

# Research Journal of **Medicinal Plant**

ISSN 1819-3455



Research Journal of Medicinal Plant 7 (2): 119-124, 2013 ISSN 1819-3455 / DOI: 10.3923/rjmp.2013.119.124 © 2013 Academic Journals Inc.

# Quantification of Trace Elements in Some Multi-herbal Formulations

D.K. Ray and S. Jena

Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar-751004, India

Corresponding Author: D.K. Ray, Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar-751004, India

### ABSTRACT

Popularity of herbal products is increasing worldwide for control and management of several diseases and disorders. They are studied extensively for their organic macro and micro nutrients. However less emphasis is given to their inorganic counterparts or Trace elements. To evaluate the presence of such inorganic micronutrients or trace elements in some herbal formulations, present study is undertaken. Elemental analysis was carried out by using Particle induced X-ray Emission (PIXE) technique. Four multi-herbal formulations commercially available for control and management of Diabetes mellitus were procured for the present study. Elements like potassium, calcium, vanadium, manganese, iron, copper, zinc, rubidium, strontium have been quantified in these herbal formulations. They are found to contain varied proportions of these elements. Although rubidium and strontium have been detected in these multi-herbal formulations, the role of these elements in management of diabetes mellitus is lacking and needs further detailed investigation. The present study may be helpful for better understanding of the possible curative effect of the trace elements present in the herbal formulations for management of the diabetes mellitus. The PIXE method constitutes a promising analytical tool, which has the potential for routine testing of herbal products.

Key words: Herbal formulation, diabetes mellitus, trace elements, PIXE

# INTRODUCTION

Diabetes Mellitus (DM) has really become a common metabolic disorder in the modern world. Presently the number of diabetics worldwide is 285 million and by the year 2030 it is projected to reach 439 million. The prevalence of DM will be more in the developing countries than in the developed world (Shaw et al., 2010). DM is characterized by hyperglycemia caused due to biochemical alterations of glucose metabolism (Abdelatif et al., 2012). Diabetic patients are categorized either as Type I (T1D) or Type II diabetes (T2D) based on their etiology (ADA, 2004). T1D is a chronic condition resulting from the destruction of the beta-cells in the pancreas. The pathophysiology of T2D involves defects in pancreatic beta-cell function and insulin sensitivity (Lempainen et al., 2012; Rajavashisth et al., 2012). Those with T2D represent 90-95% of all people with diabetes (Dokken, 2012). Maintaining normal glycaemic levels remains a top priority for the effective management of DM and to avoid chronic complications (Nathan et al., 2009).

Several classes of oral and injectable therapies have been available commercially to manage diabetes mellitus. However the treatment of diabetes mellitus is becoming increasingly complex. More than half of DM patients require two or more medications to achieve glycemic control (Bennett et al., 2012). Despite having more options, substantial differences in efficacy and safety of treatments within the same drug class is observed. Some DM patients do not respond to

treatment and remain in poor glycaemic control, may experience drug-related side effects, resistance to the current available drugs after prolonged use and/or develop secondary complications (Vaag and Lund, 2011).

According to World Health Organization (WHO), herbal medicines are being used by about 80% of the world population for the treatment of numerous diseases and disorders (Tiwari and Rao, 2002). In developing countries cure of diseases through herbal medicines is always preferred because of better cultural acceptability, cheaper cost, better compatibility with human body and lesser side effects. In India, many indigenous medicinal plants and their formulations with other plant or plant parts are used in herbal medicines to manage and control diabetes (Grover et al., 2002). Due to the biodiversity of the medicinal plants their active principles differ from one to other, which pertains to their distinct physiological action on human body. The curative property of the herbal medicines is due to pharmacologically active organic compounds and some essential Trace Elements (TE), which can be available to the human body from consumption of herbs and their formulations (Rajurkar and Damame, 1998). To enhance the pharmacological effect many of these herbs are formulated into multi-herbal preparations/formulations. The Multi-herbal Formulations (MHF) are often prescribed for the management of diabetes, while their safety and efficacy in terms of trace element content is yet to be investigated (Yeo et al., 2011). Many chemical elements have narrow range of suitability for humans. At lower concentration they show deficiency symptoms and at higher concentration they exhibit toxicity to the human body. Hence it is of special importance to determine their concentrations in the MHF. The present study was undertaken for the estimation of trace elements in MHF by utilizing PIXE technique.

# MATERIALS AND METHODS

Four samples of MHF, namely Glucolev, Diabet, Niddwin, Glymin, prescribed for the management and control of diabetes are received from Dr. M. Sahoo, Ayurvedic Physician, for the determination of the TE content. These MHF were powdered by using an agate mortar and pestle. Each of the powdered samples was mixed with pure graphite in 1:1 ratio by mass. The mixture is homogenized and pressed in a hydraulic press to prepare thick targets of 13mm diameter and about 2 mm thickness (Ray et al., 2006). In a similar manner thick target of certified reference material (CRM) of NIST-tomato leaves (NIST-1573) from National Institute of Standards and Technology (USA) was prepared and irradiated for quantification and verification of results.

The PIXE measurements were performed at Institute of Physics, Bhubaneswar, India with a 3 MV tandem pelletron accelerator. The thick targets were placed inside a PIXE chamber and irradiated in vacuum (10<sup>-6</sup> torr) with collimated 3 MeV proton beam (Rautray et al., 2007). With respect to the beam direction the sample normal is located at 45° and the Si (Li) detector is at 90°. The characteristic X-rays were detected by a Si (Li) detector with a resolution of 170eV at 5.9 keV energy (Sattar et al., 2012). The spectra were recorded with a PC based Multi Channel Analyzer (MCA), calibrated with <sup>55</sup>Fe X-ray source. The PIXE spectra corresponding to different multi herbal formulations were analyzed by using the GUPIX-2000 software package (Campbell et al., 2000). This software package has provision to convert the X-ray peak intensities into elemental concentrations. Using this software package different elements presents in each MHF and in NIST-tomato leaves were quantified in parts per million (ppm). The present analytical results of the CRM are in good agreement with the NIST certified values.

# RESULTS

The compositions of multi-herbal formulations contain four or more individual plant or plant parts along with some inorganic preparations (Table 1). The PIXE spectrum of multi-herbal

Table 1: Composition of Multi-herbal formulations

| Glucolev (capsule) | Diabet (capsule)        | Niddwin (capsule) | Glymin (tablet) |
|--------------------|-------------------------|-------------------|-----------------|
| Amlaki             | Gymnema sylvestre       | Guduchi           | Pitika          |
| Shilajit           | $Tinospora\ cordifolia$ | Asana             | Jambu           |
| Jasad bhasma       | Asphaltum               | Meshasringi       | Asana           |
| Methika beej       | Yasad bhasm             | Bogunvillia       | Meshasringi     |
| Jambu beej         | $Melia\ azadirachta$    | Asphaltum         | Guduchi         |
| Madhunasini        | Ocimum basilicum        | Gokshura          | Amla            |
| Aswagandha         |                         | Aswagandha        | Haridra         |
|                    |                         | Amlaki            | Silajit-bhasmam |
|                    |                         | Haritaki          |                 |
|                    |                         | Vibhitaki         |                 |
|                    |                         | Kapikatchu        |                 |
|                    |                         | Bala              |                 |

Table 2: Concentration of TE expressed in ppm in Multi-herbal formulations

| Elements | Glucolev | Diabet | Niddwin | Glymin  |
|----------|----------|--------|---------|---------|
| K        | 5794     | 8991   | 7620    | 11118   |
| Ca       | 25839    | 9282   | 23542   | 11433   |
| V        | 8.22     | 12.35  | 23.34   | 7.25    |
| Mn       | 55.32    | 10.21  | 28.09   | 1451.31 |
| Fe       | 569.57   | 150.09 | 391.36  | 52.92   |
| Cu       | 1.175    | 97.53  | 1.31    | 10.05   |
| Zn       | 13.01    | 1272   | 16.26   | 23.25   |
| Rb       | 11.17    | 7.44   | 14.89   | 29.78   |
| Sr       | 60.71    | 24.28  | 36.43   | 56.71   |

formulation Niddwin sample indicated the presence of TE like Vanadium (V), Manganese (Mn), iron (Fe), Copper (Cu), Zinc (Zn), Rubidium (Rb), Strontium (Sr) along with major elements potassium (K) and Calcium (Ca) (Fig. 1). The concentrations of different major and trace elements obtained from analysis of multi-herbal formulations for each element were expressed in parts per million (Table 2). The concentration of the elements potassium and calcium varies from 5794 to 11118 ppm and 9282 to 25839 ppm, respectively. Iron concentration varies in the range 52.92 to 569.57 ppm. Zinc and rubidium are present in the concentrations between 13.01 to 1272 ppm and 7.44 to 29.78 ppm, respectively. The results were the mean value of two independent measurements of replicate samples and the standard deviations are below 10%.

#### DISCUSSION

TE constitute less that 0.01% of the body weight. They play important roles in many metabolic, structural and reproductive tasks in human body (Schumann, 2006). Disrupted homeostasis of TE is observed in diabetic patients. The levels of calcium and zinc in the blood are lower in diabetic patients due to hyper-zincuria, whereas the level of Cu becomes significantly higher (Abou-Seif and Youssef, 2004). Insulin is produced by the beta cells of the pancreatic islets and without insulin, muscle, fat and liver cells cannot transport glucose from the blood to the intracellular space. Zn in the islet cells is involved in the synthesis, storage and secretion of insulin (Chaumer, 1998). Zn deficiency can cause diabetic symptoms like hypsomia, hypogeusia. K, Ca and trace amount of Cr are responsible for the secretion of insulin (Ray et al., 2004). Mn is an essential TE found in all

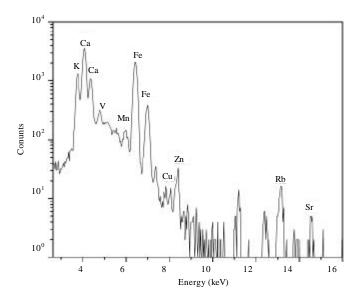



Fig. 1: PIXE spectrum of Niddwin sample

tissues. Inadequate dietary intake of manganese leads to impaired lipid and carbohydrate metabolism (Aschner and Aschner, 2005). Iron overload in the interstitial pancreatic cells leading to insulin deficiency and impaired glucose tolerance (Papanikolaou and Pantopoulos, 2005). Vanadium compounds exhibit insulin-mimetic effect. Together with the inhibition of glyconeogenesis, glycogenolysis and the stimulation of lipogenesis, they stimulate glucose intake into cells and a lowering of the blood glucose level (Rehder, 2003).

The above discussions indicate that the minor elements such as V, Mn, Fe, Cu, Zn along with major elements K and Ca may play significant roles in the management and control of DM. In multi-herbal formulations, trace elements are found to contain in varying proportions. Highest amounts of V, Cu and Sr are present in the herbal drugs Niddwin (23.4 ppm), Diabet (97.5 ppm) and Glucolev (60.7 ppm) respectively. Glymin sample contains potassium (11118.8 ppm) and manganese (1451.3 ppm) in highest amounts. To exhibit pharmacological action they may be in the bio-available form in these multi-herbal formulations. Although rubidium and strontium have been detected in these multi-herbal formulations, the role of these elements in management of diabetes mellitus is lacking and needs further detailed investigation.

# CONCLUSION

The concentrations of TE in multi-herbal formulations were determined by utilizing multi-elemental capacity of PIXE. These MHF were found to contain trace elements like V, Mn, Fe, Cu, Zn, Rb, Sr in different concentrations, which may pertain to their pharmacological action. However their therapeutic potential along with adverse side effects for the management of diabetes needs further detailed investigation. Toxic heavy elements like Cd, Hg are not detected in these samples studied. Thus, the elemental concentration obtained for these MHF using PIXE technique is of great help for both practitioner and the manufacturer with respect to the safety, efficacy and for understanding their possible curative effect. The PIXE method constitutes a promising analytical tool, which has the potential for routine testing of herbal products.

#### ACKNOWLEDGMENT

We wish to express our appreciation to the Ion Beam Laboratory (IBL) staffs. Thanks are due to Dr. M. Sahoo, medical officer (Department of AYUSH), National Rural Health Mission (NRHM), Govt. of India, for providing the Ayurvedic multi-herbal formulations used for management and control of diabetes.

#### REFERENCES

- ADA, 2004. Diagnosis and classification of diabetes mellitus. Diabetes Care, 27: S5-S10.
- Abdelatif, A.M., M.Y. Ibrahim and A.S. Mahmoud, 2012. Antidiabetic Effects of Fenugreek (*Trigonella foenum-graecum*) Seeds in the Domestic Rabbit (*Oryctolagus cuniculus*) Res. J. Med. Plant, 6: 449-455.
- Abou-Seif, M.A. and A.A. Youssef, 2004. Evaluation of some biochemical changes in diabetic patients. Clin. Chim. Acta, 346: 161-170.
- Aschner, J.L. and M. Aschner, 2005. Nutritional aspects of manganese homeostasis. Mol. Aspects Med., 26: 353-362.
- Bennett, W.L., O.A. Odelola, L.M. Wilson, S. Bolen and S. Selvaraj *et al.*, 2012. Evaluation of guideline recommendations on oral medications for type 2 diabetes mellitus: A systematic review. Ann. Intern Med., 156: 27-36.
- Campbell, J.L., T.L. Hopman, J.A. Maxwell and Z. Nejedly, 2000. The Guelph PIXE software package III: Alternative proton database. Nucl. Instr. Methods Phys. Res. B: Beam Inter. Mater. Atoms, 170: 193-204.
- Chaumer, A.B., 1998. Zinc, insulin and diabetes, J. Am. Coll. Nutr., 17: 109-115.
- Dokken, B., 2012. The kidney as a treatment target for type 2 diabetes. Diabetes Spect., 25: 29-36.
- Grover, J.K., S. Yadav and V. Vats, 2002. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol., 81: 81-100.
- Lempainen, J., R. Hermann, R. Veijola, O. Simell, M. Knip and J. Ilonen, 2012. Effect of the *PTPN22* and *INS* risk genotypes on the progression to clinical type 1 diabetes after the initiation of â-cell autoimmunity. Diabetes, 61: 963-966.
- Nathan, D.M., J.B. Buse, M.B. Davidson, E. Ferrannini and R.R. Holman *et al.*, 2009. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy. Diabetes Care, 31: 193-203.
- Papanikolaou, G. and K. Pantopoulos, 2005. Iron metabolism and toxicity. Toxicol. Applied Pharmacol., 202: 199-211.
- Rajavashisth, T.B., M. Shaheen, K.C. Norris, D. Pan, S.K. Sinha, J. Ortega and T.C. Friedman, 2012. Decreased prevalence of diabetes in marijuana users: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) III. BMJ Open, Vol. 2. 10.1136/bmjopen-2011-000494
- Rajurkar, N.S. and M.M. Damame, 1998. Mineral content of medicinal plants used in the treatment of diseases resulting from urinary tract disorders. Applied Radiat. Isotopes, 49: 773-776.
- Rautray, T.R., V. Vijayan and S. Panigrahi, 2007. Analysis of Indian pigment gallstones. Nucl. Instr. Methods Phys. Res. B: Beam Inter. Mater. Atoms, 255: 409-415.
- Ray, D.K., P.K. Nayak, S.R. Panda, T.R. Rautray, V. Vijayan, C.C. Christopher and S. Jena, 2006. Particle induced X-ray emission studies of anti-diabetic medicinal plants. Int. J. PIXE, 16: 47-54.
- Ray, D.K., P.K. Nayak, T.R. Rautray, V. Vijayan and S. Jena, 2004. Elemental analysis of anti-diabetic medicinal plants using energy dispersive X-ray fluorescence technique. Indian J. Phys., 78: 103-105.

# Res. J. Med. Plant, 7 (2): 119-124, 2013

- Rehder, D., 2003. Biological and medicinal aspects of vanadium. Inorg. Chem. Commun., 6: 604-617.
- Sattar, S.A., B.S. Reddy, V.K. Rao, A.S. Pradeep and G.N. Raju *et al.*, 2012. Estimation of trace elements in some anti-epileptic medicinal plants by PIXE. J. Radioanal. Nucl. Chem., 294: 337-341.
- Schumann, K., 2006. Dietary reference intakes for trace elements revisited. J. Trace Elem. Med. Biol., 20: 59-61.
- Shaw, J.E., R.A. Sicree and P.Z. Zimmet, 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 87: 4-14.
- Tiwari, A.K. and J.M. Rao, 2002. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Curr. Sci., 83: 30-38.
- Vaag, A. and S.S. Lund, 2011. Insulin initiation in patients with type 2 diabetes mellitus: Treatment guidelines, clinical evidence and patterns of use of basal versus premixed insulin analogues. Eur. J. Endocrinol., 166: 159-170.
- Yeo, J., Y.M. Kang, S.I. Cho and M.H. Jung, 2011. Effects of a multi-herbal extract on type 2 diabetes. Chin. Med., Vol. 6.