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ABSTRACT
Background: The purpose of this study is to observe the effects of flow parameters on velocity and microrotation in
a similar flow of micropolar fluids between two disks in the presence of a magnetic field. Method: In this analysis,
the similarity transformations have been used to transform the governing highly non linear partial differential equations
of motion. The resulting ordinary differential equations are solved numerically using Successive Over Relaxation
(SOR) method and Simpson’s (1/3) Rule. The numerical results have been improved by Richardson extrapolation to
the limit. Results: The results have been obtained for velocity and microrotation for several values of the squeeze
Reynolds number R and Hartmann number M and the material constants C’s related to micropolar fluids viscosity
coefficients. Comparison of the results for Newtonian and micropolar fluids is presented. Conclusion: The research
concludes that the micropolar fluids flow resembles with that of Newtonian fluids when the material constants become
close to zero but the micropolar behavior becomes prominent with the increasing values of these constants. The
present results have practical applications in industry and lubrication phenomena.
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INTRODUCTION considered   the micropolar fluid flow in the
Eringen  introduced and formulated the theory of1, 2

micropolar fluids. These fluids exhibit certain
microscopic effects due to the local structure and micro
motions of the fluid elements. Ariman et al.  discussed3

special features of micropolar fluids. Moreover,4,5

provided extensive surveys of literature of the theory of
micropolar fluids .The flow of an electrically conducting
fluid between two parallel, rotating disks in the presence
of an external magnetic field is of interest in the study of
certain geographical phenomena and also in the theory of
magnetohyherodynamic (MHD) lubrication. The flow
of fluid between parallel plates has attracted the attention
of a lot of researchers. Singh and Smith  examined the6

plane parallel flow of micropolar fluids between two
infinite plates with constant suction and injection.
Kasiviswanathan and Gandhi  obtained a class of exact7

solutions for the MHD flow of a micropolar fluid
confined  between  two  infinite,  insulated,  parallel,
non-coaxially rotating disks. Hussain and Kamal  studied8

boundary layer flow for micropolar electrically
conducting fluid on a rotating disk in the presence of
magnetic  field.  Unsteady  flows  of micropolar fluid
have  been  considered  by  number  of  authors. Chawla9
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neighborhood of a flat plate started impulsively and
found the dominant characteristics of two modes of wave
propagation during the initial and final stages of growth.
Pop  investigated the problem of unsteady flow past a10

wall which starts impulsively to stretch from rest. The
motion of an electrically  conducting  fluid film squeezed
between two parallel disks in the presence of a transverse
magnetic field was studied by Hamza . Flow of an11

electrically conducting non-Newtonian fluid past a
stretching surface  was  studied  by Able et al.   when  a12

uniform magnetic field  acts  transverse  to  the  surface.
Hussain et al.  obtained  numerical  solutions  for13

magnetohydrodynamic boundary layer flow over a
rotating disk.

The present research deals with the study of similar
flow of micropolar fluids between two parallel disks
which at time t are spaced a distance H(1-"t)  apart and1/2

a magnetic field proportional to B (1-"t)  is applied0
G1/2

perpendicular to the disks, where H denotes a
representative length, B  denotes a representative0

magnetic field applied perpendicular to the disks and "G1

denotes a representative time. The numerical results have
been obtained for the velocity and micro rotation for
different values of squeezing Reynolds number R in the
range 0<R#20 and the magnetic force parameter M in the
range 0#M#50.
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MATERIAL AND METHOD
The micropolar fluid flow is considered to be

axisymmetric  and  incompressible.  Fluid  is contained
between two parallel infinite disks. The distance
between the disks at time t is h(t) = H(1-"t) . The1/2

upper  disk  is  moving   with   velocity   hr(t)  towards
the  lower   fixed  disk.  It  is  also supposed that the
lower disk is at z = 0 and the upper one is at z = h(t),
where h(0)  = H.  A  magnetic  field  B(t)  proportional
to B (1-"t)  is applied perpendicular to the two disks.0

G1/2

The cylindrical coordinates (r, 2, z) are being used.
Under these assumptions the governing equations of

motion for micropolar fluid are given as under:

(1)

(2)

(3)

Where x the velocity vector LO, p the microrotation or
spin, p the pressure, FO the body force, D is the fluid
density, µ denotes dynamic viscosity coefficient, j the
micro-inertia density, ( spin gradient density and 6
vortex density. 

The  electromagnetic  body force as given by
Rossow  is:14

(4)

Using  the   dimensional    analysis,   the  velocity
x(u, 0, w) and micro rotation LO1(0, L2, 0) are assumed to
be of the form:

(5)

The boundary conditions are as under:

u = 0, w = 0, L  = 0 at z = 02

u = 0, w = hr, L  = 0 at z = h(t)2

The mass conservation Eq. 1 is identically satisfied
and Eq. 2 yields:

(6)

(7)

Where:

Whence the differentiation of Eq. 6 with respect y
and Eq. 7 with respect to r lead to equation below after
some manipulations:

(8)

and Eq. 3 yields:

(9)

where, prime denotes differentiation with respect to y
and dimensionless material constants are given by:

The corresponding boundary conditions are: 

f(0) = 0, fr(0) = 0, L(0) = 0
f(1) = 0.5, fr(1) = 0, L(1) = 0 (10)

FINITE-DIFFERENCE EQUATIONS
For numerical purpose, equation (8) is integrated to

yield:

(11)

where, C is a constant of integration. Now let:

fr = q (12)

Equations 11 and 9, respectively become:

(13)

(14)

 subject to the boundary conditions:

f(0) = 0, q(0) = 0, L(0) = 0
f(1) = 0.5, q(1) = 0, L(1) = 0 (15)



2 2 2
n 1 n n

2
n 1 1 n 1 n 1

y
(1 Rh( fn))q (2 h M h R(2 q ))q

2
y

(1 Rh( fn))q C h(L L ) h 0
2

+

− + −

− − − + + +

+ + − − − + β =

2 2 2
2 n n 1 2 3 n n

2
n n 1 3 n 1 n 1

y
(2C h( f ))L (4C 4C h 3h h q )L

2
y h

(2C h( f ))L C (q q ) 0
2 2

+

− + −

− − − + + +

+ + − + − =

n
n 1 n 6
i ii 1

max U U 10¯+

=
− <

 RESEARCH ARTICLE SCIENCE INTERNATIONAL

© 2014 Science International 

59

In order to obtain the numerical solution of The  above  steps  1  to  4  are  repeated  for  higher
nonlinear ordinary differential Eq. 13 and 14, these
equations are approximated by using central difference
approximation  at  a  typical  point  y = y  of the intervaln

(0, 1) and yield respectively:

(16)

(17)

where, h denotes a grid size. The Eq. 12 is integrated
 numerically.  Also  the  symbols used denote q  = q(y ),n  n

f  = f(y ) and L  = L(y )n  n   n  n

COMPUTATIONAL PROCEDURE
Finite difference equations 16 and 17 and the first

order ordinary differential equations 12 are solved
simultaneously by using SOR method Smith  and15

Simpson's (1/3) rule Gerald  with the formula given in16

Milne , respectively subject to the appropriate boundary17

conditions.
The order  of the sequence of iterations is as follows:

C The equations (16) and (17) for the solution of q and
L are solved subject to the following boundary
conditions:

q = 0, L = 0 at y =0
q = 0, L = 0 at y =1

C For the solution of f, the computed values of q from
above step are used in to equations (12) and then
integrated by Simpson's (1/3) rule subject to the
following initial conditions:

f = 0 at y=0

C The optimum value of the relaxation parameter Topt

is estimated to accelerate the convergence of the
SOR method

C The SOR procedure is terminated when the
following criterion is satisfied for each of q and L:

where, n denotes the number of iterations and U stands
for each of q and L.

grid levels h/2 and h/4. The SOR procedure gives the
solution of frand L of order of accuracy O(h )due to2

second  order  finite  differences used in Eq. 16 and 17.
While Simpson’s (1/3) rule gives the order of accuracy
O(h )in the solution of fr. Higher order accuracy of O(h )5          6

in the solution  of  fr  on  the  basis  of above solution is
achieved by using Richardson's extrapolation to the limit
Burden . The  constant   of  integration  C  is determined18

by  hit  and trial using the zero-order perturbation
resultsf = y  (3/2-y), fr = 3y(1-y) in the region of mid2

plane y=1/2.

RESULTS AND DISCUSSION
The numerical results for velocity components f, fr

and microrotation function L have been computed for
different values of R and M for three different sets of
material constants C , C  and C , chosen arbitrarily and1  2  3

given in the Table 1.
The accuracy of numerical results is checked by

comparing   the   results   on   different   grid sizes,
namely  h  =  0.025,  0.0125  and  0.006.  The  different
cases  of  the  material  constants  as  given  in  Table  1
have been considered.  It  is  observed  that  the
micropolarity of the  fluids  becomes more prominent
for larger values of these constants than the smaller
values.   Also,   the   numerical   results   have   been
obtained separately for three different cases of these
constant to make a better understanding  of  the  behavior
of   micropolar   fluids.  The  results  of  f,  f  and  L  are
given in Table 2 and 3 in the case-II of material constants.
The  extrapolated  results forf’ are given in the Table 4
and 5 in the case-III of material constants. The
comparison for Newtonian and micropolar fluids is
given in Table 6.

Graphically, Fig. 1a shows the radial velocity f for
small R and large values of M. Fig. 1b-c  exhibit the
pattern of radial flow f’ for small values of R with slight
and moderate magnetic field M. Fig. 1d depicts the radial
velocity distribution for moderate squeezing Reynolds
number R with small values of M .The results for large
squeezing and small to medium values of M is presented
in Fig. 1e-f. The comparison of Newtonian fluid and
micropolar  fluid  flow  is  given  in  the  Fig.  2a-b.
Figures 3a-c demonstrate the non- dimensional
microrotation    field    L    for    different   values   of   the

Table 1: Three different sets of material constants C , C  and C1  2  3

Cases C  C C1  2 3

I 0.1 0.05 0.01
II 1.0 0.50 0.10
III 0.5 1.50 2.50
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Table 2: Numerical results of f, fN and L using SOR method and Simpson’s Rule on finer grid size for specified values of the parameters R, M and the case-II
of material constants  

M = 10.0, R = 0.01 M = 40.0, R = 0.01
--------------------------------------------------------------------------- ------------------------------------------------------------------------
y f fN L y f fN L
0.000 0.000000 0.000000 0.000000 0.000 0.000000 0.000000 0.000000
0.200 0.070936 0.540262 0.002260 0.200 0.092088 0.526217 0.000330
0.400 0.188513 0.612169 0.000493 0.400 0.197363 0.526392 -0.000364
0.600 0.311567 0.612156 -0.001446 0.600 0.302641 0.526391 -0.000761
0.800 0.429140 0.540227 -0.002884 0.800 0.407914 0.526210 -0.001007
1.000 0.500070 0.000000 0.000000 1.000 0.500002 0.000000 0.000000

Table 3: Numerical results of f, f’ and L using SOR method and Simpson’s Rule on finer grid size for specified values of the parameters R, M and the case-II
of material constants 

M = 5.0, R = 15.0 M = 10.0, R = 20.0
--------------------------------------------------------------------------- -------------------------------------------------------------------------
y f fN L y f fN L
0.000 0.000000 0.000000 0.000000 0.000 0.000000 0.000000 0.000000
0.200 0.066310 0.529209 0.002777 0.200 0.074663 0.545288 0.001934
0.400 0.185596 0.634660 0.000878 0.400 0.190311 0.593132 0.000348
0.600 0.313725 0.635368 -0.001550 0.600 0.309257 0.593313 -0.001230
0.800 0.433321 0.531648 -0.003219 0.800 0.425026 0.546556 -0.002501
1.000 0.500083 0.000000 0.000000 1.000 0.500035 0.000000 0.000000

Table 4: Numerical results using Richardson extrapolation method for fN for specified values of the parameters R, M and the case-III of material constants
M = 0.0, R = 0.01 M = 30.0, R = 0.01
---------------------------------------------------------------------------- -------------------------------------------------------------------------
h = 0.025 h = 0.012 h = 0.006 Extrapolated h = 0.025 h = 0.012 h = 0.006 Extrapolated
--------- ----------- ---------- -------------------------- ------ --------- -------- ----------------------------
y fN fN fN fN y fN fN fN fN
0.000 0.000000 0.000000 0.000000 0.000000 0.000 0.000000 0.000000 0.000000 0.000000
0.200 0.484843 0.484875 0.484914 0.484929 0.200 0.534317 0.534454 0.534494 0.534508
0.400 0.730746 0.730789 0.730845 0.730867 0.400 0.535788 0.535799 0.535806 0.535809
0.600 0.730762 0.730797 0.730851 0.730873 0.600 0.535770 0.535780 0.535815 0.535830
0.800 0.484872 0.484890 0.484925 0.484939 0.800 0.534267 0.534405 0.534439 0.534450
1.000 0.000000 0.000000 0.000000 0.000000 1.000 0.000000 0.000000 0.000000 0.000000

Table 5: Numerical results using Richardson extrapolation method for f’ for specified values of the parameters R, M and the case-III of material constants
M = 0.0, R = 20.0 M = 20.0, R = 20.0
--------------------------------------------------------------------------- -------------------------------------------------------------------------
h = 0.025 h = 0.012 h = 0.006 Extrapolated h = 0.025 h = 0.012 h = 0.006 Extrapolated
--------- ----------- ----------- ---------------------------- ---------- --------- ----------- ----------------------------
y f’ f’ f’ f’ y f’ f’ f’ f’
0.000 0.000000 0.000000 0.000000 0.000000 0.000 0.000000 0.000000 0.000000 0.000000
0.200 0.516654 0.521238 0.523252 0.524000 0.200 0.542790 0.544709 0.545498 0.545789
0.400 0.642731 0.644459 0.645125 0.645369 0.400 0.593001 0.593513 0.593532 0.593529
0.600 0.648032 0.646969 0.646376 0.646149 0.600 0.593802 0.593615 0.593559 0.593540
0.800 0.532886 0.528995 0.527106 0.526395 0.800 0.548142 0.547132 0.546586 0.546378
1.000 0.000000 0.000000 0.000000 0.000000 1.000 0.000000 0.000000 0.000000 0.000000

Fig. 1: Continue
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Fig. 1(a-f): (a) Graph of f' for different values of M when R=0.01 and the case-II of material constants, (b) Graph of
f' for different values of M when R=1.0 and the case-II of material constants, (c) Graph of f' for different
values of M when R=5.0 and the case-II of material constants, (d) Graph of' for different values of M when
R=10.0 and the case-II of material constants, (e)  Graph of ' for different values of M when R=15.0 and the
case-II of material constants and (f)  Graph of f' for different values of M when R=20.0 and the case-II of
material constants .  Graph of f' for different values of M when (a) R=0.01 (b) R=1.0 (c) R=5.0, (d) R=10.0
(e) R=15.0 (f) R=20.0 and the case-II of material constants

Fig. 2(a-b): (a) Comparison of f' for micropolar and Newtonian fluids from top to bottom for the values of R=0.01,
M=0.0 and the case-III of material constants and (b) Comparison of f' for micropolar and Newtonian
fluids from top to bottom for the values of R=1.0, M=0.0 and the case-III of material constants.
Comparison of f' for micropolar and Newtonian fluids from top to bottom for the values of (a) R=0.01,
M=0.0 (b) R=1.0, M=0.0 and the case-III of material constants

parameters R and M. The magnitude of microrotation Usual parabolic distribution in the radial direction
decreases with increasing values of M and increasing is observed. Further, it is found that for fixed R, there is
values of Reynold’s number R decrease the a slight increase in the value of f’ near the disks and a
microrotation. slight   decrease   in   the   region  of  the  mid  plane  with
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Fig. 3(a-c): (a) Graph of non dimensional microrotation component L for R=0.0, for different values of M and the
case-II of material constants, (b)  Graph of non dimensional microrotation component L for R=5.0, for
small and moderate values of M and the case-II of material constants and (c) Graph of non dimensional
microrotation component L for large squeezing. Reynolds number R=15.0, for small and moderate values
of M and the case-II of material constants. Graph of non dimensional microrotation component L for (a)
R=0.0, for different values of M (b) for R=5.0, for small and moderate values of M (c) for large squeezing
Reynolds number R=15.0, for small and moderate values of M and the case-II of material constants

increase in the values of M. This increase and decrease 4. Lukaszewicz, G., 1999. Micropolar Fluids: Theory
become more prominent with more increase in M, also and Application. Birkhauser, Basle, Switzerland,
the radial   velocity   profiles   become   more   flat  in  the ISBN-13: 9780817640088, Pages: 253.
interior region for all values of R. While the magnitude 5. Eringen, A.C., 2001. Microcontinuum Field
of radial flow decreases with increase in R for fixed Theories  II  Fluent  Media.  1st Edn., Springer,
values of M. These results agree with the previous New  York,  USA.,  ISBN-13: 978-0387989693,
findings as given by Hamza , Hussain . Pages: 356.19  20

CONCLUSION micropolar    fluid    suction    and   injection.
The similar flow of micropolar fluids between two Tensor, N.S., 27: 131-134.

disks in the presence of a magnetic field is considered. 7. Kasiviswanathan,  S.R. and M.V. Gandhi, 1992. A
The value velocity component f’ is larger for micropolar class of  exact  solutions  for  the
fluids than for Newtonian fluids. The increasing magnetohydrodynamic flow of a micropolar fluid.
magnitude of the magnetic field decreases the Int. J. Eng. Sci., 30: 409-417.
microrotation. Also, the increasing values of Reynold 8. Hussain, S. and M.A. Kamal, 2012.
number R decrease the microrotation. The material Magnetohydrodynamic boundary layer micropolar
constants C’s affect the microrotation of micropolar fluid flow over a rotating disk. Int. J. Comput.
fluids flow. If one of these constants C  is zero the Applied Math., 7: 301-313.1

micropolar fluid flow becomes the Newtonian fluid 9. Chawla, S.S., 1972. Boundary layer growth of a
flow. micropolar fluid. Int. J. Eng. Sci., 10: 981-987.
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