

Research Journal of **Medicinal Plant**

ISSN 1819-3455

Research Journal of Medicinal Plant 7 (2): 92-99, 2013 ISSN 1819-3455 / DOI: 10.3923/rjmp.2013.92.99 © 2013 Academic Journals Inc.

Polymerization Studies of Sickle Cell Hemoglobin Incubated in Aqueous Leaf Extract of *Nicotiana tabacum* Product

P.C. Chikezie, A.R. Akuwudike and C.M. Chikezie Department of Biochemistry, Imo State University, Owerri, Nigeria

Corresponding Author: P.C. Chikezie, Department of Biochemistry, Imo State University, Owerri, Nigeria Tel: +2348038935327

ABSTRACT

In vitro studies have revealed that plant extracts interfered and altered the polymerization profile of deoxygenated sickle cell haemoglobin molecules (deoxyHbS). The present study seeks to ascertain the capacity of aqueous extract of N. tabacum to alter and interfere with polymerization of deoxyHbS molecules in vitro. Spectrophotometric method was used to measure level of sodium metabisulphite induced polymerization of deoxyHbS molecule incubated in aqueous extract of N. tabacum for 180 sec. The polymerization profile of deoxyHbS molecules of control and test samples showed increasing level of polymerization with progression of experimental time. At experimental time t>30 sec, level of polymerization of control sample ranged between 60.9±0.76-100±1.05%, whereas, the test samples ranged in the following corresponding order: $(N. tabacum) = 0.8 \text{ mg } 100 \text{ mL}^{-1}, 65.6\pm0.93-176.0\pm4.26\%, (N. tabacum) = 1.0 \text{ mg } 100 \text{ mL}^{-1},$ $75.7\pm1.07-192.9\pm5.03\%$ and $(N.\ tabacum) = 2.0\ mg\ 100\ mL^{-1},\ 135.9\pm5.04-297.2\pm19.14\%$. Activation of deoxyHbS polymerization by aqueous extract of N. tabacum increased in a concentration dependent manner and duration of incubation. Specifically, at t = 180 sec, (N. tabacum) = 2.0 mg 100 mL⁻¹ caused highest level of activation of deoxyHbS polymerization (197.2±19.14%); an increase in % polymerization in a ratio of 1:4.5 (approx.) compared with $(N.\ tabacum) = 0.8\ mg$ 100 mL⁻¹ at t = 30 sec. The study showed that aqueous extract of N. tabacum exacerbated polymerization of deoxyHbS molecules in a concentration and time dependent manner. Therefore, N. tabacum in the present experimental form did not exhibit the apeutic potentials for management and alleviation of sickling disorder.

Key words: Polymerization, sickle cell haemoglobin, N. tabacum, sodium metabisulphite

INTRODUCTION

Globally, Africa, part of Asia, the Arabian Peninsula and part of Southern Europe has been reported as areas of high incidence the sickle cell gene (β ^S). In Africa, two major regions of very high frequencies of β ^S are in West Africa (Nigeria and Ghana) and Central Africa (Gabon and Zaire) (Wainscoat, 1987; Uzoegwu and Onwurah, 2003). Lower incidence of Sickle Cell Anaemia (SCA) occurs in part of Italy, Greece, the Middle East and India. SCA is a dilapidating disease often associated with organ disorders and complications with a reduced life expectancy (Kutlar, 2005; Frenrtte and Atweh, 2007).

The sickle cell haemoglobin (HbS) variant is caused by a point mutation affecting the coding sequence of the β -globin gene resulting in a substitution of glutamic acid by valine at the sixth position of β -globin chains (Kutlar, 2005; Bianchi *et al.*, 2009). Under low oxygen tension,

deoxyHbS molecules polymerize into microfibrils parallel to each other with concomitant reduced solubility (forms gel) and resultant erythrocyte membrane deformity and damage (Xu et al., 2002). Therapeutic approaches for the treatment and management of SCA disease include induction of fetal hemoglobin expression (Bianchi et al., 2009; Fathallah and Atweh, 2006), bone marrow transplantation (Billings, 1990; Walters et al., 2000) and the use of pharmacological agents that interact either non-covalently or covalently with HbS molecules (Xu et al., 1999; Abdulmalik et al., 2005) to retard or inhibit haemoglobin aggregation and polymerization.

The use of tobacco plant (Nicotiana tabacum) for several purposes has been worldwide for centuries. Cigarettes, in spite of the health risk associated with its usage constitute the largest share of manufactured tobacco products in the world, accounting for 96% of total sales. (Adeniyi et al., 2010). The chemical compositions of N. tabacum leaf extract have been previously reported (Andersen and Kasperbauer, 1973; Siddiqui et al., 2004; Chitra and Sivaranjani, 2012). The prospects of utilization of N. tabacum products for purposes that do not pose health risk are now widely encouraged and advertised (Mugisha-Kamatenesi et al., 2008). There are reports and claims by several authors on the medicinal benefits (Chitra and Sivaranjani, 2012; Nacoulma et al., 2012) and insecticidal activities against several insect species (Isman, 2006; Xue et al., 2010; Farsani et al., 2011) by leaf extracts of N. tabacum. Application of herbal remedies for the management of SCA has been widely reported (Ekeke and Shode, 1985; Kade et al., 2003; Okpuzor et al., 2008; Imaga et al., 2010). In vitro studies have revealed that plant extracts altered the polymerization of deoxyHbS molecules (Imaga et al., 2010; Chikezie, 2011). Therefore, the present study seeks to ascertain the capacity of aqueous extract of N. tabacum to alter and interfere with the polymerization of deoxyHbS molecules in vitro.

MATERIALS AND METHODS

Collection and preparation of *Nicotiana tabacum* leaf extract: Preparation of aqueous extract of *N. tabacum* was according to the methods earlier described by Chikezie and Uwakwe (2011). Twenty-five grams of processed leaves of *N. tabacum* obtained from the popular cigarette brand Benson and Hedges™ were collected in desiccators and allowed to dry for 72 h to become crispy. The dried specimen was ground in ceramic mortar and pestle into fine powder. The pulverized specimen was suspended in 100 mL of distilled water and allowed to stand for 6 h at 37°C. Aqueous extract of *N. tabacum* was obtained by filtration with Whatman No. 2 filter paper. Finally, the extract was concentrated in a rotary evaporator at 50°C and dried in vacuum desiccators. The yield was calculated to be 5.14% (1.29 g; w/w). The extract was finally suspended in 50 mL Phosphate Buffered Saline (PBS) solution osmotically equivalent to 0.9 g 100 mL⁻¹ NaCI (NaCI (9.0 g), Na₂HPO₄·2H₂O (1.71 g) and NaH₂PO₄·2H₂O (0.243 g) 100 mL⁻¹; pH = 7.4) (Ibegbulem and Chikezie, 2012). The extract was kept at 4°C in a refrigerator for at least 24 h before subsequent tests. Concentration equivalents of 0.8, 1.0 and 2.0 mg 100 mL⁻¹ aqueous extracts of *N. tabacum* were used for polymerization studies.

Ethics: The institutional review board of the Department of Biochemistry, Imo State University, Owerri, Nigeria, granted approval for this study and all participants involved signed an informed consent form. This study was in accordance with the ethical principles that have their origins in the Declaration of Helsinki. Individuals drawn were from Imo State University, Owerri and environs. The research protocols were in collaboration with registered and specialized clinics and medical laboratories.

Collection of blood samples/preparation of erythrocyte haemolysate: Five milliliters (5.0 mL) of venous blood obtained from the volunteers by venipuncture was stored in EDTA anticoagulant tubes. Blood samples were from patients attending clinics at the Federal Medical Center (FMC), Imo State University Teaching Hospital (IMSUTH), Orlu, St. John Clinic/Medical Diagnostic Laboratories, Avigram Medical Diagnostic Laboratories and Qualitech Medical Diagnostic Laboratories. These centers are located in Owerri, Imo State, Nigeria.

The erythrocytes were separated from plasma and washed by centrifugation method as described by Tsakiris $et\ al.\ (2005)$ with minor modification according to Pennings $et\ al.\ (1999)$. Blood volume of 4.0 mL was introduced into centrifuge test tubes containing 4.0 mL of buffer solution pH = 7.4:250 mM tris (hydroxyl methyl) amino ethane-HCl (Tris-HCl)/140 mM NaCl/1.0 mM MgCl₂/10 mM glucose and centrifuged at 4000 rpm for 10 min using a centrifuge (B.Bran Scientific and Instrument Company, England). The plasma and buffy coat (supernatant) were carefully removed with Pasteur pipette. This process was repeated until the supernatant became clear. The pelleted erythrocytes were suspended in PBS (pH = 7.4) to obtain approximately 10% haematocrit and stored at 4°C for 24 h. The washed erythrocytes were lysed by freezing/thawing as described by Galbraith and Watts (1980) and Kamher $et\ al.\ (1984)$. The erythrocyte haemolysate was used for polymerization studies.

Polymerization studies: Sodium metabisulfite (Na₂S₂O₅; (BDH, UK)-induced polymerization of HbS molecules was ascertained as described previously by Iwu *et al.* (1988) with minor modification according to Chikezie *et al.* (2010). The underlying principle is that HbS molecules undergo gelation when deprived of oxygen, transiting to deoxyHbS molecules; Na₂S₂O₃ was used as the reductant. The level of polymerization was measured by recording increasing absorbance of the assay mixture with progression of time. A 0.1 mL of HbS haemolysate was introduced into a test tube, followed by 0.5 mL of PBS and 1.0 mL of distilled water. The mixture was transferred into a cuvette and 3.4 mL of 2 g 100 mL⁻¹ aqueous solution of Na₂S₂O₅ was added. The absorbance ($\lambda_{\text{max}} = 700 \text{ nm}$) of the assay mixture was measured with a spectrophotometer (SPECTRONIC 20, Labtech-digital Blood Analyzer®) at every 30 for 180 sec (control assay). This procedure was repeated by substituting distilled water with 1.0 mL of corresponding three increasing concentrations (0.8, 1.0 and 2.0 mg 100 mL⁻¹) of *N. tabacum* aqueous extracts (test assay).

Calculations: Percentage polymerization was calculated according to Chikezie et al. (2010), thus:

Polymerization (%) =
$$\frac{A\frac{t}{c} - 100}{A_c 180 th sec}$$

where, At/c is the Absorbance of test/control assay at time = t s and Ac180th sec is the Absorbance of control assay at the 180th sec.

Cumulative polymerization (%polymerization.sec) was evaluated using the Simpson's Rule. Thus:

$$f(X_1)h_1+f(X_2)h_2+....+f(X_n)h_n$$

Area under the curve (AUC) of the plot of % polymerization versus time (sec) is given by:

AUC (polymerization % sec) =
$$\frac{h}{(2)(y_n + 2y_{n-1} + 2y_{n-2} + 2y_{n-3} + ...)}$$
 (1)

where, h is the time intervals (30 sec) and y is the % polymerization at corresponding time interval. Thus:

AUC (polymerization % sec) =
$$\frac{h}{(2)(y_6 + 2y_5 + 2y_4 + 2y_3 + 2y_2 + 2y_1)}$$
 (2)

RESULTS

The results illustrated in Fig. 1 showed that deoxyHbS molecules of the control and test samples showed increasing level of polymerization with progression of experimental time. At experimental time t>30 sec, level of polymerization of control sample ranged between $60.9\pm0.76\text{-}100\pm1.05\%$, whereas, the test samples ranged in the following corresponding order: (N. tabacum) = $0.8 \text{ mg } 100 \text{ mL}^{-1}$, $65.6\pm0.93\text{-}176.0\pm4.26\%$; (N. tabacum) = $1.0 \text{ mg } 100 \text{ mL}^{-1}$, $75.7\pm1.07\text{-}192.9\pm5.03\%$ and (N. tabacum) = $2.0 \text{ mg } 100 \text{ mL}^{-1}$, $135.9\pm5.04\text{-}297.2\pm19.14\%$. Therefore, the three experimental concentrations of N. tabacum caused activation of deoxyHbS polymerization in the order: (N. tabacum) = $0.8<1.0<2.0 \text{ mg } 100 \text{ mL}^{-1}$. Furthermore, cumulative level of deoxyHbS polymerization was in the order: Control<(N. tabacum) = $0.8<1.0<2.0 \text{ mg } 100 \text{ mL}^{-1}$ (Table 1).

Table 2 showed that activation of deoxyHbS polymerization by aqueous extract of N. tabacum increased in a concentration dependent manner and duration of incubation. Specifically, at t =180 sec, $(N, tabacum) = 2.0 \text{ mg } 100 \text{ mL}^{-1}$ caused highest level of activation of deoxyHbS polymerization (197.2±19.14%). The value represented an increase of %polymerization in a ratio of 1: 4.5 (approx.) compared with $(N, tabacum) = 0.8 \text{ mg } 100 \text{ mL}^{-1}$ at t = 30 sec.

When t>30 sec, deoxyHbS incubated in aqueous extract $(N.\ tabacum) = 2.0\ \text{mg}\ 100\ \text{mL}^{-1}$ exhibited %polymerization>100%. Likewise, %polymerization>100% in the presence of 0.8 and 1.0 mg 100 mL⁻¹ of $N.\ tabacum$ occurred when t>60 and t>30 sec, respectively.

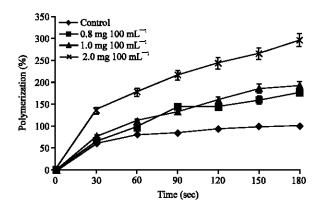


Fig. 1: Levels of DeoxyHbS polymerization of control and in presence of N. tabacum with time

Table 1: Cumulative level of polymerization of deoxyHbS within experimental t = 180 sec

(N. tabacum) mg 100 mL ⁻¹	Control	0.8	1.0	2.0
AUC (% polymerization.sec)×10 ³	13.2	20.0	21.3	52.0

AUC: Area under the curve

Table 2: Activation of DeoxyHbS polymerization in the presence aqueous extracts of N. tabacum within intervals of t = 30 sec

	Percentage activation of deoxyHbS polymerization						
Time (sec)/($N.\ tobacum$) mg 100 mL $^{-1}$	30	60	90	120	150	180	
0.8	4.7±0.93	17.5±1.64	60.3±2.15	50.5±2.03	60.7±3.14	76.0±4.26	
1.0	14.8±1.07	30.6±2.08	49.5±3.15	65.3±4.04	86.6±4.16	92.9±5.03	
2.0	75.0±5.04	97.6±9.04	133.0±10.04	150.1 ± 17.04	167.1±19.01	197.2±19.14	

Values are Means \pm SD of six (n = 6) determinations

DISCUSSION

The nature and mode of interaction between biochemical agents and contact points of deoxyHbS molecules, in addition to erythrocyte membrane structural components are crucial determining factors in the capability of these agents to retard/inhibit polymerization of deoxyHbS molecules, to alleviate and prevent erythrocyte sickling disorders (Oyewole et al., 2008; Chikezie, 2011; Chikezie and Uwakwe, 2011; Ibegbulem et al., 2011). Contrary to reports by previous authors and researchers on the anti-polymerization (Imaga et al., 2010; Chikezie, 2011) and claims of anti-sickling potencies (Ekeke and Shode, 1985; Kade et al., 2003; Okpuzor et al., 2008; Imaga et al., 2010; Ibegbulem et al., 2011) of plant extracts, the present report showed that aqueous extract of N. tabacum exacerbated polymerization of deoxyHbS molecules. Chitra and Sivaranjani (2012) have previously reported that processed N. tabacum (leaf powder) was devoid of flavonoids and terpenoids. These two phytochemicals have been implicated in inhibiting polymerization of deoxyHbS molecules and by extension exhibited anti-sickling activity on human HbSS erythrocytes in vitro (Fall et al., 1999; Ibegbulem et al., 2011). However, it is worthwhile to note that the biologic action of N. tabacum on HbS molecules reported here and the capacity plant extracts to alter erythrocytes physiochemical properties is an additive effect of combination of the plant components (Mikstacka et al., 2010).

Haemoglobin polymerization and subsequent sickling of erythrocytes is favored when HbS molecules are deoxygenated (Martin, 1983; Poillon et al., 1998). In the present in vitro study, the aggravation of polymerization of deoxyHbS molecules by the three experimental concentrations of N. tabacum was an obvious reflection of the capability of the plant extract to act in synergy with the hypoxemic agent (Na₂S₂O_{θ}), thereby facilitating more rapid rate of polymerization of HbS molecules compared with the control assay (Fig. 1). Conversely, chemical compounds and phytochemicals that serve to stabilize the R-state of HbS molecules with resulting increase oxygen/haemoglobin affinity will cause reduction in the rate and degree of HbS polymerization (Oyewole et al., 2008; Chikezie, 2011).

CONCLUSION

Aqueous extracts of *N. tabacum* in the present experimental form did not demonstrate R-state stabilizing property *in vitro* and therefore, did not exhibit therapeutic potentials for the management and alleviation of sickling disorder.

REFERENCES

Abdulmalik, O., M.K. Safo, Q. Chen, J. Yang and C. Brugnara *et al.*, 2005. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol., 128: 552-561.

- Adeniyi, P.A.O., O.K. Ghazal, A.A. Musa and E.A. Caxton-Martins, 2010. The Neurobehavioural Effects of Smoke and Ethanolic Extract of *Nicotiana tabacum* Leaves Exposure in Mice Res. J. Anim. Sci., 4: 99-102.
- Andersen, R. and M.J. Kasperbauer, 1973. Chemical composition of tobacco leaves altered by near-ultraviolet and intensity of visible light. Plant Physiol., 51: 723-726.
- Bianchi, N., C. Zuccato, I. Lampronti, M. Borgatti and R. Gambari, 2009. Fetal hemoglobin inducers from the natural world: A novel approach for identification of drugs for the treatment of β-thalassemia and sickle-cell anemia. Evid. Based Complement Alternat. Med., 6: 141-151.
- Billings, F.T., 1990. Treatment of sickle cell anemia with bone marrow transplantation-pros and cons. Trans. Am. Clin. Climatol. Assoc., 101: 8-20.
- Chikezie, P.C. and A.A. Uwakwe, 2011. Membrane stability of sickle erythrocytes incubated in extracts of three medicinal plants: *Anacardium occidentale*, *Psidium guajava* and *Terminalia catappa*. Pharm. Mag., 7: 121-125.
- Chikezie, P.C., 2011. Sodium metabisulfite-induced polymerization of sickle cell hemoglobin incubated in the extracts of three medicinal plants (Anacardium occidentale, Psidium guajava and Terminalia catappa). Pharmacogn. Mag., 7: 126-132.
- Chikezie, P.C., C.M. Chikezie and P.I. Amaragbulem, 2010. Effect of antimalarial drugs on polymerization of sickle cell hemoglobin (HbS). Turk. J. Biochem., 35: 14-44.
- Chitra, S. and K. Sivaranjani, 2012. A comparative phytochemical analysis of tobacco and its natural extract- an eccentric approach. Int. J. Pharm. Pharm. Sci., 4: 1-2.
- Ekeke, G.I. and F.O. Shode, 1985. The reversion of sickled cells by *Cajanus cajan*. Planta Med., 6: 504-507.
- Fall, A.B., R. Vanhaelen-Fastre, M. Vamhaelen, I. Lo, M. Toppet, A. Ferter and P. Fondu, 1999. In vitro antisickling activity of a rearranged limonoid isolated from Khaya senegalensis. Planta Med., 65: 209-212.
- Farsani, N.S., A.A. Zamani, S. Abbasi and K. Kheradmand, 2011. Insecticidal effects of two plant aqueous extracts against second instar larvae of *Lycoriella Auripila* (Diptera: Sciaridae). World Acad. Sci. Eng. Technol., 58: 439-441.
- Fathallah, H. and G.F. Atweh, 2006. DNA hypomethylation therapy for hemoglobin disorders: Molecular mechanisms and clinical applications. Blood Rev., 20: 227-234.
- Frenrtte, P.S. and G.F. Atweh, 2007. Sickle cell disease: Old discoveries, new concepts and future promise. J. Clin. Invest., 117: 850-858.
- Galbraith, D.A. and D.C. Watts, 1980. Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll™/Triosil™ gradients: Comparison of normal human and patients with Duchenne muscular dystrophy. Biochem. J., 191: 63-70.
- Ibegbulem, C.O., E.U. Eyong and E.U. Essien, 2011. Polymerization inhibition activity of *Raphia hookeri* palm sap and its effect on osmotic fragility of sickle cell red blood cells. J. Med. Plants Res., 5: 4212-4217.
- Ibegbulem, C.O. and P.C. Chikezie, 2012. Serum lipid profile of rats (*Rattus norvegicus*) fed with palm oil and palm kernel oil-containing diets. Asian J. Biochem., 7: 46-53.
- Imaga, N.O.A., G.O. Gbenle, V.I. Okochi, S.O. Adenekan and S.O. Edeoghon *et al.*, 2010. Antisickling and toxicological profiles of leaf and stem of *Parquetina nigrescens L. J. Med. Plants Res.*, 4: 639-643.

- Isman, M.B., 2006. Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol., 51: 45-66.
- Iwu, M.M., A.O. Igboko, H. Onwubiko and U.E. Ndu, 1988. Effect of cajaminose from *Cajanus cajan* on gelation and oxygen affinity of sickle cell haemoglobin. J. Ethnopharmacol., 20: 99-104.
- Kade, I.J., O.O. Kotila, A.O. Ayeleso, A.A. Olaleye and T.L. Olawoye, 2003. Antisickling properties of *Parquetina nigrescens*. Biomed. Res., 14: 185-188.
- Kamher, E., A. Poyiagi and G. Delikonstantinos, 1984. Modifications in the activities of membrane-bound enzymes during *in vivo* ageing of human and rabbit erythrocytes. Comp. Biochem. Physiol. B: Compara. Biochem., 77: 95-99.
- Kutlar, A., 2005. Sickle cell disease: a multigenic perspective of a single-gene disorder. Med. Princ. Pract., 14: 15-19.
- Martin, D.W., 1983. Structure and Function of a Protein-Haemoglobin. In: Harper?s Review of Biochemistry, Martin, D.W., P.A. Mayes and V.W. Rodwell (Eds.). 9th Edn., Lange Medical Publications, California, USA.
- Mikstacka, R., A.M. Rimando and E. Ignatowicz, 2010. Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes *in vitro*. Plant Foods Hum. Nutr., 65: 57-63.
- Mugisha-Kamatenesi, M., A.L. Deng, J.O. Ogendo, E.O. Omolo and M.J. Mihale *et al.*, 2008. Indigenous knowledge of field insect pests and their management around lake Victoria basin in Uganda. Afr. J. Environ. Sci. Technol., 2: 242-248.
- Nacoulma, A.P., M. Compaore, M. de Lorenzi, M. Kiendrebeogo and O.G. Nacoulma, 2012. *In vitro* Antioxidant and anti-inflammatory activities of extracts from *Nicotiana tabacum* L. (Solanaceae) leafy galls induced by *Rhodococcus fascians*. J. Phytopathol., 160: 617-621.
- Okpuzor, J., O. Adebesin, H. Ogbunugafor and I. Amadi, 2008. The potential of medicinal plants in sickle cell disease control: A review. Int. J. Biomed. Health Sci., 4: 47-55.
- Oyewole, O.I., S.O. Malomo and J.O. Adebayo, 2008. Comparative studies on antisickling properties of thiocyanate, tellurite and hydroxyurea. Pak. J. Med. Sci., 24: 18-22.
- Pennings, H.J., P.J. Borm, C.T. Evelo and E.F. Wouters, 1999. Changes in levels of catalase and glutathione in erythrocytes of patients with stable asthma, treated with beclomethasone dipropionate. Eur. Respir. J., 13: 1260-1266.
- Poillon, W.N., B.C. Kim and O. Castro, 1998. Intracellular hemoglobin S polymerization and the clinical severity of sickle cell anemia. Blood, 91: 1777-1783.
- Siddiqui, M.H., F.C. Oad and L. Kumar, 2004. Growth and chemical composition of tobacco *Nicotiana tabacum* L. under different seedling height. Asian J. Plant Sci., 3: 251-253.
- Tsakiris, S., A. Giannoulia-Karantana, I. Simintzi and K.H. Schulpis, 2005. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity. Pharmacol. Res., 53: 1-5.
- Uzoegwu, P.N. and A.E. Onwurah, 2003. Correlation of lipid peroxidation index with sickle haemoglobin concentrations in malaria-positive and negative statuses of AA, AS and SS individuals from the University of Nigeria, Nsukka community. Bio. Res., 1: 97-114.
- Wainscoat, J.S., 1987. The origin of mutant β -globin genes in human populations. Acta. Haematol., 78: 154-158.

Res. J. Med. Plant, 7 (2): 92-99, 2013

- Walters, M.C., R. Storb, M. Patience, W. Leisenring and T. Taylor *et al.*, 2000. Impact of bone marrow transplantation for symptomatic sickle cell disease: An interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood, 95: 1918-1924.
- Xu, A.S., R.J. Labotka and R.E. London, 1999. Acetylation of human hemoglobin by methyl acetylphosphate. Evidence of broad regio-selectivity revealed by NMR studies. J. Biol. Chem., 274: 26629-26632.
- Xu, X., V.L. Lockamy, K. Chen, Z. Huang and H. Shields *et al.*, 2002. Effects of iron nitrosylation on sickle cell hemoglobin solubility. J. Biol. Chem., 277: 36787-36792.
- Xue, M., Y.H. Pang, H.T. Wang, Q.L. Li and T.X. Liu, 2010. Effects of four host plants on biology and food utilization of the cutworm, *Spodoptera litura*. J. Insect Sci., 10: 1-14.