

 OPEN ACCESS Research Journal of Information Technology

ISSN 1815-7432
DOI: 10.3923/rjit.2017.32.37

Research Article
Efficient Implementation of Pseudo Random Numbers
1Edla Kumari, 1Bharath Kompelli, 1Reshma Kalicheti, 1Naga Saride, 1Khaled Elleithy and 2Laiali Almazaydeh

1Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT, USA
2Faculty of Information Technology, Al-Hussein Bin Talal University, Ma’an, Jordan

Abstract
Background: Pseudo random number generation is an algorithm for generating a stream of numbers as having the appearance of
randomness. Random numbers are essential for many applications, including simulations, cryptography and random sampling. In this
study, a model of Linear Feedback Shift Register is implemented in Verilog language using Xilinx software. The simulation results
demonstrate that it is possible to generate a perfect random sequence. Materials and Methods: Practically, Verilog language is used in
order to implement the LFSR and generate a random sequence. Verilog has a random number generator within it but it is permitted to
only test benches. In Verilog, some modules will be written such as for flip-flops and multiplexer. In this study, a module naming LFSR is
created using different parameters including clock, reset, load, input/seed, etc. Results: Simulation results show the outputs of the LFSR
in the software. Xilinx ISE design suite system for the simulation of the Verilog code of the LFSR is used. The sequences are generated from
the operations performed by Mux and flip-flop and the feedback too. Conclusion: The LFSR model is implemented in Verilog language
using Xilinx software considering suitable time factor, inputs and clock signals. A perfect random sequences and synthesis of implemented
model are generated.

Key words: Random numbers, pseudo random numbers, entropy, diffusion, bit manipulation

Received: August 26, 2016 Accepted: November 11, 2016 Published: December 15, 2016

Citation: Edla Kumari, Bharath Kompelli, Reshma Kalicheti, Naga Saride, Khaled Elleithy and Laiali Almazaydeh, 2017. Efficient implementation of pseudo
random numbers. Res. J. Inform. Technol., 9: 32-37.

Corresponding Author: Laiali Almazaydeh, Faculty of Information Technology, Al-Hussein Bin Talal University, Ma’an, Jordan

Copyright: © 2017 Edla Kumari et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/rjit.2017.32.37&domain=pdf&date_stamp=2016-12-15

Res. J. Inform. Technol., 9 (1): 32-37, 2017

INTRODUCTION

Pseudo Random Number Generation (PRNG) is one of the
crucial problems of computer science. Its history from
computer infancy onward is documented, for instance, in
Donald Knuth’s classic book1. The PRNG is an algorithm for
generating a stream of numbers that approximate
randomness. Many applications rely on random numbers,
including statistical modeling, electronic games design for
behavior of a computer-controlled character and
cryptography for keys of data encryption2. However, true
random values have two drawbacks. The entropy available is
limited and many applied problems would be awkward if
limited by the accessibility of physical entropy.

A PRNG is needed in order to have a major benefit in
numerous applications. In a parallel program, every thread
must have its own pseudo random sequence and each of this
sequence must be statistically independent of all the others.
If new threads are created dynamically, new PRNGs must be
seeded with the generating string's PRNG as the main
wellspring of entropy. Moreover, PRNGs are efficient, they can
generate many numbers in a short span of time and
deterministic, meaning that a given sequence of numbers can
be emulated at a later stage if the beginning stage in the
sequence is known. The PRNGs are normally likewise
occasional, which means that the sequence will eventually
repeat itself. While periodicity is barely ever an attractive
trademark, modern PRNGs have a period that is so long that it
can be overlooked for most viable purposes. These qualities
make PRNGs suitable for applications where sequence of
numbers is required and where it is helpful that the same
sequence can be replayed easily. Popular examples of such
applications are modeling and simulation applications. The
PRNGs are most certainly not suitable for applications where
it is important that the numbers are truly unusual, for example,
data encryption and gambling.

A PRNG is an algorithm that produces a series of numbers
whose properties inexact the properties of groupings of
random numbers. A PRNG is also called as Deterministic
Random Bit Generator (DRBG). But the output series is not
truly random, as it is totally determined by a nearly small set of
values, called the PRNG's seed (that include random values).
While the series that are closer to truly random can be
generated using hardware random number generators,
PRNG’s are essential in form for their speed in number
generation3,4.

A PRNG combines bitwise logical operation and bitwise
simulation in order to generate the sequence of random
numbers. It starts with a randomly selected input key which
are known as seeds which consists of any combination of

letters (lower or upper) and numbers (0-9). Normally the seeds
can be exchanged between the sender and the receiver
publicly but it would be better if it would be done secretly. For
generation of 64 bits key, the generator needs 8 characters
likewise for 128 bits key the generator needs 16 characters.
These characters will be converted to ASCII codes and the
operations are performed for generation of sequence of
random numbers. Some sequences are also used for the
generation of the next sequence. Mixing of bitwise operation
and simulation serves to avoid purely algebraic and bit
oriented attacks. This generator is used in many applications
as it generates good number of sequences5-8.

This study demonstrated the generation model while
considering many factors which should affect the quality of
generated pseudo random numbers including long period,
uncorrelated sequences, uniformity and efficiency.

MATERIALS AND METHODS

Related works and schemas
Linear Feedback Shift Register (LFSR) in encryption: The use
of LFSR in cryptography has been increasing extensively.
Many algorithms used nowadays rely on LFSR generator.
For example, the cryptographic algorithms in the GSM
mobile-phone system use the concept of LFSRs. An LFSR
comprises of registers which contain sequence of bits and a
feedback function. The main operation which is performed in
the LFSR is exclusive-OR on certain bits in the register.
Performing XOR operation on the bits in generating the
random sequences. This list of bits may be called as "Tap
sequence". The generated sequence is also used for the
generation of the next sequence where feedback function
helps us in doing that. While generating the sequence the
registers will be loaded with non-zero content and then the
implementation computes the XOR operation and generates
the sequences. At present, LFSRs are well suited for the
hardware implementations9.

LFSR as a cipher device: Differentiating the data to its ASCII
value, each character at a time, using a 2^8×8 priority
encoder with 1 byte per character, the 8-bit word is stored in
an 8-bit right shift register M which has a parallel input. Then
a shift control input is brought in with the clock having an
octal word-time signal so that number pulse is same as the
number of bits in the shift register. When the input bits are
moved towards right, a 0-bit enters from the left most register
so that by the time of 8th clock pulse finishes the contents of
8-bit register is reset back to 0. The output mode is in serial out
mode.

33

Res. J. Inform. Technol., 9 (1): 32-37, 2017

XOR

d q d q d q

Clock dff0 dff1 dff2

XOR

1 2 3

XOR

Clock q0 q1 q2

0
1
1
1
0
1
0

0
0
1
1
1
0
1

1
0
0
1
1
1
0

0
1
1
:

0
0
1
:

1
0
0
:

--
1
2
3
4
5
6

7
8
9
:

Initial
value

XOR

Clock q0 q1 q2

0
1
0
1
1
1
0

0
0
1
0
1
1
1

1
0
0
1
0
1
1

0
1
0
:

0
0
1
:

1
0
0
:

--
1
2
3
4
5
6

7
8
9
:

Initial
value

1 2 1 200

Feedback function: The importance of the feedback function
in the LFSR is crucial as it helps in generating the random
sequences10. The operations performed here are very simple
and it generates random sequences by performing few
operations on the 8-bits in the shift register and 3-bit register
(serially in and serially out). After providing the first clock
pulse, the extreme right bit of the register will undergo some
transformations caused by LFSR set-up. Let us consider a 3-bit
register initially set to 000 from left to right be named as A, B
and C. Consider both registers are working under the same
clock pulse or timing sequence. Now the initial output of C is
XORed with the first bit of the 8-bit shift register. Here the
feedback used supplies input to A which is f = ((AB XNOR C)
XOR A).(ABC)'. These operations are performed for 8 clock
pulses and the random sequences are generated.

Solution: The LFSRs are very simple to construct and are very
useful in variety of applications but they are overlooked by
many designers. The LSFR is a simple shift register with a
general feedback. Let us consider an example which gives us
clear understanding how the problems are solved. In following
circuit, which shown in Fig. 1, the bits tapped are bit 0 and 2

where these share a common clock input. Here input is
generated by XOR the tap bits where remaining bits are
standard shift register. The sequences generated are based on
the feedback. Consider two 3-bit XOR based LFSRs with
different tap selections.

Both start with initial value but their sequences rapidly
diverge as clock pulses due to different taps. In some rare
cases LFSR end up cycling round a loop generating a limited
number of values. Here the binary field with n bits can assume
2^n unique values but whereas maximal length LFSR with
n-register bits will generate through (2^n-1) values. This is
due the fact that the LFSR having XOR feedback will not
sequence through the value where all bits are 0 while XNOR
equivalents will not generate sequence through the value
where all bits are 1. This is the way how the random sequences
are generated. Figure 2 shows the table of the sequences
generated for the above example11.

Mathematical model: Based on the exclusive-OR circuits and
shifts of the registers, the LFSR’s are classified. The shifts are
normally based on two sides from left to right and right to left.
Similarly the basis of exclusive-OR operation is classified, the

Fig. 1(a-b): LFSR (a) Circuit and (b) Symbol

Fig. 2: Feedback from 3-bit shift register

34

Res. J. Inform. Technol., 9 (1): 32-37, 2017

C1 C2 C3
Cn-1 CnC0

Qn Qn-1 Qn-2 Q1
Output (PN code)

Q (t+1)1

Q (t+1)n-1

Q (t+1)n-2

Q (t+1)2

Q (t+1)1

...
=

Cn Cn-1 C2 C1

1 0 0 0
000

0
0

0
0

0
1 0

1

1

...

Q (t)n

Q (t)n-1

Q (t)n-2

Q (t)2

Q (t)1

...

Seed (4 bits)
Load (1 bit)

4

Output
(1 bit)

30
1

20
1

10
1

0
1

Q3 Q2
Q1

C3C1C0

Output (PN code)

Fig. 3: An n-bit LFSR

(1)

Fig. 4: A feedback taps

Fig. 5: A 3-bit LFSR

LFSR’s are classified into external exclusive-OR (EEOR) and
internal exclusive-OR (IEOR). Here the mathematical model
that is based on external exclusive-OR circuits and shift
register shifts the bits from right to left is considered. Figure 3
shows an n-bit LFSR.

In the above considered model, the feedback taps vector
[C0,…, Cn] and these are linked with flip-flop’s outputs
Qn, Qn-1,…, Q1 respectively. The state space model of the above
structure can be represented by the following Eq. 1, as shown
in Fig. 4.

In the equation of Fig. 4, LFSR feedback stages are
numbered from C0,…, Cn and those are proceeded in the way
of shifting, i.e., from left to right. Whereas the present state is
represented by Q(t) and the next state by Q(t+1) and the
relation between them was represented above5. This LFSR
is governed by the following equation [Q(t)], [A][Q(t)],
[A]2[Q(t)], [A]3[Q(t)] so on for any non-zero loadings.
Considering any small integer ‘p’ which is the period of
matrix, then [A]p [Q(t)] = [Q(t)] for any non-zero initial vector
[Q (0)]. Based on the property of periodicity of LFSR, [Q(t)] =
[Q (t+p)] = [A]p [Q(t)]. For demonstrating this, a 3-bit LFSR is
considered as an example, as shown in Fig. 5.

Fig. 6: Circuit diagram for LFSR generator module

Table 1: Operation of LFSR
States
--
Q3 Q2 Q1 Comments
1 1 1 Initial
0 1 1
1 0 1
0 1 0
0 0 1
1 0 0
1 1 0
1 1 1 Repeats after a period p = 7

Here, only three feedbacks and neglected one back and
the states of LFSR are shown in the Table 1 where generation
of sequences will be repeating after the period of seven.

RESULTS

Verilog language has been considered to implement the
LFSR and generate a random sequence. Verilog has a random
number generator that is limited only to test benches. In
Verilog some different modules are written such as for
flip- flops and multiplexer. We need to declare some values for
setup time, hold time, delays, etc. In this implementation, a
module LFSR is created using of different parameters
including clock, reset, load, input/seed, etc.

Figure 6, represents the operations performed in the
process of generation of random sequences. The seed, which
is known as input, is considered with only 4 bits and the load
is given to the multiplexers. The output bit comes from the
mux and that bit is given as feedback in the process of
generation of next sequence.

Figure 7a and b, show the outputs of the LFSR. Xilinx ISE
design suite system for the simulation of the Verilog code for
the LFSR is used. Figure 7a is the output window which is
showing the inputs and outputs of the LFSR. The sequences
are generated from the operations performed by Mux and
flip-flop and the feedback too. Figure 7b shows the synthesis
of the program. As the time factor is very important, for
every 50 nsec the state of the clock in our module is reversed.

35

Res. J. Inform. Technol., 9 (1): 32-37, 2017

Fig. 7(a-b): (a) Simulation results output and (b) Synthesis output

DISCUSSION

Many factors affect the quality of the generated pseudo
random numbers. Although LFSR are very simple to construct
and are very useful in variety of applications but it was
overlooked by many designers. Therefore, this study
demonstrated LFSR are very simple to construct and are
very useful in variety of applications. However, other study of
Hazwani et al.12 proposed PRNG circuit consisting of 24-bit
LFSR which has much longer period, in addition, the study by
Bonde and Kale13 required multiple bits, where LFSR will be
extended by utilizing extra time and extra circuitry.

CONCLUSION

The LFSR model is implemented in Verilog language
using Xilinx software with consideration of suitable time
factor, inputs and clock signals. A perfect random
sequences and synthesis of the implemented model are
generated.

SIGNIFICANT STATEMENT

Although generation of perfect pseudo number
sequences is of utmost importance in many applications,
hardware designers have overlooked its importance and
consequently its design. This study demonstrated an
efficient LFSR implementation to generate a perfect
random sequence. The experimental results show that the
LFSR model implementation considering many factors which
should affect the quality of the generated pseudo random
numbers.

REFERENCES

1. Knuth, D.E., 1997. The Art of Computer Programming,
Volume 1: Fundamental Algorithms. 3rd Edn., Addison-
Wesley, Massachusetts, ISBN-13: 978-0201896831, Pages: 672.

2. Hastad, J., R. Impagliazzo, L.A. Levin and M. Luby, 1999.
A pseudorandom generator from any one-way function.
SIAM J. Comput., 28: 1364-1396.

36

 (a)

(b)

Res. J. Inform. Technol., 9 (1): 32-37, 2017

3. Stipcevic, M. and C.K. Koc, 2014. True Random Number
Generators. In: Open Problems in Mathematics and
Computational Science, Koc, C.K. (Ed.)., Springer International
Publishing, Switzerland, ISBN: 978-3-319-10682-3,
pp: 275-315.

4. Fischer, M.J., 2006. Pseudorandom sequence generation.
Yale University. http://zoo.cs.yale.edu/classes/cs467/2006f/
course/handouts/ho15.pdf

5. Maaita, A.A. and H.A.A. Al Sewadi, 2015. Deterministic
random number generator algorithm for cryptosystem
keys. Int. J. Comput. Electr. Automation Control Inform. Eng.,
9: 972-977.

6. Mishra, M. and V.H. Mankar, 2015. Text encryption algorithms
based on pseudo random number generator. Int. J. Comput.
Applic., 111: 1-6.

7. Bagdasar, O.D. and M. Chen, 2014. A horadam-based
pseudo-random number generator. Proceedings of the
UKSim-AMSS 16th International Conference on Computer
Modelling and Simulation, March 26-28, 2014, Cambridge,
pp: 227-231.

8. Anikin, I.V. and K. Alnajjar, 2016. Pseudo-random number
generator based on fuzzy logic. Proceedings of the
International Siberian Conference on Control and
Communications (SIBCON), May 12-14, 2016, Moscow,
pp: 1-4.

9. Jamil, T. and A. Ahmad, 2002. An investigation into the
application of linear feedback shift registers for
steganography. Proceedings of the IEEE SoutheastCon, 2002.
April 5-7, 2002, Columbia, SC, USA., pp: 239-244.

10. Golomb, S.W., 1982. Shift Register Sequences. Aegean Park
Press, Leguna Hills, USA., Pages: 324.

11. Maxfield, C., 2008. Bebop to the Boolean Boogie: An
Unconventional Guide to Electronics. 3rd Edn., Newnes, UK.,
ISBN-13: 978-1856175074, Pages: 568.

12. Hazwani, S., S. Khan, M.U. Siddiqi, K.A.S. Al-Khateeb,
M.H. Habaebi and Z. Shahid, 2014. Randomness analysis of
pseudo random noise generator using 24-bits LFSR.
Proceedings of the 5th International Conference on
Intelligent Systems, Modelling and Simulation, January 27-29,
2014, Langkawi, Malaysia, pp: 772-774.

13. Bonde, V.V. and A.D. Kale, 2015. A review on implementation
of random number generation based on FPGA. Int. J. Sci. Res.,
4: 2749-2753.

37

	Research Journal of Information Technology.pdf
	Page 1

