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Abstract: A review 1s presented of the state of pion condensation in the nuclear
medium (neutron matter, symmetric nuclear matter and neutron stars). This
phenomenon has critical consequences for both nuclear physics and astrophysical
systems and processes. Initial studies had focused on determiming the critical
density of the medium that will signal the onset of this phase transition, but recent
developments have focused on a description of nuclear and astrophysical systems
in the presence of the pion condensate. The approach in this review is to first
present the general physical principles and mathematical formulations and then use
specific examples to summarise their applications. The study discusses factors that
enhance or inhibit condensation, o-model of pion condensation, finite temperature
equation of state of a pion condensed system, effect of chiral symmetry, relativistic
models of pion condensation, the influence of pion condensation on the
gravitational stability of neutron stars and the influence of magnetic fields on pion
phase transition.

Key words: Pion condensation, phase transition, dense matter, nuclear matter,
neutron stars, gravitational stability, fimte temperature, magnetic field

INTRODUCTION

Atlow densities a normal Fermu sea of nucleons (N) 1s approximated as a non-interacting
gas. Under adiabatic compression, the system cean become unstable with respect to the
creation of real pions through the equilibrium process:

N-N'+7 1)

The process will occur for a sufficiently dense medium and a sufficiently attractive p-N
interaction so that the total energy of the system is lowered through the incidence of a non-
zero expectation value for the pion field in the ground state.

At normal nuclear density, p, the combined effect of strong tensor forces and
cancellation between the repulsive core and the attractive forces lead to a stable nuclear
matter. At densities p>p, certain forces whose influence were negligible at p, become
prominent and their effect indicate the possible existence of new phases of nuclear matter.

The condensation of a pion field in a sufficiently dense nuclear medium was proposed
in the 70’s, first by A.B. Migdal and independently by Sawyer and Scalapino (Akmal and
Pandharipande, 1997, Barshey and Brown, 1973; Baym and Flowers, 1974; Brown and Weise,
1976). The existence of such a condensate of pseudoscalar particles 1s of both nuclear and
astrophysical interest since the Equation of State (EOS) of dense matter and the properties
of neutron stars are influenced by the presence of such a condensed pion field. Migdal
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(1973a, b) saw the incidence of a condensed pion field in a nuclear medium as an instability
of a Bose field. Since, his pioneering effort, different mechanisms have been proposed to
explain this instability or as being responsible for it.

The mstability of the pion field can be described m terms of pion exchange mteractions.
In symmetric nuclear matter, this instability results 1f the OPE is sufficiently attractive at lugh
momentum transfers, q~2-3 m,. This attraction is evidenced by the downward shift of
unnatural parity states from their unpertirbed shell model position if repulsive correlations
are not strong enough to provide screening. Migdal (1978) investigated the condensation
of a pion field both 1 an external field and in a nuclear medium. It 1s known that a vacuum
Boson in a strong external field is restructured with a lowering of the energy of the system.
This restructuring can be regarded as a phase transition, a pion condensed phase, since the
energy gained 1s proportional to the volume of the system.

The phenomenon of pion condensation has been approached from various perspectives
and directions. It has been approached from the perspective of the type of medium in which
the condensation occurs. In connection with this, various nuclear media have been studied
such as 1sosymmetric nuclear matter (Chanowitz and Siemens, 1977; Migdal, 1973a, 1978)
neutron matter (Baym et al., 1975, Weise and Brown, 1975, Wilde et al., 1978), neutron
stars (Au and Baym, 1974; Baym and Flowers, 1974; Brown and Weise, 1976,
Khadkikar et al., 1995; Schaffner and Mishustin, 1996; Suh and Mathews, 2000).

Tt has also been studied from the perspective of the type of pion field, whether charged,
7* (Backman and Weise, 1975) or uncharged, n° (Sandler and Clark, 1981; Tatsumi, 1980,
Matsui et al., 1978).

Condensation of a pion field has been investigated using the pion propagator in the
mediumn (Backman and Weise, 1975; Dawson and Piekarewicz, 1991) or using the Equation
of State (EOS) method (Au, 1976; Baym et al., 1975, Maxwell and Weise, 1976). The pion
propagator approach only helps us to obtamn the threshold conditions or critical parameters
that signal the onset of an instability in the system. Tt does not describe the system in the
presence of the condensed pion field. To be able to describe the system in the condensed
phase we need to derive its energy density.

A further perspective from which pion condensation has been studied is the derivation
of a finite temperature EOS for the condensed system by Toki et al. (1978).

An approach describing a relativistic model of pion condensation has also been carried
out (Dawson and Piekarewicz, 1991 ; Kutschera, 1982; Nakano et al., 2001, Walecka, 1975).
The question of how best to model the n-1 interactions of the condensed field and the
interaction of the condensed pion field with the nucleons of the medium has resulted in the
use of either the 0-model Lagrangian or the Weinberg Largrangian, both of which are chirally
symmetric.

There were various objections that were made (Barshey and Brown, 1973) agamst
the existence of a pion condensed field in nuclei. These objections have been shown
to be baseless (Brown and Weise, 1976, Migdal, 1973a, b, 1978; Oset et al., 1982; Tok,
2002).

Also, while the condensation of charged pions was accepted, Takatsuka et al. (1978)
reported that ©° condensation was not seen as feasible because the energy required was
thought to be prohibitive. Working in the Alternating Layer Spin (ALS) scheme, they
assumed that the existence of a condensed m° field is possible and results from the
localization of nucleons having a specific spin-isospin order.
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CRITERIA FOR PION CONDENSATION

Green Function or Self-energy Approach

Condensation parameters are obtained using either the self-energy approach or the
Equation of State (EOS) formalism. The self-energy approach which 1s also referred to as the
Green’s fimction approach enables us to describe the medium at the threshold of
condensation while the EOS method gives us a description of the system in the presence of
a condensed pion field.

There are variations of the Green function approach. In a series of papers Migdal (1973a,
b) studied the conditions for the onset of a charged pion (p, p) condensate in neutron
matter. He specified the Green function of the uncondensed medium and gave it’s inverse as:

— 2 —
D'{m,q,p}=[m2—q }—mi—l‘[{m,q,p}+ie (2)

where, H[UJ,C_I:D} is the pion self-energy owing to interactions with the medium. If w, is a

solution of the equation:
D’l((:),a,pJ: 0 (3)

Then the condensation condition 1s:

D!
dw

oIl

o= =0 o

i

=0 “

y

Another criterion based on the Green function was derived by Bertsch and Johnson
(1975). The Green function and the equation of this theory 1s:

D(w)=0 (5)

They contended that condensation will occur when two poles of D{w) on opposite sides
of the real axis pinch together. This criterion 1s satisfied when two equal solutions of (5) can
be found.

A final modification of the Green function approach was proposed by Wilde et al. (1978)
and it borrows from the works of Migdal (1973a, b) and Bertsch and Johnson (1975). In this
scheme, the condition that a condensed pion field be formed at a given density is satisfied
when the following equations are satisfied:

D™ [m,a,p} =0 (6a)
aD”'| mq.p (6b)
L, =0
dm ip
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1 -
dD”| mq,p (6c)
=0
Equation 6c 1s to be solved with the condition that:

d
F =0 (6d)
dq

Equations 6a and b are equivalent to the double-root requirement of Bertsch and Johnson
(1975). Therefore, they give the condition for the realization of a condensed pion field. The
minimum density or critical density, r, for the onset of condensation is obtained from Eq. 6¢.

Equation of State (EOS) Approach

In contrast to the previous approach-the Green function or self-energy model-which
gives parameters that will signal the onset of condensation, the equation of state approach
enables us to describe the muclear medium in the presence of a condensed pion field.

The procedure of this approach is to construct the energy density of the medium and
then minimize it with respect to various parameters of interest (Chad-Umoren and Alagoa,
2006). This process then enables us to obtain a description of the pion condensed system.

Since pions are bosons, the condensate 1s a single macroscopically and coherently
occupied mode of the pion field. The system is described by the expectation value of the
pion field operator ¢(f,t) which destroys negative charge. The condensate 1s treated as a
classical coherent field, <(p(f,t)> . In the uncondensed phase charge conservation means that.
{$)=0

In the presence of the condensed pion field we write the equation of state of
1sosymmetric nuclear matter in the form:

E(py.p, v.k.o)=E, +E_ (7
Where:

Eue= ZE, (MBCE. () E (MECE() ®
15 the nucleon quasi-particle energies resulting from the n-N mnteraction. E is the energy
density of the condensed pion filed. p is the density of the medium; L, is the pion chemical
potential, u 1s the nucleon chemical potential, k 1s the condensed pion momentum, k the

condensate angle in the 0 model and ¢ is the condensate wave function.
Since pions are bosons, the condensate 1s a single macroscopically and coherently
occupied mode of the pion field. The values of the pion field system is described by the

expectation operator, ¢ (T, t).
The Hamiltonian density, H is defined by:

H=7m(x)3"p(x)-L (9)

and the canonical momentum, 7 (x) corresponding to the field, & (x) is:
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dL
_ 10
7T (x) 2000) (10)

The nucleon quasi-particle energies, E, Eq. 8 are obtained by diagonalizing the nucleon
part of Eq. 9.To obtain the energy density, By, we use:

S 2 g (11)
By [EPE. @)

The ground state of the system is to be studied as a function of the baryon density, p.
To do this the expression for the energy of the system is written in the form:

E(p.0,)=E, (p.0.k)+vp + E, (12)
Now
By (13)
ov
Andv' =v-442 n,
Let
AB=E(p,6,n k)-E, (14)

where, E; 13 the energy of nuclear matter in the absence of condensation. Then, condensation
oceurs 1f:

AE<0 15)

we are now 1n a position to obtain both the parameters of the system at the threshold of
condensation and a description of the system beyond the threshold, that is in the presence
of the pion condensate. This is done by minimizing Eq. 14 with respect to k and 0
respectively, that is:

OAE —0 (16a)
dk

and
9AE _, (16b)
a0

An EOS framework has been used to study the incidence of pion condensation in
sosymmetric (N = Z) nuclear matter using the chirally symmetric Wemberg Lagrangian
(Chad-Umoren, 2005). The realization of a pion condensed system 1s influenced by the
interactions undergone by the pions within the medium. An appropriate EOS must
incorporate these interactions. Chad-Umoren (2005) used an EOS of the form:
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E(p.u,. v,k @)=E, (p)+E (1., 0)+E  (p,u,v.k,0)

where, E, (p) is the energy of nuclear matter in the absence of condensation. B, (i, k, ¢) is
the energy of the condensed pien field, including contributions from 7-m interactions. E,
(Py, M ¥, k, &) is the energy due to the interaction of the condensed pion field with the
medium. p is the density of the medium, 0, the condensate angle; k, the condensed pion
momentum; L, the pion chemical potential, v the nucleon chemical potential and ¢ the pion

field.
The Weinberg Lagrangian is given by:

. fn _ — - — -
L, =W('D, —m)y - =y Ty eD, ¢-iD,pe D'

T

7 -1
émi[H;’z} ¢’

ki1

The covariant derivatives in the Lagrangian are given explicitly by:
— _1 —
Ducp:(1+cp2/FTf) 2,0
. 1 — —
Duw:{auﬂ(Fif +cp2) ’c-{cpxaucpﬂw

where, ¥ 13 the nucleon field and 6 the pion field. f; 1s the p-N p-wave coupling constant,

F, the pion decay constant, m, the pion mass.

The first term of the Lagrangian 1s the Dirac Lagrangian; the second term generates the
p-N interaction in the pseudovector coupling mode; the p-p interactions are generated by
the third term which 1s the kinematic Lagrangian for massless pions and by the nonlinear
terms proportional to (14F, 7 ¢*)7, E(m,. k, ) come from these. The last term is the
symmetry breaking term.

FACTORS AFFECTING w-CONDENSATION

There are various effects that influence the condensation of a pion field in a nuclear
medium. These are often accounted for in caleulations in order to make the models realistic.
These modifications can be divided mto two groups, namely those that enhance
condensation for instance, by lowering the density at which condensation occurs and those
that inlubit condensation, for instance by raising the critical density for the onset of
condensation.

Effects that favour an mstability of the medium include nucleon resonances (1sobars and
N*), p-N p-wave interactions, higher order effects on the OPEP in the N-N interaction. These
generate attractive forces which lower the condensate density.

On the other hand, effects that inhibit condensation includes p-N s-wave interactions,
p-p lnteractions, short range N-N correlations, r-meson exchange. These generate repulsive
forces which raise the condensate density, even to the point where condensation is not at
all possible.
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Chad-Umoren and Alagoa (2006) studied the phenomenon in the presence of the N*
resonance using a Hamiltonian of the form:

H,. =WV, cosB- gAkZAf) sinB+A
where, the vector current, Vp@ 18:

1_
VI,ES) = EWJ;W

the axial-vector current, Ap@ 18:
AP =gy, ysTy

and A 1s the mass difference operator.

Chad-Umoren et al. (2007a) investigated the influence of nuclear correlations, while
Chad-Umoren et al. (2007b) considered the effect of including nucleon resonance and
nuclear correlations simultaneously in the description of pion condensed i1sosymmetric
nuclear matter.

Nuclear correlation effects have been studied in both pure neutron matter and
isosymmetric nuclear matter using a variational approach with hypernetted chain summation
principles {(Akmal and Pandharipande, 1997). The effects have also been mvestigated n
sosymmetric nuclear matter using a relativistic self-energy formulation (Nakano et al., 2001).

PIONIC INSTABILITY

An important quantity i pion condensation studies 1s the polarization operator, II. It
forms part of a transcedental equation whose solution gives the various branches of the
spectrum of excitations having the pion quantum numbers. The spectrum of solutions
contains both physically acceptable solutions representing particles and superfluous ones
representing antiparticles. The criterion for selecting the correct solutions 1s:

L a7
dw

An analysis of the spectrum shows that instability of the spin-acoustic branch sets in
at some specific density of the medium. Tt has been found that the m-N interaction leads to
an instability of the medium by forming nucleon spin-density waves. This 1s mterpreted as
the condensation of the spin-acoustic branch.

Sawyer and Scalapino in their pioneering work studied the nature of this instability in
the case of neutron star (Brown and Weise, 1976). They assumed that at a specific density
wstability sets in with respect to the reaction:

n-p+a-

Using a Hamiltoman in which the nucleons mteracted with a classical n™-field, they were
able to demonstrate this instability. Their conclusion was later demonstrated to be erroneous
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from the work of Migdal (1973a, 1978) which showed that the Sawyer-Scalapino instability
did not result from Eq. 1b.

An alternative to the work of Sawyer and Scalapine was proposed by Baym and Flowers
(1974) who derived the equilibriumn thermodynamic conditions that will be obeyed at finite
temperature by a system containing a condensed pion field.

In this model, the condensate is regarded as a coherent macroscopic single mode of the
plon field. It s described by a complex order parameter or condensate wavefunction.

The system 1s modelled with a Lagrangian density, L which 13 a sum of free pion
Lagrangian density, L,", an interaction Lagrangian density, 1L which represents the
interactions of the pions and terms independent of the pion field:

in G _ z
L=L 4™ =8H(p*8”(p—micp*(p—ﬁwsy“ Y3, (18)

The expectation value, <H> of the Hamiltoran density, H satisfies:
(H) = u,8(p,y (19)

where, |1, 18 the pion chemical potential
The variation in p, 1s given by:

8p, =i(7d{@* + p*8)) + he (20)
Hamilton’s equation:

SH = %5@ " %H&m +he.

yields:
SH=—%"5(p) + p*&{x) + hc (21)
substituting Eq. 20 and 21 into 19 and comparing coefficients of §<n*> and d<d*> gives:
(@)=~ (@) () =~ () (22)

The condensate charge density is given by:

<cp[?]>

For the reaction nep+T to proceed as an equilibrium process, we must have p, = u, + 1,
where, p, and p, are the neutron and proten chemical potentials respectively. The field
equation from which the wavefunction of the condensate 1s determined 1s:

Prte =2W,

- 2hn{<@>*<2§1>} 23)

(ui—mi%—vz)((p(?]}—{?}:o (24)
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where, ](?] 1s the source of the condensed pion field and 1s given by:

PA T v (25)
J[ ] o) 5

The ground state energy 1s obtained by varying the Hamiltorman with respect to the
condensed fields:

SF— (51T) — <2_I;>6<cp> + (%}8(1.:) roe.

or
SE= [(mi -vi-ul )((p} + J}S{(p*} e+ 1 dp, (26)

The case J(r) = 0 means the absence of a condensed pion field within the medium.
An immportant quantity m this formulation is the pion self-energy, II(r,r".u,) which is

obtained from the expansion of J{;J to first order in <¢=>:

EC
aip(r'»:“(r’“““] (27)

Dashen and Manassah (1974a, b) working in the s- model showed that a phase transition
occurs when the 1sospin chemical potential, p 18 equal to the mass of the pion, m,. They
proceeded from there to obtain a general relation between the phase transition and the
symmetry breaking of the chiral Hamiltoman This approach led to the conclusion that the
phase transition 1s dependent on both the symmetry breaking term of the Lagrangian and the
axial current renormalization, g,. The dependence of pion condensation on the axial current
renormalization has since been further established (Chanowitz and Siemens, 1977; Migdal,
1978; Riska and Sarafian, 1980, Toki et al., 1978).

As a first order approximation, Baym and Flowers (1974) assumed that the coupling of
the neutrons, protons and pions was through the non-relativistic pseudo-vector
plon-nucleon coupling. To obtain the threshold parameters of the system at condensation,
they constructed the pion field equation and the electromagnetic current using the
Lagrangian of the system. This led to a source T of the pion field given by:

125 Ve tytow,)
m

T

and a pion field equation of the form:
F=-py+ oy +Ey / 2f0)f =0
They obtained the following values for a pion condensed neutron matter:
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U, = 62.2MeV, k, = 0.90fm™, p_ = 0.175fm™

The work of Baym and Flowers (1974) showed the need to incorporate the effect of
nuclear forces. They found that the parameters of the pion condensed system were very
sensitive to the correlations resulting from nuclear forces. Tn neutron star matter, the p-n
mnteraction 1s substantially more attractive than the n-n interacton. This will encourage
condensation, as it will increase p,-1, in the uncondensed state. On the other hand, the
velocity dependence of nuclear forces reduces the mean n-p attraction as the mean relative
n-p momentumn increases. This works to miubit condensation because the neutron and
proton distributions become separated in momentum space with increasing pion
condensation, so that their interaction energy becomes less negative.

At the threshold, this effect mamfests m the reduction of the nucleon effective masses
by the velocity dependent forces leading to a reduction of the nucleon densities of states,
hence decreasing the effectiveness of the p-wave n-N attraction in lowering the pion self-
energy.

Aside neglecting the effects of nuclear correlations, Baym and Flowers (1974) also
ignored the influence of A resonance on the condensation phenomenon.

Migdal (1978) obtamned estimates of the condensation parameters such as the critical
density and the energy using the gas approximation. In this approximation, the influence of
the pions on the medium is neglected while account is taken of the effect of the medium on
the pions. A second set of values were obtained mn an appropriate many-body scheme n
which the principal processes that affect the motion of the pions within the medium were
considered.

The polarization operator for N = Z obtained, incorporated the virtual transition of a pion
into a nucleon and a nucleon-hole and contributions of transitions into N* and a nucleon-
hole. Also, this operator had earlier been obtained for an N>>7 medium (neutron star)
(Migdal, 1973a). For such a medium s-wave T -N scattering are very important while they are
found to be inessential for the:

N = Z medium

The essential focus of Wilde et al. (1978) was to investigate if n-N scattering plays any
significant role in the condensation of a pion field in neutron matter. Their work used the
off-shell model for m-N scattering based upon cwrent algebra (Gross and Surya, 1993;
Scadron, 1981) and a dispersion theoretical axial-vector nucleon amplitude dominated by the
A isobar (Helgesson and Randrup, 1995).

The effect of n-N scattering can be incorporated in the following manner: Assuming that
the m-meson is propagating through the medium by sequential single scatterings from the
nucleons (Kargalis et al., 1995; Jain and Santra, 1992; Johnson et al., 1991), then the lowest

order approximation relates the pion self energy 1—[[ m’asz} to the off-shell m-N amplitude,

Tg
T, =ﬁ(P'){F(U=t=q2,q’2)—ﬁB(Mqaq”)[ﬁﬁsﬂ}U(P) (28)

§—1u

where, = and s, t, u are Mandelstam variables.

4m
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If there is a difference between the initial and final nucleon spins and momenta, then the
final state is not only a pion, but a pion plus a particle-hole excitation (Kargalis et al., 1995,
Oset et al., 1982). In such a situation and for ©° neutron scattering the only contribution to
(28) is from the s-channel, I =, non-spin-flip forward direction amplitude, F (Scadron, 1981;
Wilde et al., 1978). Thus, we have:

2
H[m,q ,p}pF%(U,t,qz,q”) (29)

To obtain an expression for Eq. 29 suitable for computation Wilde et al. (1978) split F**
into the isospin even and isospin-odd t-channel amplitudes and applied dispersion theory
to the nucleon-pole contribution. The off-shell background amplitude, F* was evaluated
with the help of Partial Conservation of Axial Current (PCAC) and the algebra of currents.

Their theory, which neglected the effects of WN-N correlations, showed that ©-N
interactions enhance condensation. They also found that m° condensation in neutron matter
occurs at approximately nuclear matter density, p,. This is in agreement with the pioneering
works (Brown and Wesie, 1976; Migdal, 1978; Migdal, 1973a, b). Sawyer and co-workers
(Migdal, 1978) had predicted a " condensate i neutron star matter at a threshold density p.
= p,. Migdal predicted the same threshold density but for a ° condensate in nuclear and
neutron star matter.

CURRENT-CURRENT CORRELATION FUNCTION, <J, J>, APPROACH

Considering a p-wave pion, the corresponding vertex operator is m:' f\f2 y oy, - This

vertex creates particle-hole excitations of the type (Backman and Weise, 1975).
A particle-hole pair coupledto T =0, T = 1 will couple to a pion according to (Brown and
Weise, 1976):

(¢ [SHlphy = LTk} (30)

mn.,/2(nk

The threshold for n° condensation 1s signaled by a singularity in the current correlation
function, <J, J>, (Backman and Weise, 1975; Brown and Weise, 1976) at a pion frequency
given by:

("‘)E - p':rr- - p’n_p'p (31)

In the absence of isobars, Backman and Weise (1975) have given an expression for <I,
T=:

B kU, (k,0) 32
<J’J>71+gNN (k, @)U (k,0) G2

where, Uk, w) is the Lindhard function, g, the reaction matrix.
When isobars are taken into account, the poles of <I, > are determined by the secular
equation:
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det 1+g Uy 2Us -0 (33)
Ean 1+gD,, U,

Using this formalism, Backman and Weise (1975) have obtained a critical density, p, of
2p, for m° condensation in neutron matter. Their theory neglected the s-wave interaction and
the effect of A 1sobars.

The result of Backman and Wesie (1975) agrees with that of Weise and Brown (1975)
who studied the effects of A 1sobars on the equation of state of pion condensed neutron
matter. They included relativistic corrections related to the Rarita-Schwinger description of
spin- %/, fields to take account of the fact that A isobars become more influential with increase
in baryon density.

Brown and Weise (1976) have used tlus approach to obtain expressions for
condensation threshold parameters and to show the relationship between <J, I>> and D(k, w).
They assumed an admixture of some T° mesons with the T~ mesons.

Solving the equation:

m2

T

2 2
1_{f_JLB:0 (34
m (&)

to satisfy the requirement of a double pole, Brown and Weise (1976) have obtained the
following critical parameters for the onset of condensation:

2 1
o, {k%} (352)
kT, (35b)
E4
m? (kI +m]) (35¢)

pc:3‘J§f2 ki

Equation 35¢ gives the critical density at the threshold of condensation that is approximately
equal to nuclear matter density.

o-MODEL OF PION CONDENSATION

The 0-model has been used to study the incidence of a condensed pion field in neutron
matter (Baym et al., 1975; Weise and Brown, 1975), in neutron star matter (Aw, 1976) and in
abnormal nuclear matter (Chanowitz and Siemens, 1977). It has also been used to investigate
the role of many-body effects on the EOS of 1sosymmetric nuclear matter and neutron-rich
matter (Prakash and Ainsworth, 1987).

In this model, the nucleon mass within the medium is obtained through the coupling of
the nucleon with the scalar o-field (Brown and Weise, 1976; Prakash and Ainsworth, 1987,
Weise, 1993).

Due to its pseudoscalar nature, the pion field has zero expectaion value in vacuum, but
possesses a fimite value, breaking the symmetry of the vacuum, when the density of the
medium 18 high enough so that there 1s a non-zero solution for Eq. 2.13 (Brown and Weise,
1976).
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For infinite 0 mass, using the renormalized tree approximation (Nyman and Rho, 1976),
the pion field with frequency (or chemical potential) w = p, and momentum, k 13 given in terms
of the condensate angle, 0 by:

i) =(2)t s, sineexp{i( Tex ““tﬂ (36a)

and 13 accompared by a o field:
<a(x, 1> = I cosO (36b)

Therefore in the g-model, T condensation means the realization of a finite value of the
angle 6.
The o model Lagrangian is given by Campbell et al. (1975):

2

— — -2 - =
L(x)=%{8uca“0+ Bu(pnoa“(pnj+rr;“[02 +i, }"T{W”au—S(U“T'E%H‘U*‘Ls& (37)

where, v" are 4x4 matrices and Lgg is the symmetry breaking term.

Working within this model, Baym et al. (1975) have derived an EOS for neutron matter
1n the presence of a condensed n° field.

The non-relativistic Hamiltonian of the system is a sum of two terms:

H=H,+E, (38)

They ignored nuclear correlations and the contributions of N* resonance and gave the
non-relativistic nucleon Hamiltomian, H, ..

The o-model has been applied to a variety of pion condensation problems. Before their
collaborative work, Campbell et al. (1975), Dashen and Manassah (1974a, b)used a
non-linear g-model to prove that there 1s a phase transition to a pion condensed mode when
the isospin chemical potential, u, is equal to the pion mass, m,. They used a Hamiltonian
density from which fermion terms had been removed and derived an effective Hamiltonian,
H,; given by:

H.,= é{ﬂf sin’ 6 — 2m_ cos 9} (39)

They then went on to establish that Eq. 39 has a mmimum at:

2

q=0 and cosq=m—2“
v

which 1s proof that there 13 a phase transition at:
my = iy (40)

They also established that this result was model-independent and holds generally in the
SU(2) x SU(2) symmetry breaking formalism.
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Chanowitz and Siemens (1977) evaluated Eq. 37 in neutron matter in order to establish
the possibility of creating a condensed pion field in abnormal nuclear matter. Abnormal
nuclear matter as proposed by Lee (1973) is a nuclear state in which at high density the
nucleon mass is zero or nearly zero.

Their computation followed standard procedure for deriving the EOS of a medium in the
presence of a condensed pion field. Fist, they obtamned the effective energy, E.; of the
system using the effective Hamiltonian H,; derived from Eq. 37 which they mimimized with
respect to the parameters of their theory.

With this they obtamed the EOS of pion condensed abnormal nuclear matter in the form:

% 5,
3’ p’éF .2
E(A,e):%KZA“7%m§A27FmiAcos8+meNA/Fn+i( V' Pet, il 5(1 . —
10 myA 8 L cos"O+g, sm" 0

(41)

Equation 41 includes auxiliary equations which must be satisfied. A is a classical field and
A =350

A pion condensed phase exists in such a medium if a minimum value of E(A,8) can be
found with 8+0. They found out that pion condensation was very much dependent on the
choice of parameters, especially the value of the renormalized axial charge of the nucleon in
the medium, g,.

FINITE TEMPERATURE EQUATION OF STATE

Finite temperature has critical effects on high energy heavy-ion collisions and in the
formation of neutron stars at the center of a supernova (Akmal et al., 1998; Khadkikar et al.,
1995). Such phenomena have substantial influence on pion condensation (Brown et al., 1991,
Helgesson and Randrup, 1995; Tripathi and Faessler, 1983). For example, Krewald and Negele
(1980) sought to establish the existence of pion condensation by studying spin-isospin
mstabilities in ligh energy heavy-ion collisions. Such instabilities correspond to the onset
of pion condensation (Akmal et al., 1998; Helgesson and Randrup, 1995; Kargalis et af,, 1995,
Migdal, 1978; Oset et al., 1982).

An EOS for a pion condensed medium that explicitly incorporates temperature was
derived by Toki et al. (1978) for neutron matter and by Tripathi and Faessler (1983) for '°O.
Their work was based on the g-model and had two basic assumptions, namely, they
neglected the thermal fluctuations of the ¢ field, but accounted for the thermal fluctuations
of the condensed pion field and assumed that the coupling of the pions to the nucleon
source function was responsible for the thermal fluctuations of the condensed pion field.

A temperature range of T+ 1,  was considered, leading to the assumption that only
2 ks

the negative quasiparticle energy levels, E-were filled. Their choice of this range was
mnfluenced by an earlier work showing that the thermal expectation value <g> 1s inversely
proportional to the temperature and disappears beyond a certain temperature, T,. Using a
modified Hartree approximation in three-dimensions they found T, = Jof . Temperature is
incorporated into the model using the grand partition function.

S:TI'BXP[*(I_"IJrMQ*UI:I)/T} (42)

132



Res. J. Physics, 4 (3): 119-151, 2010

where, 11, and N are the Hamiltonian, charge and baryon number operators respectively.
The thermodynamic potential:

becomes:

Q= lz(l-(2 —u )fi sin’ 0 f'm’cos0— 2T 2'[

1

(3;133 ]n[l +exp(~E. (p)/T)} (43)

Unlike zero temperature 0-model EOS calculations in which equations such as Eq. 38 15
mimmized to obtain the energy density of the pion condensed system, equilibrium conditions
in the case of finite temperature demands that Eq. 43 be minimized with respect to k and 6.

Additional mmimization with respect to £ 1s carried out in the work of Toki et al. (1978).
The rationale 1s that their work treats the clural radis f, as a variational parameter.
Mimmization with respect to f; gives the effective nucleon mass, m* as a function of density.
They found that both f, and m* are inversely proportional to the density. This nontrivial
dependence of the effective nucleon mass, m* on the nuclear density was also observed in
the work of Dawson and Piekarewicz, (1991) using a relativistic approach to pion
condensation. The effect of a decreasing f, is that s-wave ©-N interaction is increased while
p-wave interaction is unaffected. This will work to inhibit condensation. Their treatment of
g, follows that of Auand Baym (1974) where g, is taken as a dependent parameter (g, = 2f,
(f/m)).

Following the mimimization procedure, the energy density of a pion condensed neutron
matter at finite temperature 1s:

2.2 2 _1sin’o 3 2 2
B(p,0,T)=£8 (& )Sm ~ f/m}cos0+vp—1[ dpjp—n x| @4
8f; 1+(gs —1)sin’0 (2m) 2m || 2m

X is determined by:

Tyl

where, n(z) 1s the Fermi distribution function and 1s given by:
n(z)= (eZ + 1)_1

It was shown m the work of Tok et af. (1978) that for neutron matter at low temperatures,
the transition to a condensed pion phase resembles a transition of van der Waals type. That
15, there 18 a region of negative compressibility exhibited by the equation of state. Using
various models, they showed that such a region exists only up to a critical temperature, T,
of about 50 MeV.

The work of Tripathi and Faessler (1983) examined the role played by A 1sobars on the
condensation of pions at finite temperature in finite muclei such as . Their work
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demonstrates that the influence of the A isobar and renormalizations resulting from thermal
excitations increase proportionately with rise in temperature.

At asymptotically high temperatiwes or at asymptotically high densities, perturbative
QCD can be used to determine the properties of strongly mteracting matter. Using chiral
perturbation theory (Loewe and Villavicencio, 2005) and Lattice QCD (Kogut and Sinclair,
2002), it has been demonstrated that the condensation of charged pions occurs if the isospin
chemical potential is greater than the pion mass. Models such as the Nambu-Jona-Lasiio
(NIL) approach that incorporate quarks as microscopic degrees of freedom make it possible
to simultaneously study the effects of finite baryon chemical potential and isospin chemical
potential. Such a model has been used to investigate the effect of charge neutrality on pion
condensation at finite temperature and density (Andersen and Kyllingstad, 2007).

The Lagrangian of the NJL model 1s given by:

L=%(iv"d, —m, v + Gy [ (Ww)" + (Fow )’ + (Wirgw ) + (Wivmw ) |G (9w)' - (W)’ — (Wivyw )’ + (Tivsmw)' |

(45)

This Lagragian has both a global SU (N.) symmetry and a U(1); symmetry. The SU(2)-

symmetry of the Lagrangian is broken to Uy(l) x U {1) by the inclusion of the sospin
chemical potential.

To allow for both chiral and charged pion condensates non-zero expectation values are
mtroduced for the fields o and 7,

o=-2G(yy)+& (46)
i, =-2G, (lTn{Srqu) +1T, (47)

where, § and %, are quantum fluctuating fields.
The thermodynamic potential, £ 1s defined by:

Q=-fBVSg (48)
where, V 13 the volume and S,; the effective action. Explicitly we have:

(M-m,) +p’
4G

Q= —2N |

d3p
(2n)

fEL 4T h{l +e Y } +T In[l ¥ e'B(Eg'ﬂ}

{E; ¥ T]n[l 4o P } iT 1{1 " e’ﬁ(***ﬂ o

Where:

i z
E; = J(E£8u) +p*

In the limit T-0, Eq. 49 becomes:

134



Res. J. Physics, 4 (3): 119-151, 2010

(M—mu)2 +p
4G

Q= - 2ch(jjp {E; +{n-F;)0(u-E; )+ By + (u-Ejo(u-E;)} GO

E)a L p
M=m, - 2G(py)

p= —ZGi<1Tn{5’c1>

Minimizing the thermodynamic potential, £ we obtain the values of M and p. That 1s, the
following gap equations are solved:

L (51a)
aM
9IQ_, (51b)
dp

Andersen and Kyllingstad (2007) showed that chiral symmetry is restored by fuute
values of the chemical potential and that there exists a temperatiwre dependent charge pion
condensate for small chemical potentials.

EFFECT OF CHIRAL SYMMETRY ON PION CONDENSATION

Chiral symmetry (spin-isospin SU(2) x SU(2) symmetry) is considered to be intrinsically
present in nature because of the smalluess of the pion mass, m, (Weise, 1993,
Mishustin et al., 1993). The mass of the pion 13 a measure of the degree of chiral symmetry
breaking, because exact chiral symmetry means m, = 0.

Now, the axial current, A} (x) is:

Al (X)) =5F(X)vs o (x) (52)

Conservation of the axial current 1s an mndication of exact chiral symmetry.
It

3, AF(x)=0 (33)

But PCAC theorem states that the axial current is “almost’ conserved and its divergence
1s proportional to the pion field:

B,Ak(x)= fmlig(x) (54)

Campbell et al. (1975) in their pioneering work using the o-model have shown that the
particular form of the chiral symmetry breaking Lg. in Hq. 37 was critical for pion
condensation. Two types of symmetry-breaking in the baryon sector were used by them.
These were derived using PCAC and the divergence of the axial vector current and given
explicitly as:
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SH(EIE) =—f’m’ ¢cosB (55a)
BHST) =1f’m’sin’0 (55b)

Known respectively as cos@ symmetry breaking and sin’@ symmetry breaking.
An expression for the energy of the condensed system was sought in the form:

Eeff = EnuE + E:rr + EE (56)

with the condensed phase treated as a state of chiral rotation on the normal ground state.
The effective Hamiltoman of the system 1s obtained from Eq. 37 and 1s:

Hy =i ;'GW +mipy — VY Y + k,

_, T _ T .
(w” — WeosO + g, Jy'ys - ysin 0]

k, k*
s’ 0+ SH,, (57)

which in momentum space leads to an eigenvalue equation for single particle energy levels,
E(p):

{a@Bm{p,a.z}{i;m%gz«,ssme}Ur}w[;}:@@)m]w(;} (58)

where, o and [ are 4 x 4 matrices.
Equation 58 has the form of a Dirac equation in an external field. Using the Foldy-
Wouthuysen transformation (Amore et al., 1996) to decouple the spin states, the Dirac
Hamiltorian density, Hy, s obtained.

To demonstrate the effect of symmetry breaking, Eq. 55 are substituted in tumn into
Eq. 56. The resultant expressions are then minimized with respect to k and 6.

The two types of symmetry breaking were studied at three condensation angles of:

8=0,0=0,#00r% and 6=7%

Under Sin’q symmetry breaking, the first case, 0 = 0 gave the energy of the ground state
of the uncondensed system. The case 6 = 8, # 0 or */, led to two phase transitions-the first
and second order phase transitions. The second order phase transition is possible only when
the baryon density satisfies the following condition:

2 ip2
2pm,, o gafim,

<pp S
e (el-1)" " (el-1)

In the case of the cosq symmetry breaking, Camphbell et al. (1975) did not report the
second order phase transition as in the Sin® symmetry breaking. Another important
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consequence that was observed is in the nature of the variation of the condensation angle,
0. For the Sin@ symmetry breaking we have:

1y
Sin0= (p—ig"‘(g"‘ ro
g ILQf11 m,

N

while for the cosg symmetry breaking we have:

We deduce from the work of Campbell et al. (1975) that the quantitative description of
a pron condensed system 1s dependent on the type of symmetry breaking term.

Other works have been done to further show the effect of symmetry breaking on pion
condensation (Tatsumi, 1980). His work used the o-model within the alternating-layer-spin
(ALS) structure (Takatsuka et al., 1978).

The ALS structure refers to the observation that has been made that when a = field is
condensed, the nucleons of the medium become localized one-dimensionally in the same
direction as the condensate momentum. In this state, the spin direction changes alternately
layer by layer. This formalism therefore relates pion condensation to the structure of the
nucleon system.

In the study of Tatsumi (1980), the usual s-model Lagrangian, Eq. 37, 1s modified by
introducing polar coordinates to obtain:

i) iya, + %ﬁ?ywsaue £ LTy, RSin(0/F, ) + Liy'y;d, ASin(0/f, )
L 1l E (fwd Y 1 " i o PRTES irus |, (59)
+ 1{cos(/f, ) - 1}v*%(fixd, 1) gp}w + 3,pa%p + & 3,000 + p*Sin® (0/f, )xd 9" ft | +
_ &(p2 vl )2 + 1) (p.#,0)

1

In this approach, the symmetry breaking terms, Eq. 55 become:

BH" = —f m2pcos(6/ f,) (60a)
8H' = 1mlp*sin®(6/ f,) (60b)
and the Hamiltonian density is:
— = = — 2
HY = y* —iaV+mB+LO’V9c}W+%HV95J +0§}+H§g (61)
m'ﬂ:

where, in this case p is the chiral radius.
It was found that the Hamiltoman density, Eq. 61 played a more crucial role i
determining the critical density, p, than the symmetry breaking terms, Eq. 60.
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Functionally minimizing the resultant energy density with respect to each field, two sets
of coupled field equations for the two sets of symmetry breaking are obtammed:

E, +iaV-Pm-——ove, [y, =0 (62a)
mﬂ:
(i) — —
A8, + Hoy ivmﬁ oy (62b)
&C mT[
where,
(U
OHgy f,mSin(6,/f,) (62¢)
(2 .
M _ f.msin(e, /f,) (62d)
50,
with
f,=f./2

By solving these coupled equations, the ground state energy density for a pion
condensed medium in the ALS structure are:

B F{%EF 190—dkF n %} ~flm? [kf/iz [4+1, (A)A +1, (A)} (63)
T m

and

kIAf/4
Em:p{geFEkﬁi ooz KB (64)

*Fon 4m}~“m{+Jl(K)K+JU(K)J

where, I(x) are Bessel functions; A A are constants and d is the layer distance.

The results gave a critical density, p,~9p, for the condensation of a 7° field in neutron
matter for both cases of symmetry breaking. This seems to show that unlike the work of
Campbell et al. (1975), the critical density is independent of the choice of symmetry breaking
term. Tatsumi (1 980) attributed this surprising result to the anharmonicity of the Hamiltonian,
Eq. 61.

In an earlier work on n° condensation within the ALS structure using the (&-¥)
coupling rather than the 0-model, Takatsuka et al. (1978) reported a critical density, p, of
about 0.85p, for neutron matter and 0.4p, for symmetric nuclear matter. Modification of the
OPEP was found to substantially raise these values.

RELATIVISTIC MODEL OF PION CONDENSATION

A relativistic field theory approach to pion condensation was developed by
authors (Chin, 1976, Dawson and Piekarewicz, 1991; Kutschera, 1982; Walecka, 1975). The
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Lagrangian density, I. of the model consists of a free Lagrangian density, T, and an
interaction Lagrangian density, L,

L=L,+L, (65)

The relativistic approach is different from the s-model approach enventhough both
begin with a Lagrangian.

In this approach, the nucleon field, ¥ 1s coupled to four meson fields, vizs, w, wand r
fields. The mteraction Lagrangian, L, is:

L, = 2,00y — g by, y— g{a“ EJ -{u‘ﬂ/sn w} - g, -(%u‘m TY+ XD, Tc} (66)

where, g,, g,,. g, and g, are the coupling constants for the respective meson fields.
Their work showed the formation of a condensed pion field for p>2p,

This model was extended by Kutschera (1982) who mcluded the n-p interaction and
made the assumption that the coupling constants for the m-p and p-N interactions were the
same.

In the limit of zero baryon density, the energy density 1s:

E=4(k" +m] }o)" +imle] — g, {p, ) pk (67)

The inclusion of the m-p interaction led to the conclusion that the model did not predict
a condensed pion field in symmetrical nuclear matter.

Kutschera’s conclusion was investigated by Glendenning and Hecking (1982). They
declared it erroneocus and contended that the error resulted from a wrong coupling of the p-
meson to the isospin conserved curent, ™. They stressed that when p and nm mesons are
mvolved, a satisfactory theory can only be obtammed when the p meson is coupled to the
entire conserved 1sospin current, mstead of only to the first two terms as done m
Kutschera’s work.

Dawson and Piekarewicz (1991) studied the stability of uniform nuclear matter against
plon condensation in a relativistic random phase approximation (RPA) to the Walecka model.
The essential feature of the Walecka model 1s that nucleons mnteract via the exchange of o
and o mesons.

An important quantity which enables us gain an understanding of the pion propagation
in the nuclear medium is the pion self-energy, II{q). All the physical information about the
modification of the pion propagator as it moves within the many-body environment is
contained in the pion self-energy (Oset et al., 1982; Dawson and Piekarewicz, 1991). Dawson
and Piekarewicz (1991 ) began their evaluation of the pion self-energy in the pseudovector
representation using the axial polarization tensor defined as a time-ordered product of axial-
vector currents:

iHl:hS’ys(x,Y):<wn ‘T[JSS(X)JZS(Y)}W“) o

where, W, is the exact nuclear ground state and I,** is the isovector axial-vector current given

by:
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W (x)=¥(x )y Ty(x) (69)

In symmetric nuclear matter, the mean field approximation of Eq. 68 gives:
. v d41( q 5 q 70
i) =7“J.(2n)4 Y G(k+Q)m—nY5G(k) (70)

Due to the nature of its structure, the nucleon propagator influences the pion self-
energy. But in the mean-field approximation to the Walecka model used by Dawson and
Piekarewicz (1991), the only contribution to the nucleon self-energy comes from its
interaction with the valence positive-energy nucleons in the medium. Neglecting the vacuum
polarization part of the pion self-energy, a consistent linear response to the mean-field 1s
obtained.

Within the nuclear medium, the relevant pion propagator is obtained as a solution of
Dyson’s equation which can be derived by iterating the pion self-energy, Eq. 70 to all orders:

Vi = Via)+ V(T VL, g

A condensed pion field is said to exist in a medium when there are poles m the in-
medium pion propagator. In the space-like region of the propagator, the poles correspond
to zeros of the dimesic function, € (w, q), which, in the static limit used by Dawson and
Piekarewicz (1991) is:

& ¢

E((D:O,q):l ml g +m 7w

72
Ja B vy
0 (k2+m*2)% ‘quk‘

Three different sets of mean-field models were used, namely Walecka’s original model,
a stiff model and a soft model. No evidence for pion condensation was found in the mean-
field approximation to the Walecka model. With the soft model, a qualitative agreement with
conventicnal nonrelativistic calculations 1s observed. It is found in this model that for the
Landau parameter g' in the range O<g'<0.9, there is always a critical nuclear density, p, for
which pion condensation occurs.

For the stiff model, the third model considered, it 1s also found that for certain values of
g (g40.29), there is a critical density of the medium for the onset of condensation. An
mnteresting aspect of this work 1s the discovery that unlike conventional nonrelativistic cases
of pion condensation, the stiff model of Dawson and Piekarewicz (1991 ) showed that there
is an upper critical density at which the condensate disappears and the normal state is
restored.

Nakano et @l (2001) have used the Green fimction approach to mvestigate the
condensation of neutral pions in an isosymimetric nuclear matter medium. Thewr work
accounts for the effect of the particle-hole or D-hole excitations within the medium by giving
the relativistic pion self-energy, Pk, k;) as a sum of the nucleon particle-hole and D-hole
excitations:
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Pk, ko) =Py, k) + Pk, k) (73a)

In the random phase approximation these self-energies are:

M (k)= (1) [ 3Tr i (73b)
0= o +k){—m}mm
and
L dlq if
HmN(k):(*l)J.(QE):; T{Gw(q){ﬁm }Tka(% +E7,7,)
o+ k){ e }mﬁ O amﬁ)} 730

where, t and T are 1sospin operators and the G and G, are nucleon and delta propagators
respectively which are defined in particle-hole-antiparticle (PHA) representation. Expressions
for the pion self-energy are obtained when use is made of the explicit forms of these
propagators.

The mteraction Lagrangians are:

{ frer
Lo ={;;‘IWWJSTBMWJ (74a)
1 £ .
Lo = \E(;““ Jw” (8. + Ev,v, ) Twdy, (74b)

These Lagrangians ignore the effects of N-N short-range correlations. Nucleon
correlations modify the pion self-energies and lead to the use of the Landau-Migdal
parameters g'yy, 8w and gd',,. Values assigned to these parameters are often influenced by
the so-called umiversality assumption (Nakano et al, 2001) which holds that
Erw =1 = s = £ . This means that spin-isospin correlations in the NN and ND channels are
not much different from each other (Oset et al., 1982). An increasing mumnber of experimental
data on isovector spin dependent transitions in nuclei at low momentum transfer or Gamow-
Teller transitions are consistent with this view (Toki, 2002; Nakano et al., 2001).

The data on Gamow-Teller transitions contain elements of substantial quenching. The
range of the Landau-Migdal parameters can be determined if it is assumed that the quenching
results from a mixing of the D-hole excitations with the particle-hole excitations and the
Gamow-Teller strength disperses to the high energy region. The quenching factor is then
given by:
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Ly T
QP 5 U D} (75)
1+gl Ul
where,
uw :711&1:2(1{) atk~0 (76)
and
gl =0.191+0.051g., a7

Using expressions of the form of Eq. 6, Nakano et al. (2001) showed that the critical
density, p, for the neutral pion condensation in the N = 7 medium ranges from 1.5p, to 4p,
for the range of 0.0<g',,<1.0. They reported that their work also shows that results obtained
for Gamow-Teller quenching based on the umversality assumption are inconsistent with
earlier results from one-boson exchange models for D-hole interaction and microscopic G-
matrix computations.

EFFECT OF PION CONDENSATION ON THE GRAVITATIONAL
STABILITY OF NEUTRON STARS

Neutron stars result from supernova implosions (Brown and Weise, 1976) and they are
very dense. The gravitational stability of such high density mater 13 determined by the
balance between the pressure and the gravitational force (Weise, 1977).

Neutron stars have masses ranging between about 0.1M,; and about 0.75 M, with radii
of the order of 10 km. Neutron star structure 1s determined by the form of the Equation of
State (EOS) (Lattimer and Prakash, 2006). The maximum allowable mass of a neutron star,
M, follows the form of the EOS. This critical mass is a key quantity that affects
gravitational phenomena at very high densities.

When the mass of the star 15 greater than M__ 1t will possess insufficient pressure to
withstend gravitational collapse, possibly into a black hole (Baym and Pethick, 1975; Ruffini,
2000). That is, gravitational instability sets in when the mass exceeds a certain critical value.

Neutron star models are constructed using the Tolman-Oppenheimer-Volkoff (TOV)
equation:

--G (78)
ar {1_ 2GM(r)}
T
Where P(r) is the local pressures, p,(r) is the mass density.
The mass mnside a sphere of radius r 1s given by:
M(r) =4z [ dr'rp,, (1) (79)
0
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(G is the gravitational constant.
The EOS of a neutron star 1s given by:

P(p)=p— ~ - E(p) (80)

When the BEOS, p(p) is specified, the TOV equation is then solved to determine the star
structure and properties such as the mass and radius as functions of central density.

From Eq. 3 the effect of pion condensation 1s incorporated through the energy density
of the system, E (p).

Brown and Weise (1976) have obtained an EOS of the form:

_p* e (el —1S(p)
2K 1+(g:\271)S(p)

E=E,(p) + Fi;“i{l—(l—s(p))}é} (81)

Where, Ei(p) is the energy density of neutron matter in the absence of condensation. S(p)
measures the strength of the condensed pion field and 1s determined by:

[;T@_s(p)]% [+ (- )s(e)] #)

The work neglected the dependence of density on g,*. They used an EOS for normal
neutron matter and obtained a maximum star mass, M, ., of 1.66M,. The region of stable
neutron stars extends up to M,.. Beyond M, the star becomes unstable agamnst
gravitational collapse. The presence of a pion condensate softens the equation of state at
high density (Suh and Mathews, 2000) and this leads to a reduction of M, ,, the magnitude
of which depends on the effective axial vector coupling strength, g,*.

The softemng of the EOS due to the mcidence of pion condensation also results m the
following effects (Suh and Mathews, 2001): (1) enhanced rate of neutron star cooling via
neutrinos, (2) a possible phase transition of neutron stars toa superdense state, (3) sudden
glitches inpulsar periods and (4) Furthermore, if the condensation of the pion fields occurs
1n a strong magnetic field, it may sigmficantly affect starquakes.

The presence of the pion condensate affects other properties of the neutron star such
as the radius and moment of inertia. Now, in addition to neutrons and protons, the EOS of
a pion condensed neutron star also involves the presence of A-isobars. That s, the total
Hamiltoman of the system are quasi-particle states having A-isobar component. The 1sobars
increase with increasing density. In the presence of a pion condensed field, a massive
neutron star tends to be smaller than one without pion condensate at a given mass M. At
critical mass, the radius decreases from about 8.5 km to between 6.5 and 7.5 km (in the
presence of condensation). This 15 somewhat less than twice the Schwarzschild radius, Ry
which has a value of 2GM,/c’. The presence of the pion condensate also reduces the moment
of inertia, especially for densities close to the critical density for condensation. The cooling
of neutron stars is sped up by pion condensation (Camphbell et al., 1975). In this process, a
baryon picks up energy equal to the pion chemical potential, p, from a condensed pion and
decays into another baryon and a lepton pair.

Brown and Weise (1976) included the short range correlations between nucleons in their
EOS with this the pion condensate has modest effects on the critical star mass and moment
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of inertia. The work did not include the incidence of strange baryons such as A and X
hyperons and Y* resonances. These particles will finther soften the EOS thereby also
reducing M__.

Engvik et al. (1994), have used the relativeistic Dirac-Brueckner-Hartree-Fock (RDBHF)
approach to derive an EOS for neutron stars with effect of magnetic field on pom
conddenstation. This procedure involves the nucleon-nucleon (NN) mteraction taken from
meson exchange models and the renormalized NN potential accounted for by the reaction
matrix G and given by the Bethe-Goldstone integral equation:

G(w)=V +VQ QG () (83)

o-QH,Q

Where w 1s the energy of the mteracting nucleons, V the free NN potential, H, the
unpertubed energy of the intermediate scattering states and Q the Pauli operator which
prevents scattering into occupied states. The single particle (sp) properties are described
using the Dirac equation

The relativistic EOS of the work was found to be too stff predicting a maximum star
mass, M, = 2.4M; with a corresponding radius of R = 12 km. However, inclusion of pion
condensation softened the EOS with corresponding reduction in the maximum mass, M, to
2.0 M, with a corresponding radius of R = 10 k.

Also investigated is the effect of different proton fractions on the mass and radius of
neutron stars. Pion condensation ncreases proton abundance even up to more than 40%
protons, which is close to 1sosymmetric nuclear matter, producing a softer EOS and smaller
maximum mass though the masses are slightly larger than the experimental values
(Engvik et al., 1994),

Neutron star structure with effect of pion condensation has also been constructed using
variational chain summation techniques and the Argonne V,; two-nucleon interaction
(Akmal et al., 1998).

Effect of Magnetic Field on Pion Condensation

The effect of magnetic field on pion condensation has also been investigated. Following
the usual approach neutron star matter 13 modelled as an ideal Fermi gas composed of
electrons, protons and neutrons. Such a system is described completely by the number
density m phase space for each species of particle n given by:

_r AN s 84
ni-[d3xd3pdp (84)

The energy density of the system is given by:

N .
=[E——d (85)
¢ J. d*xd*p P
Where, g - Jpict +mict
The pressure, p 1s:
1 N
po Ly N (86)
3J.pv d*xd’p P
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The incidence of neutral pion (") condensation in the presence of a magnetic field has
been investigated (Takahashi, 2006). Tt is assumed that the system is a proton-neutron-
electron-muon system so that the Fermi gas model is applied. Also, the mean field
approximation of the chiral model at zero temperatire was used. Assuming exact 1s0spin
symmetry, the equation of motion 1s given by:

{iB+QrA+%13y51{—me=0 (87)

Where 1, is the Pauli matrix for the isospin. The configuration is chosen such that the ground
state expectation value of the nucleon spin is along the z-axis. Consequently, the magnetic
field resulting from the aligned magnetic moments 1s also along the z-axis. The gauge used
18

ar [0 By Bx
22

This gives the magnetic flux density B:(0,0,B)
Q. = e (or 0) for the proton (or the neutron)
The dispersion relation 1s obtained from Eq. 87 and for the neutron is given by:

2
o (p)=Jm2 +k7:+p2—skﬂ/m2 +p} (88)

The number density and the energy density are given respectively by:

. [k |ER K2 3k |m® p*+E 4k |/2
nnz% pt| EX +| z‘ F_fe |y | z|m ]_nPF F | z‘ (89)
6T 4 8 4 m
Be She] 2, m' -k k| . B2 pl i fk,|/2
e I D e AR e (90)
il 4 24 8 7 tr m

The properties of the proton 1s affected by the presence of the magnetic field. Under this
condition, the proton is now found on the Landau level. And the procedure to obtain the
proton spectrum in the presence of the magnetic field is to substitute p? + p; with 2veB in
the field free case. So that the dispersion relation for the proton becomes:

2
UJ;(PZ)=JIH2 +P§%+28BU+SkZ-\/m2 +p’ (o)
Where:

(1+s)

V="1y +
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v is an integer specifying the proton Landau levels, vy gives the harmonic oscillator mode
of each component of the spinor and s = £ 1 gives the possible spin direction of the proton.
For a pion condensed medium, the protons in the Fermi sea have s =+ 1. The state with v =
0 1s known as the lowest Landau orbit and 1s of the s = -1 state. In the model of Takahasin
(2006) it is shown that when the pion condensate is so developed that the Fermi energy is
less than the proton mass m in vacuum, the v = 0 state is higher in energy than the highest
Landau level.

The number density and the energy density for the proton in the magnetic field are given
respectively by:

zﬁﬁp (92)

w2 5 1 [ )

2 i
ph(v)= {\/EE —2eBv + “{71 - mz} (54)

The expressions for the properties of the electron mn the magnetic field are sumilar to
those of the protons except that the electron has a spin degree of freedom that is twice that
of the proton and unlike the proton case, the lowest energy is for the lowest Landau orbit.
So that for the electrons we have:

¢
eBUIm.x

) Z NPz (V) (95)
; b
_eB & i) 1 (96)
E, = Egn".l.u dp, (mE +p;+ QeBU)
Where, the Fermi momentum in vth Landau level is given by:
Py (0)= (E;2 —2eBv—m] )% 97)

Effect of Chemical Equilibrium, Charge Neutrallity and Magnetic Consistency
For the npep gas, the total nucleon number density and the energy density are given
respectively by:

=n,+n, (98)

e=g,te Tete te, (99)
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Where, €, is the energy of the pion. Chad-Umoren (2005) has used the Weinberg
Langrangian to obtain €, in the form:

T

E =éF§[(K2—ui)sin28+4mf§in2%9] (100a)

In order to discuss the effect of the presence or absence of the magnetic field Takahash
(2006) have adopted a simple kinetic term for €, given by:

Tk (100b)

Following the usual EOS procedure (Chad-Umoren et al., 2007a), the condensation
parameters are obtained by minimizing the energy per nucleon, €/A,. In this case three
conditions are imposed on the procedure, namely:

¢ Chemical equilibrium: Tt must be attained i.e.,:

4)
n p+e
(7

Tl

E! = ED +Ef
ES - B

+  Charge neutrality: This condition demands that the total electric charge must be zero.
That is:

n,=n,tn,

*  Magnetic consistency: Pion condensation and the presence of internal magnetic fields
each results in the softening of the EOS of matter, however pion condensation has a
more significant effect (Takahashi, 2006). Also, the EOS for the sumultaneous presence
of both condensation and magnetism 1s relatively softer than when only one or the other
is present. Furthermore, 1" condensation (Takahashi, 2002) or the magnetic field (Suh
and Mathews, 2001) acting separately, increases the critical density for charged meson
condensation. Consequently, their simultaneous presence 1s expected to enhance this
behaviour (Takahashi, 2006)

An alternative approach is to study the pion condensed system under the influence of
a strong external magnetic field. Takahashi (2007) considered such a system with a
modification mn the particle composition, made up m this case of nucleons (p, n), the negative
sigma (X7) and the leptons (e™, u7). Tt is expected that among the hyperons, &~ will have the
more significant role in ©° condensation due to its diagonal symmetric interaction.
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The total Lagrangian density of the system is given by:

B=npI" B=np.Z"

. 1 _ 1 .,
= E E[]-DJF% zvjkfmﬁ (0)}VB +Efjmi + E WB(choing’Y“(Du7Eg;B’YpTEp;|7KB0vaM }VE

1 2 2 1 . BRI PP, 1 2 1 2
+1{(p0) ~miet)-u(o)- E[Z(am oy L (v) }+Zg4(uf) Lo,a-0.4)

w=0.p

(101)

Electronic and muonic terms are then added to Eq. 101 with the imposition of the charge
neutrality and beta equilibriiun conditions.
The dispersion relation of the charged baryon that is on the n* Landau orbit is given by:

7
g (pz,n) = J[,/mé +pl s, —ngkz J +2eBn — 71?]1 - sk,B+g,m + %’Eﬁgpﬁpm (102)
de pz

CONCLUSION AND OUTLOOK

The phenomenon of pion condensation mn various nuclear media, including isosymmetric
nuclear matter and neutron stars, has been reviewed in this study. The review has shown the
underlying microscopic processes that result in this phase transition. Various elements that
enhance or inhibit the phenomenon has been investigated, including a detailed analysis of
the mathematical principles of Green function formalism and Equation of State (EOS)
approach that are usually used to study the phenomenon. Also, the review has discussed
the various effects of pion condensation including such astrophysical consequences as its
influence on the gravitational stability of neutron stars and the cooling of such stars.

For further research it will be nteresting to investigate the mfluence of pion
condensation on the shell model structure of finite nucley, the saturation properties of nuclear
matter, superfluidity and superconductivity of neutron stars. Iti1s now accepted thatneutrons
and protons inan npe gas are superfluid and the charged pion condensate 1s also superfluid
and superconductive (Suh and Mathews, 2001; Sedrakian, 2005).
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