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Abstract: This study considers the effect of the defects on the electronic conductance
properties in Binomially Tailored Quantum Wires (BTQW), in which each Dirac delta
finction's potential strength have been weight on the binomial distribution law. A single fiee-
clectron channel is incident on the structure and the scattering of electrons is solely from the
geometric nature of the problem. We found that this novel structure has a good defect
tolerance within £5% or more for the following defects: single strength defect, dislocation
defect, or both defects. Finally, we found this structure has somehow good tolerance for
flipped order of the delta potential and missing Dirac delta potential from the binommial
pattern.
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INTRODUCTION

Electronic conductance behavior in one dimensional periodic structure, like a finite series of Dirac
delta function potential, is an important subject in condensed matter after the major advances in nano-
technology and micro-fabrications. Quantum wires are one dimensional mesoscopic device, in which
the electrons can transport coherently across the whole system with negligible inelastic scattering
(Sprung ef af., 1993; Singha Deo and Jayannavar, 1994). The recent progress in modern crystal growth
techniques such as Molecular Beam Epitaxy (MBE) and the Metal-Organic Chemical Vapor
Deposition (MOCVD), has demonstrated that we can grow semiconductor substrate with monolayer
precision. These advances make it possible to confine electrons within a lateral extent of 100 nm or less
resulting one dimensional quantum wave-guide. In this wave guide, the electron transport can be
considered ballistic or quasiballistic and the electron-electron scattering and the electron-phonon
interaction can be neglected if the temperature is low enough. So, the phase-coherence length become
large enough compared with the device dimension. Therefore, the electron transport properties solely
depend on the geometrical structure of the problem in hand. Recently, the electronic conductances in
a series of Dirac delta function potential grasp many researches interest (Sprung er af., 2008,
Ashour et al., 2006, Martorell et af., 2004; Fayad et al., 2001, Jin ef al., 1999; Bolton-Heaton ef al.,
1999; Ferry and Goodnick, 1999). The researcher used different methods to study the electronic
conductance through quantum wires and rings (Midgley and Wanc, 2000; Tachibana and Totsuji, 1996,
Macucei ef af., 1995; Sprung ef al., 1993; Takagaki and Ferry, 1992a, b).

Recently, Ashour et al. (2006) has proposed a novel structure which is the Binomially Tailored
Waveguide Quantum Wires (BTQW), in which each Dirac's Delta function potential strength has been
weighted on the binomial distribution law. In this study, we study the defects effect on the electronic
conductance on the novel structure proposed by Ashour ef al. (2006).
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TRANSMISSION THROUGH PERIODIC STRUCTURE

Here, let us consider a finite periodic structure of Dirac delta function potential (Dirac Comb).
Also, we have assumed that the structure is narrow enough so that just single channel of electrons can
be considered. In this treatment, we assume the temperature is low enough to ignore the electron-
clectron interaction and electron-phonon interaction. We assumed the scattering of electrons mainly
form the geometrical structure of the potential. The potential can be written as:

V(X):iUJB(X—XJ) (1)

j=1

where, U; and x represent the strength and the position of the jth delta function respectively and N
is the mumber of the Dirac delta functions in Dirac Comb. The distance between the adjacent barriers
are given by d = x,,-x. The Schrddinger wave equationin one dimension can be written as:

) v syw () - Bui) @

where, V(x) is the periodic potential given by Eq. 1, m* is the electron effective mass, which is
considered approximately constant over the interaction range. The solution of Schrodinger
wave equation for single Delta finction potential can be found in literature and also the transfer matrix
formulism (Kostyrko, 2000; Sheng and Xia, 1996; Wu and Sprung, 1994; Wu et af., 1991,
Merzbacher, 1997). The transfer matrix for periodic structure has been used also to study the
transmission of electron through Comb structure (Ashour e# of., 2006; Fayad et ai., 2001; Kostyrko,
2000; Sheng and Xia, 1996; Wu et @l., 1991). In the following, we are going to outline the matrix
transfer matrix method and we are closely following the references (Landau and Lifshitz, 1981). To

derive the transfer matrix for the jth Delta function potential, we express the electron wave function
in the leads, where the potential is zero, as:

y, ()= Ae™ + Be™ (3)
for the leftlead (x_,<x<x) and

Yy (x)=Ce™ + De™ €
for the right lead (x<x<x.,).

Thus k=+2me/# and the wave amplitudes on either side of the j-th Dirac delta fimetion after
imposing the boundary conditions satisfies,

A A
i+l i
-T (5
[Bw J ’ [BJ
In this expression T; is the transfer matrix,

T [ 1-ip iBez“"‘J] 6)
1

] -B621kx] 1 + lﬁ
Thus { is v./2k, where vy, is 2m*U,/m?
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Fig. 1: Conductance spectrum G in the units of 2eh as a function of kd/m for a sequence of Dirac
delta function potential with N = 10. The strength of the potential here is Q= 0.2. Notice that
the number of ripples in the allowed band is N-1

The transfer matrix for Dirac comb, which is a series of equally spaced Dirac delta function
potentials, has the following form:

T:[ffu ] 7

and is given by the product of the transfer matrices of cach individual Dirac delta function potential

T=T,T,,...T (8

- (9)

thus T(2,2) is the second element in the second row in a 2x2 matrix. The electron conductance through
this structure, according to the Landauer-Buttiker formmila, is (Landau and Lifshitz, 1981; Baym, 1974):

Go l’hi|T|2 (10)

We rescale the strength of the Dirac delta finction potential by the following parameter (Takagaki
and Ferry, 1992b) ©,=mdU,/r'#* In Fig. 1, we show the conductance through N = 10 Dirac delta
finction potential with strength Q= 0.2. A perfect transmission, in this case, is in general impossible
as predicted by Ashour ef af. (2006) and Blundell (1993). According to Blundell (1993) we can not
have a resonant transmission, T =1, even if N is very large.

BINOMIALLY TATLORED DIRAC DELTA FUNCTION POTENTIAL

Here, we reintroduce a novel simple structure of the waveguide gnantum wires based on the
binomial distribution (Ashour ez af., 2006), this propose a new structure based upon the similarities
between the electromagnetic waves and the electronic plane waves. We have noticed a similarity
between the diffraction of plane waves from multiple narrow slits and the electrons diffraction
from Dirac comb. Because of this situation, we infroduced a novel simple structure of the quantium
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waveguide based upon the binomial distribution (Fig. 2) to get unneling transmission to reach the unity
over a significant range of incident electron energy and to get rid of the undesired ripple in the
conductance band in the previous structure. The Dirac delta function has been equally spaced but their
strength, €} and has been weighted according to the binomial distribution law, which is:

N
N

Q(NJ):[

]/2", N=0...N (11)

1

Thus, Q(N)) represents the strength of the Dirac delta potential. N+1 represents the total number
of Dirac delta function potentials in the quantum wire and N, represents the order of the Dirac delta
potential. This novel structure of quantum wires can be realized by putting metallic gates on top of
a ong-dimensional electron gas and then by applving voltages, according to the binomial distribution
law, to deplete the electron gas underneath. In this case, Eq. 8 1s no longer valid for our new structure
so that, the total transmission matrix can be written as follows:

T:T5(QS)T4(94)T3(Qz)Tz(Qz)Tn(Qn) (12)

Notice that the potential strength is weighted according to Eq. 11. In Fig. 3, we show the
conductance spectrum through a sequence of binomially tailored Dirac delta function potentials. It is

A

o)

! I ,

N,

i

Fig. 2. Binomially tailored Dirac delta function potential. Here, N = 4 but the number of Dirac delta
functions is 5. and N; values which can be evaluated by Eq. 11
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Fig. 3: Conductance spectrum G in the units of 2e%h as a function kd/m of for a binomially tailored
sequence of Dirac delta function potential with N = 4. The strength of the potential here is as
in Fig. 2
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quite interesting to notice that the transmission through this structure approaches unity in the allowed
band region without any ripples after some small values of k. We have a resonant tunneling due to
coherent interference due to elastic scattering of electrons plane waves, which leads the transmission
to reach umity over a considerable range of k values, which is called allowed band or conduction band.
Also, we can see that there is a forbidden band, or a conduction gap where the transmission is small.

In Fig. 3, we show the conductance spectrum through a sequence of a binomially tailored Dirac
delta function potentials. It is quite interesting to notice that we have reached a transmission through
this structure approaches to unity in the allowed band region without any spikes after some k value.
Here, we have a resonant tunneling due to coherent interference effects due to elastic scattering of
electrons, which leads the transmission to reach unity and also to have constant value over the allowed
band or conduction band. Also, we see that there are forbidden bands or conduction gap where the
transmission is small.

DEFECT EFFECT ON THE ELECTRONIC CONDUCTANCE

Strength Defect

In this subsection, we study strength defect effect on the central element of the binomial tailored
quantum wire and keeping the other elements and the spacing between the Dirac delta function
potentials intact. First, in Fig. 4a, we consider defect free binomially tailored gnantum wire with
N = 35, with two scaling factors. We notice that when the scaling factor increase the conduction bands
become narrower but the forbidden bands become wider and well defined. In Fig. 4b, we consider the
strength defect does not exceed 5% of the Dirac delta function potential strength. That is, when the
central Dirac delta function potential strength is, for odd number of Dirac delta function potential in
the binomial distribution. In Fig. 4b, we plot the electronic conductance spectrum for both strengths
(with scaling factor of one and three) with N; is 35 and scaling factor of three. As can noticed there is
slight difference between the two curves, and compared to Fig. 4a. In Fig. 4¢, we increase the strength
defect up to £20%, we have noticed some measurable differences between the two curves and
compared to Fig. 4a, we have noticed some measurable differences between the two curves, but still
the conduction band and the forbidden bands are well defined, which is a very good feature for the
binomially tailored quantum wires.
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0.204
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0.00 T Ly Y T 1 T T T 1
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Fig. 4a: The electronic conductance, in the units of 2e’h as a function of kd/m. The curve with
squares is for N = 35 without scaling the binomial distribution. The second curve also with
N = 35 but with a scaling factor of three
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Fig. 4b: The electronic conductance, in the units of 2e%h as a function of kd/m. Here, N =35 with
scaling the binomial distribution by factor of three. In the case where the defect is only 5%,
in the strength of the central Dirac delta function, there is slight difference between the two
curves and compared to Fig. 4a
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Fig. 4¢: The electronic conductance, in the units of 2e%h as a function of kd/n. Here, N = 35 with
scaling the binomial distribution by factor of three. In the case where the defect is only £20%,
in the strength of the central Dirac delta function, there some measurable differences between
the two curves and compared to Fig. 4a. The curve with circles, has potential strength defect
+20% higher

Dislocation Effect

In this research, we study dislocation defect effect on the position of the central element in the
binomial tailored quantum wire and keeping all other elements and the spacing between the Dirac delta
finction potentials unchanged. First, We consider the position defect does not exceed 5% of the Dirac
delta function potential spacing constant. That is, when the central Dirac delta function potentials
spacing is d =+0.05 d. In Fig. 5a, we plot the electronic conductance spectrum for both dislocations
with N = 35 and scaling factor of three. Compared to Fig. 4a, as can noticed there is a difference
between the two curves. The conduction band starts to lose its flatness and the forbidden band become
sharper spacing increase between the central Dirac delta function and the adjacent one. In Fig. 5b, we
increase the dislocation defect up to £20%, we have noticed measurable differences between the two
curves and the curve in Fig. 4a, but the conduction band is still well defined but the forbidden bands
have a split compared to forbidden band in no defect curves (Fig. 5). This splitting is due to resonant
state in the forbidden energy band which leads to a bound state in the structure (Singha Deo and
Jayannavar, 1994). This is because the particle mode cannot propagate and hence get trapped.
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Fig. 5a: The electronic conductance, in the units of 2e%h as a function of kd/n. Here, N = 35 with
scaling the binomial distribution by factor of three. In the case where the defect is only £5%,
in the position of the central Dirac delta function, there is some difference between the two
curves and compared to the curve in figure 4-a. The curve with circles, dislocation in position
+5% wider
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Fig. 5b: The electronic conductance, in the units of 2¢*h as a function of kd/n. Here, N = 35 with
scaling the binomial distribution by factor of three. In the case where the defect is only £20%,
in the position of the central Dirac delta function, there some measurable differences between
the two curves. The curve with circles, dislocation in position +20% wider

Dislocation and Strength

In this research, we study both the dislocation defect and the strength effect on the central element
in of the binomially tailored quantum wire and keeping the other elements strength and spacing in
between intact. In Fig. 6a, we plot the electronic conductance spectrum considering the position defect
is d+0.05 d and the strength defectis € (N/2+1)£0.05 Q(N/2+1). As can be seen from the Fig. 6a
there measurable difference between the defect free structure and the structure with both defects, but
the conductance spectrum from the defected structure still maintain the main features of the original
transmission spectrium. This leads us to conclude that this structure has a significant tolerance for both
defects in position and strength which makes this structure more reliable.

In Fig. 6b, we plot the electronic conductance spectrum considering the position defect is d+0.2d
and the strength defect is Q (N/2+1)+0.2 Q(N/2+1). Here, there is a significant and measurable
difference in the conductance spectrum between the defect free case and this case. So, we can say that
this structure cannot tolerate this high defect in both the position and strength. As can be noticed from
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Fig. 6a: The electronic conductance, in the units of 2e%h as a function of kd/n. Here, N = 35 with
scaling the binomial distribution by factor of three. In this case, where the defect is only £5%,
in the position and the strength of the central Dirac delta function, there is some difference
between the two curves and compared to the upper curve. The curve with triangles,
dislocation in position +5% wider and +5% higher in strength
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Fig. 6b: The electronic conductance, in the units of 2e%h as a function of kd/n. Here, N = 35 with
scaling the binomial distribution by factor of three. In this case, where the defect is only
+20%, in the position and the strength of the central Dirac delta function, there is some
difference between the two curves and compared to the upper curve. The curve with triangles,
dislocation in position +20% wider and +20% higher in strength. The peaks in the forbidden
bands are due to bound states

the Fig. 6b, the conduction band conductance get lowed by this double defect and the forbidden band
has splitting. Also, this splitting is due to resonant state in the forbidden energy band. However, the
peaks increase in its height as we increase kd/m. Increasing the defect in both the position and strength
increases the chance the particle mode not to propagate through the structure, which increases the
chance of the enfrapment as the factor kd/m increases (Wu ef af., 1991).

In Fig. 6¢, We plot the electronic conductance spectrum considering the position defect is d+0.05d
and the strength defect is Q (N/2+1)£0.2 Q(N/2+1). In this plot, we notice that the structure can
tolerate a double defect with +5% in position and a +20% in strength without losing the conductance
spectrum pattern. From this we can set the maxirmun limit of the defect tolerance of this structure
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Fig. 6¢: The electronic condustance, in the units of 2¢%/h as a function of kd/m. Here, N; with scaling
the binomial distribution by factor of three. In this case, where the defect is only +5% in
position and +20% in strength of the central Dirac delta function. Notice that there is some
difference between upper curve, defect free Fig. 4a and curve with circles

which 1s £5% in position and +20% in strength of the central Dirac delta function potential in the
binomially tailored quantum wire.

Missing and Reversed Order Dirac Delta Function Defect

Finally, in this subsection, we are going to study the effect of missing and reversed order, when
two adjacent Dirac delta function strength switched, Dirac delta function potential form the binomially
tailored quantum wire. In this case, the binomially tailored quantum wire wonld not fimnction as a good
quantum waveguide as it shonld be, as in Fig. 4a. We assumed the central Dirac delta function potential
is missing from the pattern and keeping all other elements strength and spacing intact. Also, we have
assumed the central Dirac delta function switched its strength with the adjacent delta function. In
Fig. 7a, we illustrate and compare the effect of these defects with defect-free binomially tailored
quantum wire. In Fig. 7a, the number of Dirac delta functions in the quantum wire pattern is seven and
their strength is weighted according to Eq. 11. As we can see, the electronic conductance through this
structure is largely affect when the central Dirac delta function is missing from the pattern at low
values of kd/m, but at high values of kd/m the conductance spectrum starts to match that of no-defect
spectrum. In the case of the switched order, we see this structure has a good tolerance and conductance
spectrum 1s almost equals that is of no-defect conductance spectrum at moderate values of kd/m. In
Fig. 7b, we study the effect of the number Dirac delta functions in the binomially tailored quantium
wire on the electronic conductance in the defected quantum wire. We have increase the munber of Dirac
delta functions to eleven and their strength weight by scaling factor of three. Its worthwhile to notice
that when the mumber of Dirac delta function is increased in the quantum waveguide the difference
between the no defect electronic conductance spectrum and the one switched delta function potential
case in negligible and in the case of missing Dirac delta function potential the electronic conductance
spectrum starts to come close to the no-defect spectrum at lower values of kd/m. As we can notice,
these defects destruct of the phase coherence of the electrons wave functions interacting with the
binomially tailored quantum wire, which leads to the irregularities in the tunneling and consequently
the electronic conductance spectrum.
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Fig. 7a: The electronic conductance, in the units of 2e%h as a function of kd/m, the number of Dirac
delta function in the quantum wire pattern is seven and the scaling factor is one. The curve
with circles is the electronic conductance through the quantum wire without defect, the curve
with squares the quantum wire has the central Dirac delta function missing and the curve with
triangles the central Dirac delta function switched with the adjacent one
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Fig. 7b: The electronic conductance, in the units of 2e%h as a function of kd/m, the number of Dirac
delta function in the quantum wire pattern is eleven and the scaling factor is three. The curve
with circles is the electronic conductance through the quantum wire without defect, the curve
with triangles the quantum wire has the central Dirac delta function missing and the curve
with squares the central Dirac delta function switched with the adjacent one

CONCLUSION
We reintroduced the novel structure of the waveguide quantum wires which is the BTQW. We

show that it is possible to have perfect transmission, coherent tunneling, due the interference effects,
which givesrise to allowed band and forbidden bands in the transmission spectrum. We found that the
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increase of Dirac delta function in the structure and their strength the conduction band become wider
and the forbidden bands become sharper and narrower. Besides that, we found the structure tolerate
the following defects: up to £20% in strength defect and £5% in position defect for the central Dirac
delta function in the binomial distribution; can tolerate both defect up to £20% in strength and +5%
in position dislocation; has a little tolerance when we replace the central Dirac delta function potential
with the adjacent one. So, we can conclude that this novel structure offer a good electronic conductance
spectrum with considerably high tolerance for defects.
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