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Abstract: The influence of variation in physical variables on the steady generalized Couette
flow with heat transfer in a porous medium is studied. The fluid is acted upon by a constant
pressure gradient. The viscosity and the thermal conductivity are assumed to be temperature
dependent. The two plates are kept at two constant but different temperatures and the
viscous dissipation is considered in the energy equation. A mumerical solution for the
governing non-linear coupled equations of motion and the energy equation is obtained. The
effect of porosity, the temperature dependent viscosity, thermal conductivity and electric
conductivity on both the velocity and temperature distributions is examined.
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INTRODUCTION

The flow between parallel plates is a classical problem that has important applications in
magnetohydrodynamic power generators and pumps ete. Hartmann and Lazarus (1937) studied the
influence of a transverse uniform magnetic field on the flow of a viscous incompressible electrically
conducting fluid between two inflnite parallel stationary and insulating plates. Then the problem was
extended in numerous ways. Closed form solutions for the velocity fields were obtained (Tao, 1960,
Alpher, 1961; Sutton ef /., 1965; Cramer and Pai, 1973) under different physical effects. Some exact
and numerical solutions for the heat transfer problem are found in (Nigam and Singh, 1960; Attia ef al.,
1996). In the above mentioned cases the Hall term was ignored in applying Ohm's law as it has no
marked effect for small and moderate values of the magnetic field. However, the current trend for the
application of magnetohydrodynamics is towards a strong magnetic field, so that the influence of
electromagnetic force is noticeable (Cramer and Pai, 1973). Under these conditions, the Hall current
is important and it has a marked effect on the magnitude and direction of the current density and
consequently on the magnetic force. Abo-El-Dahab {1993) studied the effect of Hall currents on the
steady Hartmann flow subjected to a uniform suction and injection at the bounding plates. Tam (1962)
studied the Hall effect on the steady motion of electrically conducting and viscous fluids in channels.
Soundalgekar et af. (1979) and Soundalgekar and Uplekor (1986) studied the effect of Hall currents on
the steady MHD Couette flow with heat transfer. The temperatures of the two plates were assumed
cither to be constant (Soundalgekar et af., 1979) or varying linearly along the plates in the direction of
the flow (Soundalgekar and Upleker, 1986). Attia (1998) studied the Hall current effects on the
velocity and temperature fields of an unsteady Hartmann flow with uniform suction and injection.

Most of these studies are based on constant physical propertics. It is known that some physical
properties are functions of temperature (Herwig and Wicken, 1986) and assuming constant properties
is a good approximation as long as small differences in temperature are involved. More accurate
prediction for the flow and heat transfer can be achieved by considering the variation of the physical
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properties with temperature. Klemp ef al. (1990) studied the effect of temperature dependent viscosity
on the entrance flow in a channel in the hydrodynamic case. Attia and Kotb {1996) studied the steady
MHD filly developed flow and heat transfer between two parallel plates with temperature dependent
viscosity. Later Attia (1999) extended the problem to the transient state.

In the present study, the problem considered is the steady flow of a viscous incompressible fluid
with heat fransfer in a porous medium. The flow in the porous media deals with the analysis in which
the differential equation governing the fluid motion is based on the Darcy’s law which accounts for the
drag exerted by the porous medium (Joseph ef af., 1982; Ingham and Pop, 2002; Khaled and Vafai,
2003). The upper plate is moving with a uniform velocity while the lower plate is kept stationary and
the fluid is acted upon by a exponential decaying pressure gradient. The viscosity and the thermal
conductivity are assumed to vary with temperature. The two plates are kept at two constant but
different temperatures. The viscosity and thermal conductivity of the flud are assumed to vary with
temperature. Thus, the coupled set of the equations of motion and the energy equation including the
viscous dissipation term becomes non-linear and is solved numerically using the finite difference
approximations to obtain the velocity and temperature distributions.

FORMULATION OF THE PROBLEM

The fluid is assumed to be flowing between two infimte horizontal plates located at the y=th
planes. The upper plate is moving with a uniform velocity U, while the lower plate is kept stationary.
The flow is through a porous medium where the Darcy model is assumed (Khaled and Nafai, 2003).
The two plates are kept at two constant temperatures T, for the lower plate and T, for the upper plate
with T,>T,. A constant pressure gradient is applied in the x-direction. The viscosity of the fluid is
assumed to vary exponentially with temperature while its thermal conductivity are assumed to depend
lingarly on temperature. The viscous dissipation is taken into consideration. Since the plates are infinite
in the x and z-directions, the physical quantities do not change in these directions and the problem is
essenfially one-dimensional.

The flow of the fluid is governed by the Navier-Stokes equation

PV =—VP + V. (uVv)+ L, (1

where V is the velocity vector, P is the pressure, p is the viscosity of the fluid and fb is the body
force per unit volume. Using Eq. 1 and 2, the two components of the Navier-Stokes equation are

SO VL B LS (2)
dx dyl’ dy) K

where K is the Darcy permeability (Khaled and Vafai, 2003). The no-slip condition at the plates
implies that
y=-h:u=0 (3a)

y=-h:u=U, (3b)

The energy equation describing the temperature distribution for the fluid is given by White (1991):
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where T is the temperature of the fluid, ¢, is the specific heat at constant pressure of the fluid and
kis thermal conductivity of the fluid. The last term in the left-hand side of Eq. 4 represents the viscous
dissipation, respectively.

The temperature of the fluid must satisfy the boundary conditions,

T=T,y=-h (5a)
T=T,y=h (5b)

The viscosity of the fluid is assumed to vary with temperature and is defined as, p = p fi(T) and
L, is the viscosity of the fluid at T = T , By assuming the viscosity to vary exponentially with
temperature, the fimetion £{T) takes the form (Attia and Kotb, 1996), f,(T) = exp(-a,(T-T,)). In some
cases the parameter a, may be negative, i.e., the coefficient of viscosity increases with temperature
(Attia and Kotb, 1996; Attia, 1999).

Also the thermal conductivity of the fluid is varying with temperature as k =k f,(T) and k, is the
thermal conductivity of the fluid at T =T,. We assume linear dependence for the thermal conductivity
upon the temperature in the form k =k [1+b,(T-T )] (White, 1991), where the parameter b, may be
positive or negative (White, 1991).

The problem is simplified by writing the equations in the non-dimensional form. To achieve this
define the following non-dimensional quantities,

y=F 52 &= hGpﬁ:lj: T-T i
noon pult U, T,-T

{:1 (Ty=e 2T _ g7, is the Viscosity parameter,

f,(T)=1+ b (T, =T YT =1+ bT » D18 the thermal conductivity parameter,
Re=pU [y, the Reynolds number,

M =hp/(pU K),parameter,

Pr = ¢/ k,, number,

Ec=13/¢c,(T, - T) , the Eckert number,

T,=(@1/3¥) ¥=-11is the axial skin friction coefficient at the lower plate,
Ty =(@1/3¥) ¥=11is the axial skin friction coefficient at the upper plate,
Nu, = (JT/8¥ ) ¥ = -1 is the Nusselt number at the lower plate,

Nu, =(3T/8 ¥ ¥ =1 is the Nusselt number at the upper plate,

In terms of the above non-dimensional quantities the velocity and energy Eq. 3 to 6 read (the hats are
dropped for convenience)

2
Gag(mdl M e o (©)
dy dy dy
y=-lLu=0 (7a)
y=lu=1 (7b)
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2 2
Aﬁ—lmmgwmﬂg=o ®)
Pr dy dy dy
T=0,y=-1 (9a)
T=1y=1 (9b)

Equation 6 and 8 represent coupled system of non-linear ordinary differential equations which
are solved numerically under the boundary conditions (7) and (9) using the finite difference
approximations. A linearization technique is first applied to replace the nonlinear terms at a linear
stage, with the corrections incorporated in subsequent iterative steps until convergence is reached.
Then the Crank-Nicolson implicit method is used and an iterative scheme is used to solve the lincarized
systemn of difference equations. The resulting block tri-diagonal system is solved using the generalized
Thomas-algorithm {Ames, 1977). Finite difference equations relating the variables are obtained by
writing the equations at the mid point of the computational cell and then replacing the different terms
by their second order central difference approximations in the y-direction. The computational domain
is divided into meshes each of dimension Ay. We define the variables v = du/dy and H = dT/dy to
reduce the second order differential Eq. 6 and 8 to first order differential equations. The finite difference
representations for the resulting first order differential take the form

G+[E(T)m +f(T)xJ[V;+1 v JJr[E(T)m 7E(T),J{um 7ui]7
2 Ay Ay 2 (10)

M [E(T)xﬂ + E(T), J[uﬁl - j =0
2 2
1 B(Th + BBy —H ) 1 BT, -G, [H,+1 +H ]
Pr 2 Pr 2

UGM+HDM ; M%gvjo (11

The variables with bars are given initial guesses and an iterative scheme is used to solve the

linearized system of difference equations. Computations have been made for =5, Pr=1and Ec=0.2.
Grid-independence studies show that the computational domain —1<y<1 can be divided info intervals
with step size Ay = 0.005. Smaller step sizes do not show any significant change in the results.
Convergence of the scheme is assumed when all of the unknowns u, v, T and H for the last two
approximations differ from unity by less than 107¢ for all values of y in —1<y<l. Less than 7
approximations are required to satisfy this convergence criteria for all ranges of the parameters studied
here.

RESULTS AND DISCUSSION

Figure 1 presents the velocity distribution as functions of y for various values of the parameters
aand M and for b= 0. Tt is clear that increasing the parameter M decreases the velocity u for all values
of a as a result of increasing the damping force on u. On the other hand, increasing the parameter a
increases 1 for all M due to the decrease in viscosity. It is also concluded that the influence of the
parameter a on u is more pronounced for smaller porosity parameter.
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Fig. 1: (a) Variation of u with y for various values of a (b= 0, M = 0), (b) Variation of u with y for
various values of a (b =0, M = 1) and (¢) Variation of u with y for various values ofa (b =0,
M=2)

Figure 2 presents the temperature distnbution as functions of v for various values of the
parameters a and M and for b= 0. Increasing the parameter M decreases T as a result of decreasing #
and, in turn, decreases the viscous dissipation. On the other hand, increasing the parameter a increases
T for all values of M due to its effect in increasing u and consequently increasing the viscous
dissipation. It is clear also that the effect of a on T is more apparent for smaller M.

Figure 3 presents the temperatre distribution as functions of y for various values of the
parameters b and M and for a = 0. The figure indicates that the effect of b on T depends on t and
increasing b increases T at small times, but decreases T when t is large. This occurs because, at low
times, the centre of the channel acquires heat by conduction from the hot plate, but after large time,
when u is large, the viscous dissipation is large at the centre and centre looses heat by conduction. It
is clear also that the effect of b on T is more apparent for smaller M. Tt is noticed that the parameter
b has no significant effect on u in spite of the coupling between the momentum and energy equations.

Table 1 shows the dependence of the temperature at the centre of the channel on a and b for M
=1.In Table 1, T increases with increasing a for all values of b. On the other hand, for smaller
values of a, increasing b increases T, while for higher values of a increasing b decreases it. This
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1.57 (a)

Fig. 2: (a) Varation of T with v for various values of a (b= 0, M = 0), (b) Variation of T with y for
various values ofa (b =0, M = 1) and {(¢) Vanation of T with v for various values ofa (b =0,
M=2)

Table 1: Variation of the steady state temperature T at y = O for various values of aandb (M=1)

T a=-0.5 a=-01 a=10.0 a=01 a=10.5

=-0.5 0.5898 0.6569 0.6785 0.7033 0.8543
b=-0.1 0.6186 0.6099 0.6859 0.7037 0.8034
b=0.0 0.6243 0.6727 0.6876 0.7042 0.7959
b=01 0.6292 0.6749 0.6889 0.7044 0.7893
b=0.5 0.6419 0.6789 0.6901 0.7025 0.7677

is because decreasing a decreases the velocity and its gradient which decreases dissipation and makes
the cenfre gain heat by conduction. Higher values of a increases dissipation and the centre looses heat
by conduction which result in a decrease in T when increasing b.

Table 2aand b present the effect of the parameters a and b on the skin friction coefficients at both
walls 7, and T, respectively, for M = 1. Increasing a increases T, and the magnitude of t, for all b. The
effect of b on 1, and T,; depends on a. For small a, increasing b increases T; but decreases the magnitude
of t;;. On the other hand, for higher values of a, increasing b decreases t, but increases the magnitude
of 7.

Tables 3a and b present the effect of the parameters a and b on the Nusselt mumbers at both walls
Nu, and Nu,, respectively, for M= 1. Increasing « increases Nu, but decreases Nuy,. The effect of the
parameter b on Nu, depends on the value of b. Increasing b decreases Nu, but increasing b more
increases Nu; . On the other hand, increasing b decreases the magnitude of Nu,,.
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Fig. 3: {(a) Variation of T with y for various values of b (a =0, M =0}, (b) Variation of T with y for
various values of b (a=0, M= 1) and (¢) Variation of T with y for various values of b (a =0,

M=2)

Table 2a: Variation of the steady state skin friction coefficient at the lower plate T, for various values of aand b (M =1)
T a=-05 a=-0.1 a=0.0 a=01 a=0.5

=-0.5 3.7462 4.0166 4.0838 4.1507 44173
b=-0.1 3.7602 4.0211 4.0837 4.1455 4.3848
b=0.0 3.7626 4.0219 4.0837 4.1446 4.3791
b=01 3.7649 4.0228 4.0837 4.1436 4371
b=0.5 3.9724 4.0251 4.0837 4.1409 4.3587

Table 2b: Variation of the steadv state skin friction coefficient at the lower plate ty; for various values of aand b (M =1)

T a=-05 a=-01 a=10.0 a=a.1 a=0.5
b=-0.5 -1.6888 -2.4984 -2.7737 -3.0841 -4.7516
b=-0.1 -1.6499 -2.4927 -2.7738 -3.0888 -1.7675
b=0.0 -1.6434 -2.4917 -2.7738 -3.08% -4.7691
b=01 -1.6377 -2.4907 -2.7738 -3.0903 -1.7702
b=0.5 -1.6211 -2.4883 -2.7738 -3.0922 -4.7711
Table 3a: Variation of the steady state Nusselt munber at the lower plate Nuy for various values of'a and b M = 1)
Nu; a=-05 a=-0.1 a=0.0 a=01 a=0.5
b=-0.5 1.2619 1.4180 1.4677 1.5235 1.8355
=-0.1 1.2303 1.3949 1.4457 1.5018 1.8035
b=0.0 1.2313 1.3975 1.4484 1.5046 1.8043
b=01 1.2342 1.4017 1.4527 1.5089 1.8068
b=0.5 1.2531 1.4242 1.4757 1.5319 1.8239

Table 3b: Variation of the steady state Nusselt number at the upper plate Nuy, for various values ofaand b (M =1)

Nup a=-05 a=-01 a=10.0 a=a.1 a=0.5
b=-0.5 0.2554 - 0.0044 -0.1652 -0.2782 -0.9157
b=-0.1 0.1886 0.0037 -0.0536 -0.1173 -0.4661
b=0.0 0.1711 0.0037 -0.0481 -0.1054 -0.4174
b=0.1 0.1546 0.0017 -0.0454 -0.0976 -0.3793
b=0.5 0.0991 - 00144 -0.0491 -0.0872 -0.2888
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CONCLUSIONS

The steady flow between two parallel plates in a porous medium is studied. The viscosity and
thermal conductivity of the fluid are assumed to vary with temperature. The effects of the porosity
parameter M, the viscosity parameter a and the thermal conductivity parameter b on the velocity and
temperature fields are discussed. Tt is found that the parameters a and b have a more pronounced effect
on the velocity and temperature distributions for smaller values of M. On the other hand the parameter
b has no significant effect on the velocity u, however, it has a marked effect on the temperature and
its effect depends greatly on the parameters M and a. It is of interest to find that the variation of the
Nusselt number at the lower plate with the thermal conductivity parameter b depends on the values
of b.

NOMENCLATURE

a: Viscosity parameter

b: Thermal conductivity parameter
¢, Specific heat at constant pressure
Ec: Eckert number

k: Thermal conductivity

K: Darcy permeability

P: Pressure gradient

Pr: Prandtl number

M: Porosity parameter

T: Temperature of the fluid

T,: Temperature of the lower plate
T,: Temperature of the upper plate
U,: Velocity of the upper plat

u: Velocity component if the x-direction
v: Velocity of the fluid

: Axial direction

: Distance in the vertical direction

. Viscosity of the fluid

: Density of the fluid

=i = ]
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