Research Journal of

Physics

ISSN 1819-3463

@

Academic
Journals Inc. www.academicjournals.com




Research Journal of Physics 4 (3): 160-164, 2010
ISSN 1819-3463
© 2010 Academic Journals Inc.

Solving Pionic Atom with Kleim-Gordon Equation

3. Mohammadi
Department of Physics, Pavame Noor University, Mashad 91735, Iran

Abstract: Klein-Gordon equation 1s a useful quantum mechanmcal equation for a
certain class of particles. A problem with this equation arises however in the
probabilistic interpretation of its solutions as representing a single particle. The
difficulty with the Klein-Gordon equation 1s that it has both positive and negative
energy solutions. This can be shown to give rise to antiparticles which must be
included for self consistency. The Klein-Gordon equation can be used to solve the
pionic atom in a relativistically correct way; it is only appropriate for spin-0 particles
and thus does not apply directly to electrons and the real hydrogen atom. It is
useful for pionic (t) and kaonic (K) atoms. In this study with the help of
Klein-Gordon equation, we used for the first time a simple model to obtain the
energy levels of a pionic atom.
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INTRODUCTION

A pionic atom is like an ordinary hydrogen atom in which the electron is replaced by a
negative pion. These systems have been studied for fifty years but only recently has an
mvestigation of the deeply bound states been mutiated. Prior to the mid-eighties it was
believed that, due to the nuclear absorption, the deeply bound pionic states were too broad
to be distinguishable. However, subsequent calculations predicted that the repulsive part
of the pion-nucleus optical potential pushes the pion outward, leading to a smaller overlap
between the nucleus and pion wave-function (Friedman and Soff, 1985; Toki and Yamazaki,
1988; Umemoto et af., 2000; Yamazaki et al., 1998). Hence, the absorption probability 1s
decreased and even the deepest bound states are long-lived enough to be distinguishable,
having widths smaller than the separation between adjacent levels.

Pionic atoms have been studied by stopping ©~ bearus in a target and observing the
photons emitted from pionic transitions to lower levels. However, with this method it is not
possible to study the deepest bound piomc states of heavy atoms since the probability 1s
too large for the pion being absorbed by the nucleus before reaching these states. In order
to study the lowest levels, the pion must be preduced directly in a deeply bound state and
various reactions have been proposed and attempted for this purpose.

The first and so far only, observation of deeply bound pionic states was accomplished
in anz experiment using the reaction *Pb(d, *He)""Pbe ™. In order te achieve a high energy
resolution, a thin target, 50 mg cm™ of enriched **Pb, was used (Gilg et af., 2000,
Itahashi et af., 2000).

A calculation of the **Pb (y, P) *Pba ft reacticn leading to deeply bound picnic states
has recently been performed. The calculation was performed for a photon
energy of 170 MeV (Hirenzaki and Oset, 2002).

In this study with the help of Klein-Gordon equation, we used for the first time a simple
model to obtain the energy levels of a piomc atom. The relativistic relationship between the
energy E and momentum p of a free particle of spin 0 and rest mass m is:
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E* =mic'+pic? (1
Malking the substitutions
E-E,=1thd/6t, p-p,=-1AV (2)

In Eq. 1 and then acting the equation on a wave function ¥, we obtain the Sclrédinger
relativistic equation or Klein-Gordon equation for a free particle:

~H5 W5 = mic! P-hie'VE P 3)

Tt is worth noting that this is a second order differential equation with respect to time,
in contrast to the non relativistic Schrodinger equation, which is of first order m the time
derivative 3/0t. To follow the time evolution, the Klein Gordon equation requires that both
the wave function and its time derivative be specified initially and it is not obvious how one
reconciles such an evolution with that implied by a first order equation for which only the
wave function itself needs to be specified initially. Another difficulty with the Klemn Gordon
equation is that it has both positive and negative energy solutions. The currently accepted
mnterpretation 1s that the negative energy solutions describe antiparticles and that the two
initial conditions that need to be imposed are equivalent to specifying the initial values of
the wave functions for the particles and the antiparticles (Greiner, 1990).

Historically this was one of the difficulties in the interpretation of the Klein Gordon
equation. Dirac suggested that the negative energy solutions could be interpreted physically
by postulating that in the vacuum all negative energy states are filled. This is sometimes
called the sea of negative energy states. According to lum, a sufficiently energetic photon
(E = hw > 2 mc*) could knock an electron from the negative energy sea into a positive energy
state. This produces an electron and a hole. The hole acts like a positively charged electron.
Dirac’s hole theory thus predicts the existence of the positron, which is an anti-electron. Tt
1s now accepted that every particle has a corresponding antiparticle, with the only exceptions
being strictly neutral particles, which are their own antiparticle (Greiner, 1990).

In thus study, we used a charged pion particle in an electromagnetic field to solve Eq. 1
and obtain the energy levels of a pionic atom.

CHARGED PARTICLE IN AN ELECTROMAGNETIC FIELD
If the spinless particle has an electric charge q and moving in an electromagnetic field
described by a vector potential A (r, t) and a scalar potential @ (1, t), we can in analogy with
the non-relativistic case make the replacements (Gasiorowicz, 2003).
E— E-qP, p—pgA
So that Eq. 1 1s replaced by:
(E-g®)* = m*c"+c*(p-gA)* “)
Again, making the substitutions Eq. 2 in Eq. 4 and operating the equation on a wave

function @ (1, t), we obtain the Klein-Gordon equation for a spinless particle of charge q in
an electromagnetic field:
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(ih 35t-q®)* P(r, t) = m’c" W(r, t) + ¢* (-ihV-qA)* P(r, 1) (5
STATIONARY STATE SOLUTIONS

Suppose that A and @ are independent of the time. We may then look for stationary
state solutions of Eq. 5, which have the form:

Y(r,t) =¥ (r) exp (-1Et/h) (6)
Substituting Eq. 6 into Eq. 5, we obtain
o’ (-1hV-gA)* P(1) = [(E-q®)’-m’c*] F(r) (7
In particular, if A = 0 and @ is spherically symmetric, we have
-0’V ¥ (r) = [(E-q ©))” - m’e’] ¥(x) (8)
We can separate this equation in spherical polar coordinates. By writing,
¥ (1) = Refr) Y., (0, ) (%)
We can obtain for the radial functions Ry, (1), the equation
R [(d/dr+(2/r) d/dr) -1 ((+1)/7%] Ry(r) = [(E — q@)*-m’c*] Ry(r) (10
ENERGY LEVELS
Using the Klein-Gordon Eq. 10, we want to find to find the energy levels for a spinless
particle of mass m and charge q moving in the Coulomb field of a heavy nucleus of charge
Zq[® (1) = - Zq'/(4me,r)]. By defining the quantities
B=2(E-m’c""/ (he)
A = (2Zamc’)/ (hep) (1)
p=pr
I+ =1(HD)-Z?

where, a = ¢/ (4me,he) is the fine structure constant, it can be shown that the radial Klein-
Gordon Eq. 10 can be written in the following form:

[d*/dp-I (I+1)p*+A/p-] Uy (p) =0 (12)
where, Uy (p) = p Ry (p)
Now Eq. 12 is in a form which is similar to differential equation for solving ordinary

hydrogen atom 1n non-relativistic case, 1.e., Laguerre differential equation and the method of
solving it 15 by power series which can be found in any textbooks on quantum mechamcs,
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for example look at references (Gasiorowicz, 2003; Robinett, 2006). Tt can be shown that the
condition for the power series solution to terminate is:

I=n+1+1 (13)

Putting for of 1 and I' from Eq. 11, we can show that the quantized energies now depend
on both n and 1 (in contrast to the non-relativistic case) and are given by:

E.,=mdc® {1+(Ze)*/ [n+H{(Hay-(Za) Y -(H- 1)) " (14
if we expand the above result in powers of (Za), we can show that
E.,=mdc {1-(Za)* [1H(Za)* (1/ (I+42)-3/4mym + ... [/2n"} (15)
or
B, =mc*¥ me* (Ze) /' - . (16)

That 1s, to first order in (Za), the energies are quantized in terms of n and the second
order term which is proportional te (Za)*, is related to relativistic corrections to energies.

RESULTS AND DISCUSSION

Now we consider the applications of the Klem-Gordon equation in our simple model for
some 0 spin particles. Tt can be shown that the results not only apply to particles with mass,
but also to photons.

T Mesons

Charged pions p* have masses of 140 MeV/c? and a neutral pion p° was later discovered
that has a mass of 135 MeV/c* (Thomnton and Rex, 2002). Thus, the rest mass of p mesons is
m,= 260 m,, so that to first order in (Za) the energies of a pionic atom are:

E,.=- 260x13.62%m"

Photons
Since, photons have m = 0 and q = 0, Eq. & reduces to:

V2O -(1/c) 8 7P [t = 0

Which 1s appropriate to the propagation of electromagnetic fields in vacuum, for either
the scalar or vector potential (Jackson, 1999).

CONCLUSIONS

With the help of Klein-Gordon equation and considering a charged pion particle in an
electromagnetic field, we used for the first time a simple model to solve for energy states of
plonic atoms, which are particles with O spin and showed that the negative energy solutions
could be interpreted physically as antiparticles. Another success of this model is that it can
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also be used for photons which have 0 spin and rest mass. It was shown that in this case it
reduces to the propagation of electromagnetic fields in vacuum.
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