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Abstract: In this study, the equation needed for the formal treatment of the scattering
problems in the light of the Dyson’s equation, which is a reduced form of the more complex
Lippmann-Schwinger equation written in terms of the total Green function has been
developed. This was achieved by the combination of the boundary conditions and scattering
potentials and the combination of non-overlapping scattering potentials within the context
of the scattering theory to obtain the transition matrix, which is the most important
parameter in scattering problems due to its direct relation with the scattering cross section.
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INTRODUCTION

Quantum scattering has been an important subject of study since the carly days of quantum
mechanics. It plays a vital role in broadening our perception of the forees and interactions of particles
in microscopic world and provides us with a convenient framework for the solution of variety of
problems. Though, we have a sound understanding and instinct for simple scattering problems, such
as single channel scattering, we carmot precisely say the same for more general scattering problems.
There have been many attempts to generalize scattering theory to deal with more complicated cases.
However, the literature in this field, though vast, is highly implicit and not constructive (Omnes, 1994,
Adam, 1998; Yoav et al., 1998).

In its phenomenological form, scattering can best be appreciated if we look at it as a transition
process from an initial unperturbed state to perturbed state due to small interaction (Eugen, 2003).

In this study, the Lippmann-Schwinger equation will be introduced which will be recast in the
more formal form of the Dyson’s equation suitable for proper treatment of any scattering process with
the Green function as a key parameter in solving the Schrodinger equation ideal for scattering theory.

THEORETICAL FRAMEWORK

Basic Formulation

Quantum mechanically, the collision of two (spinless) particles in the centre-of-mass coordinate
system can be recast into problem of a particle of mass p (where p is the reduced mass) in a fixed
potential V (1). The Hamiltonian describing this relative motion (in a field of single scatterer) is:

H=H, + V() (1)

ipr2

where, H, is the unperturbed Hamiltonian _ PE andv {r) = interaction potential between the two
2u

particles (r = 1,-1,) (Leonard, 1955; Umahi and Ekuma, 2007).
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The wave function for the scattered particle with energy E>0 can be obtained by solving the
steady state Schrédinger equation:

V+EK)¥kn=Uo¥&n (2)

— E . K is the wave vector with direction parallel to the incident wave
2

2u .3
where, (1) = ?V(ry K
(Umahi and Ekuma, 2007; Davydov, 1965). Assuming a potential of shorter range than the Coulomb
potential, then V (1) ~ 0 faster than 1/r asr ~ «; then a special solution of (2} has the asymptotic form:

6(r),,, >N {exPik.r +£,(0.9) expikr -
T

where, the first term is the incident wave vector and the second term, the outgoing spherical wave
vector (Hong-Jun, 1999). Let us adopt a perturbation approach of the form:
¥k, r)=expikr+ v (1) (1)
where, v (1), the scattered wave is the small perturbation term. Using (4) in (2), we have that
(VP+KH v =U () expikr +U D v () (5)
A consequence of the assumed smallness of v () as compared to exp ik.r suggests that the second
term on the right hand side of {5) will evidently be small enough to be neglected. Hence, we solve the
inhomogeneous equation

{(V?+ EKHuin)=U (1) expikr {6)

where the right hand side is known precisely. A sufficient criterion for the validity of our solution is
that:

‘U(r)| < ‘eikr =1, vt (N

Hence, we wnte down the solution of (6) by the Gresn function method as:
q}(k,r):¢(k,r)+IGO(k,r,r')U(r')qJ(k,r’)dr’ (8
where, G, (k. 1, 1) is the free Green function satisfying the conditions:
V+K)¢ (k,)=0 (9a)
V+KYG, (k=3 (T-10 (9b)
Choice of Green Function

The Green function plays a vital role in trying to solve (9b), since the inhomogeneous equation
is an influence function of infinite space (Fayyazuddin and Riazuddin, 1990; Ni ad Chew, 2002).
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Hence, we expand the delta function as:

‘ 1Y : ) : 10
3(r—r )_{E] jexp{1K.(rfr)}dK 10
But the Fourier expansion for G, (k, 1, 1) is
LY an
G (kr,r')=| — k.1 iK.(r—1")dK'
)= ] fe ik 1)
where g, (K1) = exp (-ik'x') . Hence, we obtain
0 kzier

exp[lk rfr)} , 12
G, (krr')= (211] .‘.71(2 o dK (12

PROTOTYPE SCATTERING PROCESS

A simple scattering process which forms the basis of more complex processes of Hamiltonian H
has the solution of its equation of motion (in interaction picture) in terms of the eigenstates of H, given

by:

wi(t)) = )| T(t to )[s) sl wit, ) (13)

But basically, in scattering problems, the transition amplitude is the sought parameter of interest
with equation of motion:

1oyt

syav (14)

(K|T(et,)

(n| (.t )ls

i
s} =8, ——E(k‘V‘n)
fin a
From (12), assuming an initial state | ¥ (t,)) to represent a freely moving wave packet towards
the interaction region, we can assume the transition matrix element (k ‘ T (t’tu )|s> between incident

state, s att - — « and a scattered state, k at - +« with recourse to the first order perturbation:

(k[T(t.t,)

: t
s)=8,. i(k\ws) [t (15)

tD

to obtain the transition matrix as:

{k|T(t.t

. t
1 o e
=§, - -T_[emdt (16)
ks h ks£
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provided |t‘ < (1/L). where 1/ measures approximately the time interval of an impact between the
wave packet and the scatterer, Ty, is the transition matrix element. Assuming (14) is the solution of

(12), then, if the solution exists, integrating (14) (as { — 0; t, — - «: e = 0) gives:

- T e1mkst+u’_t
k|T(t,~ =8, (17
( ‘ ( OO)|S> s T h(_(’)ks +iC)
However, as t ~ +oo and { ~ 0, provided that |t‘ < (1/£), we establish that the S-matrix and the

transition matrix is related by:
Si = (k| T(+o0,—o0)[s} = &, — 2ni8(E, —E,) T, (18)

Using (17) in (14), we obtain (provided that |t] < (1/£) at { t =0) that

- 1 {k|V|n)T,, (19)
T, = (k| V]s)+ o) P

Equation (19) is valid only if the stationary state has a quasi-continuum energy states of very
close value, close enough to the energy of the initial state E_. This is however not a problem as such
cases are predominant in scattering processes where E, = E,. Putting (19) in the needed frame for the
discussion of formal scattering theory, we define in Hilbert space set of vectors | (+) by the

homogeneous equation: W
= (v w0l )= (v v 20)
Using (20} in (19), we obtain
o (wnangﬂ)
T e e
=W, + Em\v [(%:Vwﬁ*)ﬂ
Equation 21 is known as the Lippmann-Schwinger equation with operator form:
WO (B, ) =, + GO(E, ) vy, 22)

A vital point to note in handling (21) is in the limit { — 0, it is clearly noted that an
inhomogeneous equation:

(Es —H, )W@ _ V(r)wm (23a)
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is established depicting that IIJ(+) is an eigenspace of H=H, + V with corresponding eigenvalue, E,

which is also the eigenvalue of H, (Fayyazuddin and Riazuddin, 1990; Omnes, 1994). Hence, rewrite
in its formal form taking cognizance of H as:

(B, ~H, - v(r))yl” = 8(r—r) (23b)
RIGOROUS T-MATRIX ELEMENT

Taking into account the correct boundary condition of the outgoing wave vector, the Lippmann-
Schwinger (L-S) Eq. 21 can be written in terms of the free Green function as:

3
WE+) _ (2?[)5 edcr n J‘G£+) (1" I">V(I")LU£+) (l"r)dl" (24&)
with an operator form:
N S (24b)
T E, - H, +ikt

which is the fundamental problem we dare to solve in scattering theory as its solution is used to
determine the transition matrix which is directly related to the cross section.
Since generally, the solution of the nonhomogeneous Eq. 23 has a solution of the form:

Wi =w, + G (E, )Vl (252)

where G' (E,) is the given solution of the operator equation:

(E.-1,)C'(E.)=1-P (25b)

H

Now, defining the total Green function G™ {r]1'}, a consequence of the potential interaction as a
solution of (23) with a particular operator form:

which permits the solution of (25a) to be:

0 = JGO Gl V(. ()0 @

Henee, the difficulty in establishing the rigorous solution of the L-S equation is reduced to finding
the total Green function, G {r|1") of the scattering system. Rewriting (23b) and making use of the free
Green function ), the formal solution:

r’>+IG£*) (r

r")V(r”)GM(r”

r’> =g (r

[}

r'> dr’ (28)
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is obtained which in its present form is known as the Dyson’s equation with operator form:
G =g 1 gHygh 29

The advantage of the Dyson’s equation in dealing with scattering problems over the L-S equation
is its obvious independent of the initial boundary condition of the scattering process (Ni and Chen,
2002). Hence, more adequate for discussing most rigorous theoretical scattering phenomena e.g., the
Levinson theorem.

Recalling (24b), we note in particular that it has a formal solution of the form:

I, 1 v (30)
L e e S

a consequence of WH given in terms of the known state ¥,. Let the transition matrix be defined as

T with matrix element:

1
T =(w . Vy)+|ly v— Y (31
s (Wk Ws) [Wk E—f+ifC WSJ

which enables the scattering cross section | Ty,|* in principle for any scattering process to be obtained

directly from (31). Butin practice, since we know nothing about the eigenvalues of H {unless in cases

where it has already been specified), the effect of %

E —H, +ikl
discrepancy, we resort to approximation method which is conveniently achieved by introducing the
Green’s (resolvent) operator:

is not always known. To resolve this

d(E,) = 1 (32a)
Y B, -H +ikL
\ 1
¢E, )= : (32b)
E,-H+ik(
to obtain from (30) that:
lIJ£+) =y + G£+)(Es )sz (33a)
with a formal solution:
lIJ£+) —y + g(+) (Es )sz (33b)

Using the identity: 1/A-1/B=1/B (B-A) l/A; where A= E_ - H+i#A{ ; B=E_— H, +iA{ , we obtain:

$(E) =G (B,)+ G (B ) VEI(E,) S

o
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which is solved using perturbative expansion to obtain:

(BN =6Y (8, )+ 6 (B V6 (E)+ cY(E, ) v (B

o o

el (B)e - 69

H

such that:
Wi (B,) =y, + GY(E )y, + GY(E VG (E, )y, +--- (36)

The formal solution (30) depicts the orthogonality of the scattering states, hence, we obtain from
the implicit Eq. 23b that:

(‘IJH,IIJE_)) =5, (37a)
analogous to:

IR am

which is valid only when the eigenvalues of H and H, is quasi-continuous (Eugen, 2003).
Consequently, due to the presence of the interaction potential V, discrete eigenvalues of bound states
may be produced that has no counterpart in the solutions of (32a) in the Hamiltonian of the
unperturbed spectrum H, which are part of the spectrum of the perturbed Hamiltonian, H,. Again,
these bound states have energies lower than that in the scattering process and as such, said to be
orthogonal to the scattering state, hence must be added to W(+) or WH to complete the set of the

H H

eigenvectors as:

Z‘é(+)><é(+)

4

+ > |B}{B|=1 (38)

where |[B®) is the bound states (Fayyazuddin and Riazuddin, 1999).

CONCLUSIONS

We have in this study presented the rigorous solution of the quantum scattering theory. It was
noted that in scattering problems, the transition amplitude (and the transition matrix) are the most
sought parameter in resolving scattering problems because of their direct relation with the cross section.
It was established for a quasi-continuum scattering processes that the complexity of finding the
solution of the Lippmann-Schwinger equation can be reduced to finding the total Green function for
such process normally for convenience, recast in the more appropriate Dyson’s equation that has the
advantage of being independent of the initial boundary conditions of the scattering process and
obtained the transition matrix as:

1
T, =(w.Vy )+ y,V— Vs,
o= (v V) {% E -1 +ikC WJ
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