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Abstract: Fractional derivatives are used to study a nonconservative system: free
particle m a fimite potential barrier, containing a dissipative medium. The Lagrangian
and other classical functions have been introduced to take into account
nonconservative effects. The canocnical quantization of the system is carried out
according to the Dirac method A suitable Schrodinger equation is set up and
solved for the Lagrangian representing this system.
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INTRODUCTION

All physical systems show various degrees of internal damping. Recent analysis has
shown that a fractional derivative model provides a better representation of the internal
damping of a material than an ordinary derivative model does. Usually, Newton’s law is used
to model such nonconservative systems and when a Lagrangian, Hamiltonan, variational,
or other energy-based approach is used, it is modified so that the resulting equations match
those obtained using the Newtomian’s approach (Ajloum and Al-Rabaiah, 2010).

Riewe (1996, 1997) used fractional derivatives to study nonconservative systems and
was able to generalize the Lagrangian and other classical functions to take mto account
nonconservative effects. Rabei et al. (2004) developed a general formula for the potential of
any arbitrary force, conservative or nonconservative. This led directly to the consideration
of the dissipative effects in Lagrangian and Hamiltonian formulations.

In this study we seek to consider the dissipation effects, appeared in the
nonconservative system: free particle n a finite potential barrier, quantum-mechanically
depending on the procedure of the quantization of noncomservative systems using
fractional calculus (Ajlouni, 2004; Rabei et al.,, 2006a, b, Ajlouni, 2010) which was also
applied on the Brownian motion (Rabei et al., 2006¢) and the diffusion equation (Ajlount and
Al-Rabaiah, 2010).

THEORY

According to Ajlouni theory of the quantization of nonconservative systems (Ajlouni,
2004; Rabe1 et al., 2006a, b; Ajloun, 2010), quantizing the Hamiltoman 1s to change the
coordinates and momenta, q, , and the p, ., into operators satisfying commutation relations
which correspond to the Poisson-bracket relations of the classical theory (Dirac, 1964).

Corresponding Author: Abdul-Wali Ajlouni, Department of Applied Physics,
Tafila Technical University, Tafila-Jordan Tel: +962 777 264703
152



Res. J. Physics, 4 (3): 152-159, 2010

As defined by Riewe (1996, 1997), the canonical conjugate relation was obtained directly
from Hamilton’s equation as:

aH ds(1+1)—s(i) )
= g 0<i<N-1 (1
apr,s(1) 9y sivty dit - a)s(1+1)—s(1) Qe sy

It was concluded that (Ajlouni, 2004, 2010; Rabei et af., 20064, b) p, , 1s the cancnical
conjugate of q, ;. Thus, the Hamiltonian can be written as:

ra

—1 ds(1+1) s(i)

H= ~L, 0<i<N-l

odt— s(1+1) <0 Y5 Prscy

E“M

(2)
qr s(1+l)pr s(iy L

L

For any two functions, F and G, in phase space, The most general classical Poisson
bracket was defined as (Ajloum, 2004, 2010, Rabei et al., 2006a, b):

= oF oF 9G

{EG}=3

(3)
i oq, S apr () apr,s(k) aqr,s(k)

While, the fundamental Poisson brackets read (Ajloum, 2004; Rabei et al., 2006a, b,
Ajlouni, 2010):

{q p }:E aqr,s(i) apl,s(j) _ aqr s(i) ap, () 0<i, j<N-1 (4)
SN IR A W
@i k=0 an,s(k) apm,s(k) Ip,, ) BQm (k)

=335 (5

i1l

Hamilton’s equations of motion can be written in terms of Poisson brackets as (Ajloum,
2004, 2010; Rabei et of., 2006a, b):

ds(1+1)—s(1) (6)
d(t )s(1+1) (1) qr Sy T qr LSCi+1) {qr s(iy» H}

and

ds(1+l)—s(1)

_ (7)
d(t _ a)s(1+l)—s(1) pl’:s(l) - _{pf-s(l)’H}

(_ 1)5(1+1)75(1)

These definitions are more generalized and are applicable for fractional as well as integer
systems as will as the higher-order Lagrangians with integer derivatives.

The canonical comugate variables are linked quantum-mechamecally by defining the
momentum operator as (Ajloun, 2004, 2010; Rabei et al., 2006a, b):

1= - 8
Py = m, i=0,1,.,N-1 (8)
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The quantum -mechanical operator bracket and the classical Poisson bracket are related
(Ajloum, 2004, 2010; Rabei et al., 2006a, b):

[qr,swPr,sa) T{I - [qr,smpr,s(o T Posiyes ]P =iy ®

Thus, Schrédinger equation will be (Ajlouni, 2004, 2010, Rabei et al., 2006a, b):

3
HY = i (10)
e

It follows that the commutators of the quantum-mechanical operators are
proportional to the corresponding classical Poisson brackets (Ajlouns, 2004, 2010,
Rabei et al., 2006a, b):

[qr,s(l)’pr,s(o} (_)ih{qr,sm)’pr,sm)} (1 1)

The generalize Heisenberg's equation of motion are (Ajloum, 2004, 2010; Rabei et al.,
2006a, b):

ds(i+1)—s(i) . 1 . n 12
dit - a)s(1+1)—s(1) <qr,5(l) > = E[qr.SUPH} (12
for coordinate operators and:
. ds(1+l)—s(1) 1 N
_ystisli-stiy & __l=a 13
( 1) d(t — a)s(ﬁl),s(l) pr,s(1) - ik [pr,sm: H} ( )

for momentum operators.

Finite Square Potential Barrier Containing Dissipative Medium
Suppose a one-dimensional finite square barrier of width a and a potential
(Griffiths, 1995; Merzbacher, 1970):

+VD’ if Q<x<a (14)

V(X){O

otherwise

£

where, V; 13 a (positive) constant. In the regions x<0 and x>a the potential 1s zero, so the
Schradinger equation reads:

2 2 2
e LU S L (15)
2m dx ox

with a physically admissible solution is:

Aexp(ik x) + Rexp(—ik,x) , forx <0
Texp(ik,x) , forx>a

‘P(x)={ (16)
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In the region 0<x<Ca the potential is V,, so the Schrédinger equation reads:

with a general solution is:

LI"(:l():Af%e:l(p(ﬂ-cn()JrBe:l(p(fikx), for 0< x<a

where, gk - ZmE andhk:,ban—\@)-

(17)

(18)

In the following we are going to treat the same problem with a viscous material filling the
whole space. Consider a particle moving in the dissipative medium, the viscous force on the

particle vary as the first power of its speed, i.e..:

F=-vq,

v being a positive constant. Using the formula given by Rabei et al. (2004):
o a1
U=@D<“ﬂL{§LWQmHMQ

one can derive the potential of a nonconservative force.
The potential corresponding to this dissipation 1s:

iy
U=-L
2y

In the regions x<0 and x>a the Lagrangian 1s:

1 7 Iy o
L== _
2"“11 Zq%
where,
oox g8 g o &
g R T ] d(t—a)}é
and

s0)=0,51)= 1, s(2)=1
The generalized Euler-Lagrange equation for this problem reads:

aL vod" a aa _

—+ (-1 - - =
dq, d(t-ay day, dtdg,

155

(19)

(20)

(21)

(22)

(23)
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Substituting the Lagrangian given by Eq. 22, we obtain the equation of motion:
mg +vq =0 (26)
The canonical momenta are:

¥

PR G
o a,, aoayf e T

and

dL.
=2 —m 28
p% dq, b (28)

Making use of Eq. 2, we have for the Hamiltonian:

% %

d d

= 2 )P, -L
VAL LR lay.Jp,

2
(I;};)myzpn +%q§;

H

(29)

Here p, and p,, are the canonical comjugate momenta to g, and q,,, respectively.
With Eq. 8, 10 and 29, Schrodinger's equation reads:

2 2
] #o0 # d 1
A (30)
at 2maq; i 2aqU i "

This is Schradinger’s equation for a free particle in a finite potential barrier containing
a dissipative medium. Using the method of separation of variables, we obtain the following:
the time-dependent part:

T="T,exp LT (31)
h
and the other, time-independent, part:
2 2
Ed 1, on 9
W Ly |F=E,F (32)
s T

2m dy

where q, = x and q,, = y. Letting x = uy and substituting into Eq. 32, we have:
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2 2
B 0
—————+imﬂ+zﬁ-F=Eﬁ (33)
1 2 idu
2m dy

{&_{m}yi}\(:_z]g{m}y (349
dy* | i’ 5

This has the solution (Dass and Sharma, 1998; Arfken, 1985):

The y-part reads:

(35)
Y, = Y,Ha
where H, are Hermite polynomaals.
The u-part of Eq. 33 reads:
{EfL—E }U=0 (36)
idu X
which has the solution:
iE —iE
e)‘:p(h—q“)qEl + Rexp( - 23q,, for x<0,
q q
U= _: " (37)
i
Texp(—™)q,, for a<x
hq%
Therefore:
k
m
Y, =AHa [ihz ]/q% exp
iE, -iE,
e)(p(h—)qD + Rexp( = )q,, for x<O,
b b (38)
iE
Texp(1 *3q,, for a<x
hq%

The wave function ¥ depends on canonical coordinates qp and q.,.
The drag force effects are represented clearly in the wave function and in the energy
eigenvalues.
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In the region 0<x<Ca the potential is V, the Lagrangian is:

1 7 1Y (39)
L== -=q, -V,
zmch Zq% 0

Making use of Eq. 3, we have for the Hamiltonian:

@ydz
I+ +L
o xPT

H = (409

2
+V,
Cl/y] 0

Here p, and p., are the canonical comjugate momenta to q, and gy, respectively.
With Eq. 8, 10 and 29, Schrédinger's equation reads:

ih—=Y%

R LR ] 1
o - + —+—iyq§é +VD}P (41)

m aq% Tq% dq, 2

with the solution:

¥, = AH.

my i S -
[lh—g]yq% exp L 5 exp{g(Enfvn)tx}

iE, -iE,
Aexp(_—")q, + Bexp( g,
hq% hq}é

(42)

CONCLUSION

The quentization of nonconservative system: a particle in a fimte potential barrier
containing dissipative medium has been carried out according to the quantization theory
using fractional calculus. A potential corresponding to the viscous force and a Hamiltonian
15 constructed. The relevant Schrodinger's equation has then been rest up and solved. The
viscous forces effects and hence the dissipation are represented clearly in the resultant wave
function.
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