attacks, there are other attacks
that can be detected in both flow and packet level. Such
attacks include SPAM, HTTP-bot and brute-force attacks. These
attacks with combined approach can be considered in the
future.

CONCLUSION

In this study, a model named CHID for improving IDS
scalability  was  presented.  The CHID  is based on combining
flow-based and packet-based detections to build on their
advantages and overcome their drawbacks to reduce the
resource consumption of IDS. The CHID approach used Bro IDS
and utilize the input framework to communicate between
flow-based and packet-based detection modules. The CHID
approach was evaluated by replaying labeled datasets with
traffic rates from 100 Mbps through 1 Gbps.
The experimental evaluation shows that CHID approach

could gain a significant performance improvement compared
with a default Bro packet-based detection implementation.
This  improvement    hold   true   until   traffic   rate  reaches
500 Mbps. When an IRC-bot  scenario   is   implemented  at
200 Mbps, CHID approach can save 50.6% of memory and 18%
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of CPU usage.  With  this  saving in mind, the resource usage
of packet-based detection in CHID approach were enhanced.
With scalability improving, CHID implementation maintains
detection accuracy level, manages to eliminate false positive
alerts generated from flow-based detection and detects all
reported malicious hosts.
Input framework and BPF compilation resources depend

upon the number of suspicious hosts generated from flow-
based detection. The more hosts identified by flow-based
detection, the more resources are needed in packet-based
detection in CHID approach. A huge number of filtered hosts
would result in compilation process overhead that might
destroy the advantage of CHID. For flow-based detection
resources, the number of concurrent hosts processed in the FL
table can affect the overall performance of proposed
approach because this number requires table updating and
dynamic threshold calculations. The CHID can be considered
a skeleton model facilitating the application of other intrusion
or monitoring detection systems in the future.
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SIGNIFICANCE STATEMENTS

C Along with the wonderful benefits that the Internet gives,
it also has its dark face. Since the Internet becomes bigger
and bigger, network security attack threats have become
more serious

C Considering the damage cost caused by the attacks, it is
important to detect attacks as soon as possible. For this
purpose, Network Intrusion Detection Systems (NIDSs)
have been developed

C With the increase in network speed and number and
types of attacks, existing NIDSs, face challenges of
capturing every packet to compare them to malicious
signatures. These challenges will impact on the efficiency
of NIDSs, mainly the performance and accuracy power

C The expected contribution of this research is a new model
that enhances the NIDS  scalability without compromising
detection accuracy
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