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Abstract
Background: Memory management with dynamic allocation one of the most complex problems for software managed environment.
Memory leak problem usually appear with long running information server applications. Materials and Methods: Garbage collectors is
an effective tool to manage memory leak but only when the amount of lost storage is bounded. It has been shown that application
performance  with  garbage  collector  is  highly dependent on the application behavior and resource availability. Meanwhile, the
PageRank algorithm is a widely used scoring function of networks in general and of the World Wide Web graph in particular. Current
approaches rarely considered the application specific methodology to handle the memory management problem. Results:  In this study,
we focused on decreasing the memory leak for large-scale information systems running on servers. An approach proposed to apply
adaptive calling of garbage collector within the methods relevant to memory leak during the application running, where PageRank
algorithm is adjusted to estimate the importance of each method. Conclusion:  Java benchmark tool “DaCapo”  has been used to test
and compare the memory and processing time before and after applying the adjusted algorithm, which showed the memory leak ration
is successfully decreased with minor effect on processing time.
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INTRODUCTION

Memory leaks with large-scale information systems
running on servers devoid to be belongs to operational
configuration, it can easily lead to degradation of system
performance with high potentials for system failure1.

Managed environments enables portable and secure
execution of applications written in high-level programming
languages. Improving and enhancing the performance of
these environment is the insurance to the continued success
of these environments and the programs that they execute.
Managed environments use garbage collection to enable
automatic memory reclamation and memory safety. The
garbage collection must recycle heap memory effectively
without adding significant overhead on the executing
application2.
This study will focus on decreasing the memory leak for

large-scale information systems running on servers.  Keeping
these systems running and avoiding memory problem is very
important especially at the peak of the request hits time.  We
will studying the most relevant points at the systems that
could cause the failure and decrease this probability.
Prior work, explained that application performance with

garbage collected is highly dependent upon the application
behavior with considering the resource availability. So man
and  Krintz2  showed  that  given  a  wide  range  of diverse
garbage collection algorithms, no single system performs best
across applicationsconfigured with different heap sizes.
The goal of most of prior work has been to provide

general-purpose mechanisms that enable high performance
execution across all applications. However, many researchers
find that the performance of a memory management system
(the allocator and the garbage collector) is dependent upon
application behavior and available resources.
That is, no single garbage collection enables the best

performance for all applications with different heap sizes and
the difference in performance can be significant.  Currently,
managed environments enable application tospecify heap
and   GC   configuration   with   different   configurations  of
the execution  environment2.  Recent researches focus on
studying the performance of heap allocation and collection
techniques3-7. Memory leak detection techniques could be
classified as online detection, offline detection and hybrid
methods8.
Bond and McKinley9 an online approach has been

introduced for leak detection, instead of monitoring object
staleness, wholedata structure staleness is identified and
insteadof swapping out the data structure it is reclaimed
(pruned)  altogether.  Sor  et  al.10   presented   an   idea   for  a

statistical approach tomemory leak detection based on
growth analysis.  Maxwell et al.11 an offline approach
presented to analysis the heap dumpsfully or partially to
detect memory leaks. The LeakChaser method that introduced
in Xu  et al.12  used hybrid approach to detect memory by
three-step iterative profiling methodology to find causes of
memory leaks in Java applications.
Meanwhile, the PageRank algorithm is a widely used

scoring  function  of networks in general and of the World
Wide Web graph  in  particular. PageRank considered a link
structure-based algorithm, which gives a rank of importance
of all the pages crawled in the internet by the Googles’s web
crawler. To calculate a PageRank is actually to calculate the
distribution of a transition matrix which is based on the web
graph structure13-15.
The PageRank of a Web page A, denoted by (A), defined

by using the following equation16:

    i

i i

PR (T )
PR A = 1- d + d.

C(T )

where,  PR(Ti)  is   the  PageRank  of  page  Ti  which  has
connection  with  page  A,  C(Ti)  is  the number of outbound
links on page Ti  and d is a damping factor which can be set
between 0 and 1.
In this study, an approach introduced to apply adaptive

calling of garbage collector within the methods relevant to
memory leak during the application running, where PageRank
algorithm has been adjusted to estimate the importance of
each method.

MATERIALS AND METHODS

Ranking  mthods  for adaptive GC calling: This study
describes the approach of adaptive GC calling, starting by the
profiling problem for collecting the methods memory related
information which was solved by enhancing one of the
existing profiles (JP2) to allow collecting and extracting
methods memory information. Moving forward to the
manipulation of the extract memory data to methods calling
matrix and applying the PageRank-like algorithm.
Finally, after reaching the relevant points to apply the

informed calling GC, system should apply this informed calling
adaptively to minimize the effect on the processing time, how
this calling was handled.

Memory aware profiling:  The process of automatic collection
and  presentation  of  data  that  is  representing  the dynamic
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Void main (String[] args) {
for (int j = 0; j <20; j++) {

f(j);
for (int k = 1; k <j/2; k++)

g(k);
h(j);

}
}

Void f(int n) {
while (true) {

if (n<=10) {
h(n/2);
g(n);
n++;

} else {
return;

}
}

int g(int n) {
return n-1;

}

int h(int n) {
if (n%2 = = 0)

return g(n/2);
else

return h(n+1);
}
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Fig. 1: Sample for Java code and the represented CCT

behavior of the program is called profiling17. After profilers
collect and analyze the data, it can be either automatically
feedback to the compiler or present it for the developers. 
Each case has different requirements in designing the
profiler18.  The JVM uses a program dependence graph as the
intermediate data structure when compiling Java bytecodes
to machine code.  When using the compiler in debug mode,
it is providing a textual output of the graph19,20.
Meanwhile, calling context provides a complete picture

about program control flow which represents important
profiling perspective. A calling context represents a sequence
of methods that have been called but have not yet completed.
Calling context provides dynamic metric for profiling like the
number of times a method has been invoked or the CPU time
spent within a method21,22.

Calling Context Tree (CCT)  is a well-known data structure
commonly  used  to  represented  calling context. Each node
in the CCT corresponds to unique calling context and any
dynamic metric can be supported (e.g., CPU time, number of
cache misses). The parent of a CCT node corresponds to the
caller’s context, while the children nodes represent the
callees21. Figure 1  as listed by  Sarimbekov  et  al.23, shows
sample for Java code and the CCT generated after one
execution of method “Main”, each CCT node stores the
number of method invocations (m) and dynamic execution
counts  for  each  basic  block  ([c1,..])  and the bytecode index
(@),  where the method was invoked in the corresponding
calling context.

The JP223,24 is a platform-independent tool for the Java
Virtual Machine to create CCTs with dynamic metrics, such as
the number of method invocations and the execution
statistics at the level of individual basic blocks of code. Also,
JP2 is able to distinguish between multiple call sites in a
method and supports selective profiling, i.e., profiling some
calling  contexts  only.  But it  could  only  extract the data
without analysis or visualize.
The JP2 collect efficiently the calling information between

methods but it ignore the time stamp of the calling and the
memory stat before and after each call. These problem were
solved by modifying the architecture of JP2 to be time and
memory aware to be as in Fig.  2. This modification extends
the produced calling context tree to list for each method the
time stamp of start/end calling. In addition to, the memory
states at method start and end and memory states means the
amount of available, consumed and total memory amounts.

Ranking  methods  approach: To model the activity of the
random web surfer, the PageRank algorithm represents the
link structure of the web as a directed graph. Webpages are
nodes of the graph and links from webpages to other
webpages are edges that show direction of movement.
Although the directed web graph is very large, the PageRank
algorithm can be applied to a directed graph of any size.
The core of the PageRank algorithm involves repeatedly

iterating over the graph  structure until a stable assignment of
importance  estimates  is  obtained.  Same concept will use to
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Fig. 2: Modified architecture of JP2 to be time-memory aware

select method importance estimates. The complexity of the
software methods graph and size required an effective
algorithm while working on computations. PageRank can be
computed for very large graph with limited memory resources.
Transition matrix computed during PageRank algorithm
calculations can be updated partially with no need to start all
the analysis over and that fit with the natural of software
changes.
In  this  study,  the  PageRank algorithm adjusted to solve 

 the   methods   memory  relevance  as  was  described in  the 
 previous   section,  the  methods calling can be represented
in directed  graph  form.  The methods represents the nodes
of  that  graph  and  the  calling  operation represents the
edge. For each edge the consumed memory and time
recorded.
Based on the idea of  PageRank algorithm, the method

will be relevance to memory leaks if other relevance methods
linked to it.
For n methods Mi, I = 1, 2, ..., n the correspondence

method rank is set to ri, I = 1, 2, ..., n. The mathematical
formulation for the recursively defined method rank as in the
following equation:

j ij

i

(r .c )

j L
i i ij

ji

r , i 1, 2, ...., n., N c
N

  




Where, ri is the rank of method Mi, Ni is the total consumed
memory within Mi, Cij is the consumed memory for linking
method  Mi  with  Mj and Li is the set of methods linked to Mi.
The ranking problem is recursive by definition, so it also

can be solve by iteration until find the acceptable solution.
This can be solved by the following algorithm:

1 I = 1, 2, ..., n initialized with non-zeros value(0)
ir ,

2 For k = 1, 2, ... do

a.
 

i

(k)
i ijj L(k 1)

i
j

r .c
r , i 1, 2, ..., n

N
  



b. If tolerance then(k) (k 1)
i ir r  
i. Break

c. End if
3 End for

This representation can be simplified by using matrix
model,  by  defining  the  Q  matrix  where,  Qij  defined as
given equation:

ij
i j

iij

c
 if M  links to MNQ =
0  otherwise

 
 
 
  

By this definition the Q matrix is stochastic matrix which
means EjQij = 1. By finding the eigenvector of matrix Q
corresponding to eigen value equals one that will define the
ranking vector.
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Informed calling of GC: Calling GC within the application in
extensive way will definitely affect the processing time. To
reduce the memory leak and reserve the time of the
processing, calling should be very limited but effective. The
first parameter used to control this informed calling is the
number of methods that should call the GC. After sorting the
ranking vector, only ngc number methods will be used.
As this informed calling is not come free, it was limited to

use only at the time that matter. If system has plenty of
available memory, reducing the memory leak does not matter.
The  calling  will  take effect only when the available memory
is  less  than  the  specific  threshold,  mgc  used to define the
amount of available memory to start calling GC if system reach
to it.
The explicit calling of GC in JVM using JVM system API

does not necessary force calling25, the JVM will consider it as
hint or recommendation for calling. Force calling of GC can be
done by using JVM tool interface26 or by tricking the JVM using
weak reference and checking iterations number tgc.
Empirically, the approach of using weak reference was more
suitable.
The following algorithm propose how to use the

parameters  ngc,  mgc  and tgc  to apply the informed calling of
GC to reduce the memory leaks with minor effect of
processing time:

1. For each ngc method
a. If available memory less than mgc then

i. Create weak object
ii. For k = 1, 2, ..., tgc do

1. Call GC
2. If weak object removed then

a. Break For
3. End If

iii. End For
b. End If

2. End For

RESULTS AND DISCUSSION

Java benchmark “batik” taken from “DaCapo” has been
used to test and compare the memory and processing time
before and after applying the algorithm. This benchmark are
non-trivial real-world open source Java programs under active
development27. Different data sizes (small, default, large) with
different iterations of processing have been used to run this
evaluation.
For the following result these parameters has been used: 

ngc = 3 only top 3 methods have been used to call informed
GC, mgc =  15  informed  GC  will  be  called  if available
memory less that 15% of total memory, tgc = 3  only trying to
call GC 3 times.

Figure 3 shows the result of running batik benchmark
with and without informed GC. Noticing that using informed
GC show effect more when system consume more memory.
Which means that informed GC decrease the amount of
memory leak more efficiently with the enterprise information
systems that consume larger amount of memory.
While, Fig.  4  shows the increasing in the processing time

effect that informed GC causes. About that, noticing that with
larger number of iteration the effect tends to be minor. The
algorithm uses mgc the parameter to control the number of
calling which causes these effects, by adjusting this parameter
empirically can find the best value to do memory leak
decreasing with minor processing time effect.
At  this  study,  we focused on decreasing the memory

leak for large-scale information systems running on servers.
Keeping these systems running and avoiding memory
problem is very important especially at the peak of the request
hits time.
As shown earlier in this section, by studying the most

relevant methods that could cause the failure and explicitly
call the GC, that leads to decrease the failure probability that
could be happened because of memory leaks comparing to
the system without adapted GC calling.
This approach cause minor increasing of the processing

time only when the system reach the threshold of starting the
adaptive calling of GC. Therefore,  system at time of peak of
the requests will take more little time but with less consumed
memory.
Memory leak detection techniques could be classified as

online detection, offline detection and hybrid methods, this
approach here is hybrid approach that detect the memory
leaks by offline analysis and reduce it during online execution.
Unlike the online approaches by Bond and McKinley9 that
actively monitor and interact with the running virtual machine
in order to detect leaking objects or collecting the statistics
during the execution as by Sor et al.10, we used the offline
phase to do the time consuming analysis to avoid imposing
overhead on the running application.
Our approach has the advantage of accessing to run-time

information but11 the analysis the heap dumps as an offline
approach loses that which prevent him from providing
dynamic  solution during the runtime. The LeakChaser 
method   that   introduced   by   Xu   et   al.12   used  hybrid
approach  to  detect  memory  by  three-step iterative profiling 
methodology  to  find  causes  of  memory  leaks in Java 
applications,   however,  the described  implementation was
applicable only to non-generationalgarbage collectors,
because  partial  heap  scans performed  by generational
collectors may produce both false positives and negatives.
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Fig. 3: Memory compare for running batik benchmark with and without informed GC

Fig. 4: Time compare for running batik benchmark with and without informed GC

In this approach, using the methods as unit for memory
analysis instead of scanning all heap allowed us to go with the
explicit calling of GC as change relative to the application with
no need to apply modifications of the JVM and without
changing any implementation logic within the application.
Most of the other approaches tends to detect memory leaks
and provide recommendation to apply changes in the
application implementation logic or do general modifications
on the JVM, which makes it much complex than explicit calling
approach.

CONCLUSION

In this study, an approach proposed to apply adaptive
calling of garbage collector within the methods relevant to
memory leak during the application running, where PageRank
algorithm is adjusted to estimate the importance of each
method. Current approaches rarely considered the application
specific methodology to handle the memory management
problem.
By applying our approach, the memory leak ration is

successfully decreased with minor effect on processing time.
It is an offline approach, which means that the analysis time to

find the relevant methods will not affect the processing time.
This is application specific technique that allow to maximize
the benefits of memory monitoring by limit the conditions of
the running application.
Ranking method using PageRank-like algorithm has great

benefits for easy calculations of relevant methods with the
abilities to cash and update the application result in light
processing form. Moreover, the methods calling matrix is
generic enough to allow applying other graph analysis
algorithms rather than PageRank algorithm.
To continue improving this approach, future work will

consider integrating the GC algorithm with the method
ranking technique. Automating the process of method
analysis by making it part of JVM and adding the autonomous
ability to switching from analysis mode to adaptive GC calling
will be part of the future investigations.
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