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Abstract

Background and Objectives: Biosensors are very popular and useful devices that have a very big area of use in various fields. This is the
main reason due to which they are reliable, cheap and highly sensitive. The main objective of this study was to derive an
approximate analytical solution for the substrate concentration, inhibitor concentration and the product concentration for the three
basic types of reversible inhibitor enzyme systems and to discuss the effect of each parameter on the magnitude of concentrations.
Materials and Methods: The mathematical model has been solved using new approach to Homotopy Perturbation Method (NHPM)
and Homotopy Analysis Method (HAM). Both the solutions were compared with the numerical solution obtained using MATLAB.
Results: It was found that, though both the solutions make a good fit with the numerical results, HAM was better of the two for this
problem. Conclusion: The HAM was used to obtain the non-steady state expressions for substrate concentration, inhibitor concentration
and product concentration profiles and have been presented in this study for the first time. The output current for biosensors in each of
the cases have also been derived. The sensitivity analysis was performed for output current.
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INTRODUCTION

Biosensor amperometric transducers usually work in static
mode and majority research papers are made in this mode'?.
Itis known that the decay time of transient process is long for
tissue biosensors and hence dynamic measurements could
also be considered®”.

In the enzyme reactions, enzyme E and substrate S react
and ES complex is formed. After that ES is transformed to a
transition complex ES. Competitive inhibitors can bind to E,
but not to ES. Competitive inhibition increases Ks (i.e., the
inhibitor interferes with substrate binding), but does not affect
Vs (the inhibitor does not hamper catalysis in ES because it
cannot bind to ES). Non-competitive inhibitors have identical
affinities for E and ES (K, = K/'). Non-competitive inhibition
does not change K; (i.e., it does not affect substrate binding)
but decreases Vs (i.e., inhibitor binding hampers catalysis).
Mixed-type inhibitors bind to both E and ES but their affinities
for these two forms of the enzyme are different (K, = K/'). Thus
mixed-type inhibitors interfere with substrate binding
(increase Ks) and hamper catalysisin the ES complex (decrease
V). All the three types of enzyme inhibitor kinetic models of
biosensors in dynamic mode with competitive inhibition,
non-competitive inhibition and mixed inhibition have been
investigated previously’. The mathematical models thus
framed had been solved numerically using MATLAB and no
analytical solution has been reported. This study has been
written to derive approximate analytical expressions for the
steady state and non steady state concentrations of substrate,
inhibitor and productin all the three types of enzyme inhibitor
kinetic models.

The derived expressions will help to analyze the effect of
the different parameters on the concentrationsin all the three
types of enzyme inhibitor kinetic models. Further, a parameter
sensitivity analysis has been carried out to quantify the effect
of each parameter. The parameter sensitivities can be used to
identify where future experimental efforts should be focused
on.

Non-linear mathematical models similar to the
mathematical model considered here> have been previously
solved only in the steady state®° using the new approach to
homotopy perturbation method.Till date, no non-steady state
solution has been reported for this kind of a model. In this
study, homotopy analysis method is proved to be a better
method for solving this model when compared to the new
approach to homotopy perturbation method. The non-steady
state solution thus derived is presented here for the first time.
The analytical solution derived here may be used to derive an
approximate analytical solution for all analogous models'.
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The main objective of this study was to derive an
approximate analytical solution for the substrate
concentration, inhibitor concentration and the product
concentration for the three basic types of reversible inhibitor
enzyme systems and to discuss the effect of each parameter
on the magnitude of concentrations.

MATERIALS AND METHODS

The mathematical model previously framed' has been
solved analytically using two semi-analytical methods.

Study area: The mathematical analysis was carried out at
the Department of Mathematics, The Madura College,
Madurai, Tamil Nadu, India from April-November, 2019.

Mathematical formulation of the problem: The partial
differential equations modeled for the biosensors in dynamic
mode follows'.

The governing partial differential equations for
competitive inhibition are:
2,
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The governing partial differential equations for
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The governing partial differential equations for mixed
inhibition are:

S 7S v, s
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Subject to the following boundary conditions:
t=0,S(x,0) =S, 1(x, 0) =5, P(x, 0) =0
x=0,5(0,1)=S,1(0,) =1, P(0, ) =0

Atx=d:

a3
ox

0l
oX

=0,P(d,1t)=0

x=d x=d

The output current is given by:

oP

| =nFAD, — (13)

x=d

New approach to homotopy perturbation method and
homotopy analysis method: Solving non-linear reaction
diffusion equations play a vital role in different fields of
Science and Engineering. To solve such problems, there are
various analytical and numerical methods. In order to obtain
an approximate analytical solution of such non-linear
differential equations, semi-analytical methods such as; the
Variational Iteration method'®, Adomian decomposition
method',Homotopy analysis method and Homotopy
perturbation method''° are applied.

The homotopy perturbation method is a powerful and
efficienttechnique for finding solutions of nonlinear equations
without the need of a linearization process. The method was
firstintroduced in the year 1998225, Homotopy Perturbation
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Method (HPM) is a combination of the perturbation and
homotopy methods. This method had been successfully
applied to solve many nonlinear mathematical models?53".
Lately, a new approach to HPM3235 s used to solve nonlinear
differential equations in zeroth iteration itself.

The homotopy analysis method is powerful
semi-analytical technique to solve nonlinear ordinary/partial
differential equations. The homotopy analysis method uses
the concept of the homotopy from topology to generate a
convergent series solution for nonlinear systems. Homotopy
Analysis Method (HAM) was first proposed in the year 1992
and has been successfully applied to solve many problems in
Physics and Science3%%, In comparison with other perturbative
and non-perturbative analytical methods, HAM offers the
ability to adjust and control the convergence of a solution via
the so-called convergence-control parameter. This property
of the HAM has proved it to be the most effective method
for obtaining analytical solutions to highly non-linear
differential equations.

a

Approximate analytical solution to the steady state

of Eq. 1-12 using new approach to homotopy

perturbation method: Using new approach to homotopy

perturbation method, the solution for competitive
inhibition is:
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The solution for mixed inhibition is:
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Approximate analytical solution to the steady state of

Eq. 1-12 using homotopy analysis

method:

Using

homotopy analysis method, the solution for competitive

inhibition is:

Px

hSVs

2DP[KS{1+}I<OIJ+53]

x(x—d)

(23)

(24)

The solution for non-competitive inhibition is:

]X(d§

)
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hSVs

2DP[[1+|'<°|](KS+SO)]

The solution for mixed inhibition is:

S~ S, + hSVs

x(x—d)
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Approximate analytical solution to Eq. 1-12 using (2nfalng
(-1)'e " cos 2n+1 (~x+d) |
homotopy analysis method: Using homotopy analysis 16hV.S, i 2d "
method  and laplace  transform technique, the [1+|0j(K .5)" (2n+1)°r°D,
solution for competitive inhibition in the non steady K )V®
state is:
(35)
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The solution for non-competitive inhibition in the non
steady state is: (38)
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Approximate analytical expression for current Eq. 13: Non steady state current for competitive inhibition is:
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Steady state current for competitive inhibition is:

nFAhVSd
ZK{“'KO}Z% (a4)

Steady state current for non-competitive inhibition is:

nFAhVSd

| =7 S0
2[1+}'(°J(K3+3,) (45)

Steady state current for mixed inhibition is:

nFAhV Sd
lo to (46)
2[K3[1+ K, j+SD[1+ KI.]]

Numerical simulation: The nonlinear reaction diffusion

Eq. 1-9 with respect to the initial and boundary conditions
10-12 are also solved numerically. The function pdex4 has
been used in MATLAB software to solve the initial-boundary
value problem numerically. The derived analytical results are
compared with the numerical simulation.

RESULTS
The steady state approximate analytical expressions for

the substrate concentration, inhibitor concentration and
product concentration have been derived using the new

homotopy perturbation method (Appendix A) and using
homotopy analysis method (Appendix B). The two results are
compared with the numerical solution obtained using
MATLAB in Fig. 1-3 and parameter values which are used in
graph construction of different figures are defined in Table 1.
The error percentage in each figure is tabulated in Table 2-10.
The non-steady state approximate analytical expressions
for the substrate concentration, inhibitor concentration
and product concentration have been derived using
homotopy analysis method (Appendix C). The MATLAB
programs for the mathematical models' are given in
Appendix D. The sensitivity analysis was carried out for output
current of the biosensor with competitive inhibition, non
competitive inhibition and mixed inhibition for fixed values of
parameters (Table 11).

Figure 7-9 showed the substrate concentration, inhibitor
concentration and product concentration profiles for the
biosensor with non-competitive inhibitions for various values
of parameters. The figures indicate that substrate
concentration varies directly with Ks and D, while inversely
with Vs and K. A similar effect is experienced on the inhibitor
concentration as well. The product concentration varies
directly with V.

Figure 10-12 showed the substrate concentration,
inhibitor concentration and product concentration profiles
for biosensors with mixed inhibitions for various values of
parameters. The figures clearly indicate that substrate
concentration increases with increase in Ks and Ds, while
decreases with increase in Vs, K, and K,. The same effect is
experienced on the inhibitor concentration as well. The
product concentration varies as V.

Table 1: Parameter values used in the construction of Fig. 1-21

Parameter S, (mM) I (mM) Vs d n F A Ks K, Ky Ds D, D h
Value 5 2 2mMsec™ Tpum 2 96.5As/mmol 7.85X107m? 0.6mM 06mM 2mM 2 (um)?sec”’ 2 (um)>sec™ 3 (um)?sec™' -1
Se: Starting concentration of the measured substrate (mM), |,: Starting concentration of the inhibitor (mM), Vs: Maximal reaction velocity (mM sec™), d: Thickness of
the active membrane (um), Ks: Reaction constant for substrate (mM), K;: Reaction constant for inhibitor toward E (mM), K": Reaction constant for inhibitor toward ES
(mM), Ds: Diffusion coefficient of substrate (um? sec™"), D;: Diffusion coefficient of inhibitor (um? sec™), D: Diffusion coefficient of product (um? sec™), F: Faraday's
number (A.s mmol~), A: Area of the cathode of the indicator electrode (m2), n: Number of electrons taking part in electrochemical reaction on the electrode surface

Table 2: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values

inFig. 1a
Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new
Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method

Substrate concentration (S)

0 5 5 5 0 0

0.2 4.87962 4.88039 4.886957 0.015923 0.1504
0.4 4.78576 4.78737 4.799646 0.03371 0.290244
0.6 4.71858 4.72092 4.737607 0.049564 0.40318
0.8 4.67823 4.68105 4.700514 0.060408 0.476399
1 4.66477 4.66776 4.688171 0.064235 0.501722

Average absolute (%) error 0.037307 0.303657
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Table 3: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values

in Fig. 1b
Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new
Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Concentration (I)
0 2 2 2 0 0
0.2 1.879617764 1.880394737 1.886956704 0.041337 0.390449
0.4 1.785755160 1787368421 1799645518 0.090341 0.777842
0.6 1.718582334 1720921053 1.737606706 0.136084 1.106981
0.8 1.678226590 1681052632 1.700513605 0.168395 1.32801
1 1.664766760 1667763158 1.688170902 0.179989 1.405851
Average absolute (%) error 0.102691 0.834855

Table4: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values

in Fig. 1c
Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new
Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Product concentration (P)
0 0 0 0 0 0
0.2 0.04571683802 0.04385964914 0.04035087722 4.06237 11.7374
0.4 0.06873838850 0.06578947370 0.06052631582 4.29006 11.9469
0.6 0.0688774243 0.06578947370 0.06052631582 4.48326 12.1246
0.8 0.0459934168 0.04385964914 0.04035087722 4.63929 12.2681
1 0 0 0 0 0
Average absolute (%) error 29125 8.01283

Table 5: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values

in Fig. 2a
Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new
Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Substrate concentration (S)
0 5 5 5 0 0
0.2 4.961837023 4.962541209 4.963458362 0.014192 0.032676
0.4 4.932029615 4.933406593 4.935099374 0.027919 0.062241
0.6 4910670488 4912596154 4914876279 0.039214 0.085646
0.8 4.897827387 4.900109890 4902755743 0.046602 0.100623
1 4.893541588 4.895947802 4.898717785 0 0
Average absolute (%) error 0.021321 0.046864

Table 6: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values

in Fig. 2b
Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new
Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Inhibitor concentration (1)
0 2 2 2 0 0
0.2 1.961837023 1.962912088 1963458363 0.054799 0.082644
04 1.932029615 1.934065934 1.935099373 0.105398 0.158888
0.6 1.910670488 1913461538 1914876281 0 0
0.8 1.897827387 1.901098901 1.902755747 0 0
1 1.893541588 1.896978022 1.898717786 0.181482 0.273361
Average absolute (%) error 0.056946 0.085815
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Appendix A: Approximate analytical solution for the steady state model using NHPM
Equation 1-3 in steady state become:

s v

— %  s-0
S ox? |
Kg| 1+— [+S
K

ol V,
— S S=0
oX |
Ks| 1+— [+S
K,
o°P V,
D, + S
X

Homotopy for Eq. A1-A3 are constructed as follows:

2 2
apl S A s|ipl 28

— s 3|=0
ox? | ox? |
Dg| Kg| 1+ |+S, Dg| Kg| 1+— |+S
K, K

1
o°l V, o°l V,
1-p)| —-——F——"3>—S|+p| ———>——5|=0
-p) 5= - Pl >a |
D,| Kg 1+K—I +S, D | Kg 1+K—| +S
2 2
1-p) ZXF:+ Vs aP+ Vg

(A.1)

(A4)

P (A.6)
D,| Kg 1+K—| +S
Let the approximate solution of Eq. A4-A6 be:
S=SHpSHP’S,+ .. (A7)
I=1o#pl PPt .. (A8)
P = Py+pP+p’P+ ... (A9)
The boundary conditions for the above equations becomes:
Atx=0:
$=%5=5=5=..=0 (A10)
lo=lgl,=1,=1,=..=0 (A.12)
P,=P,=P,=P;=..=0 (A12)
Atx=d:
%S| _08| _55) -0 (A.13)
OX [y OX| g OX[_4
ol _Oh) _db) _ g (A.14)
ox x=d Xlpg Xy
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Appendix A: Continued

P,=P,=P,=P,=..=0 (A.15)

Substituting Eq. A7-A9 in Eq. A4-A6 and equating the coefficients of p°, the following is obtained:

DS[KS(1+|0]+S,] (A.16)
K,
a2 v
o _ s S, =0
62
X DS[KS[1+|°]+SOJ (A17)
Kl
DS[KS[1+|I<OJ+S)J (A18)

Solving Eq. A16-A18 using boundary conditions A10-A15 and using the approximation S = S, | = o, P = Py

The above three equations give the solution of the steady state of Eq. 1-3.
Similarly, solving the steady state of Eq. 4-6 and 7-9, the solutions given in Eq. 17-19 and 20-22 are obtained respectively.
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Appendix B: Approximate analytical solution for the steady state model using

HAM

The homotopy for steady state of Eg. 1-3 are framed as

follows:

1-p) 'S =ph DS[KS[HKL}-S} azs—VSS

| ox? | . ox?

(l—p)ia—zlifph D,| K l+L +S a—ZI—VS
| ox* | 150 K e F

2 2
1-p) il =ph DP[KS(HL}-S}@ |Z+VSS
K ox

Let the approximate solution of Eq. B.1-B.3 be:

S=SHPSHP’S,* -

| = lg+pl+p2l+ ...

P = Py+pP+p7Py+ ..

The boundary conditions for the above equations become:

At,x=0:
$=%.8=5=5=..20
lo=lg l,=1,=1,=..=0
P,=P,=P,=P,=..=0
Atx=d:

s sl as|

BX x=d aX x=d 6x x=d

Al | _a,

axxfd axx:d 8)( x=d
P,=P,=P,=P,=..=0

Substituting Eq. B4-B6 in Eq. B1-B3 and equating the coefficients of p®and

p', the following is obtained:

respectively.

d? d? 0?
o d;a _ deZO —h{DS[KS[l+—°I]+Sc] aXS; vssfl (B.16)
d2|17(12|07h ok 1+I_0 ‘s, 0§, s, (8.17)
(B.1) dx?>  dx? hos ‘ oxz2  ° )
R %P, [ I %S,
- =h|D,| Ky 1+—2 -V,
(B.2) dx®  dx? R K, S ox? = (B18)
Solving Eq. B13-B15 using boundary conditions B7-B12:
(B.3)
$=Slo=1sP,=0 (B.19)
Solving Eq. B16-B18 using boundary conditions B7-B12:
(B.4) 5 - hS,Vs X[ qe % j
| (B.20)
Dy| Ko| 1+-2 |+
- {kfrie)s )
(B.6)
I, = hSVs X d—%j
D[Ks[l+l°]+SDJ (6.21)
K\
(B.7)
P MSVs x(x-d)
&8 ' | (8.22)
2D, KS[1+K—°]+Sb -
(B.9) '
Substituting Eq. B19-B22 in Eq. B4-B6:
B.10
©.10 sto+—hs°vs x[d—%)
DS[KS[1+'0]+SD] (8.23)
KI
(B.11)
|~|0+¢x[d7%]
(B.12) D.[Ks[l+|'<°]+80] (8.24)
|
PzLx(x—d)
| B.25
(B.13) 2DP[KS[1+K°]+SD] (8.25)
|
(B.14) The above three equations give the solution of the steady state of
Eq. 1-3.
Similarly, solving the steady state of Eq. 4-6 and 7-9,
(B.15) the solutions  given in Eq. 26-28 and 29-31 are obtained,
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Appendix C: Approximate analytical solution for the non steady state model using HAM

The homotopy for Eqg. 1-3 are constructed as follows:

(lp){[KS[1+LJ+S][DSa—Z§§] =ph [KS[1+L]+S][D58_2§§jVSS:| (cn
K, ox* ot K, ox* ot

| o4 al ] [ | o4 ol
(l—p)HKS[1+K—I]+S][D, poe —EJ =ph [KS[HK_}—SJ[D'W_EJ_VSS} (C.2)

1- p)HKS[1+KL]+S](DP%%J =ph [Ks[lJrKLJJrS][DP 2)2(5 %}rvss} (C3)

Let the approximate solution of Eq. C1-C3 be:

S=SHpSHP’S,+ .. (C4)
I= Ig+pl PPl . (C5)
P = PytpP+p°Pyt ... (C.6)
The boundary conditions for the above equations become:
Att=0:
$=%5=5=5=..=0 (C7)
lo=lp l,=1,=1,=..=0 (c.8)
P,=P,=P,=P;=..=0 (C9)
Atx=0:
$=8,5=5=5=..=0 (C.10)
lo=lp l,=1,=1,=..=0 (c11)
P,=P,=P,=P;=..=0 (C12)
Atx=d:
S S oS,
0| =2 22 - =0 Nl
5X x=d aX x=d Bx x=d (C 3)
al, al, al,
-2 == =—2] =..=0 14
Bx x=d Bx x=d aX x=d (C )
P,=P,=P,=P;=..=0 (C.19)
Substituting Eq. C4-C6 in C1-C3 and equating the coefficients of p° and p', the following is obtained:
o’s, 95
°:D -—2=0 (C.16)
p STox? ot
2
Dy _dy (C17)
oX ot
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Appendix C: Continued

Applying laplace transform to Eq. C16-C21 with respect to t:

Ds

a625—(s§—so<t:0>):o

A, (—
D, —(slo—lo(t:O)):O

25 —
2R (s -R(t=0)=0

ox?

D,

[KS[HL—‘)I}SO]HDS ‘(’f ~(S-sc= @)H =h[-Vss,]
k)]

[K5[1+|'<—°j+snj [Dp Zi@—(sﬁ—a(t—m)ﬂ—h[vsso]

[D, ‘(’;{E —(sﬂ— I(t= m)ﬂ -h[-vs]

Solving Eq. C22 using boundary conditions C7-C15, So(x) :i:
s

Taking the inverse laplace transform, S, (x) = S,

(C.18)

(C19)

(C.20)

(C21)

(C22)

(C.23)

(C24)

(C.25)

(C.26)

(C27)

(C.28)
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Appendix C: Continued

Solving Eq. €23 using boundary conditions C7-C15, 1,(x) :I?":

Taking the inverse laplace transform, I, (x) = I,

(C.29)
Solving Eq. C24 using boundary conditions C7-C15, E: 0:

Taking the inverse laplace transform, P, (x) =0 (C.30)

Solving Eq. C25 using boundary conditions C7-C15:

€3
SZ[KS(“LD.}S“J[ cosh Disd

Now, let us invert Eq. C31 using the complex inversion formula.
In order to invert Eq. C31:

cosh S x—d
Res| VS, (1— DS( )
s
SZ[KS[hII(”jJrSU]L COSh,/Ed

needs to be evaluated.

Now, finding the poles of § there is a pole at s= 0 and there are infinitely many poles given by the solution of the Eq:

cosh,|>-d=0
\Ds

i.e., there are infinite number of poles at:

~(2n+1)"2°Dg
S, :T
where,n=1,2,3, ...
Hence:

s=0

s
cosh (x-d)
V.S, ( Ds
+Res| e = 1- C32
2 lo cosh,|->d >
s Kg 1+K—I +S, Ds

=5,
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Appendix C: Continued
The first residue in Eq. C32 is given by:

cosh \/E (x-d)
Res| VS, (1— 2

S
SZ[KS[lJr}I("]Jer]L cosh %d

0

S
t 4. hvs (m\l?s(x_d) L s

“s—0ds | S |
KS(1+K—"I]+SOL cosh Ed KS(1+K—‘]I]+SO
hVSx* . dhV S x

Iy Iy
2[K5[1+I<IJ+SD]DS [K5[1+I<IJ+SD]DS
:L[d_g
[KS[lJrlI("]JrSOJDS (C.33)

The second residue in Eq. C32 is given by:

s, (1_ cosh\/DES(x—d) |
SZ[KS[1+}I<"J+37]L OOSh\/gd

Res| €*

ds=s,

s
o, hV,S, cosh D—S(x—d)

= €
s—s,
| Kg 14do +S 91 cosn [-S-d
K, ds Ds

_(2n+))’5Dgt
16hv B (—1)n e cos( zggln(—x er)]d3
= = > 5 (C.34)
I o (2n+1) =°Dg
Kg| 1+ |+S,
K,
Using the Eq. C33-C34in Eq. C32:
hVS)x X
(0= {3
[KS{1+K°J+S)JDS
~(2n+1)sDgt
16h . (—1)"& a cos[ 2n+1n(7 er)jd3
=) > (C35)
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Appendix C: Continued
Solving Eq. C26 using boundary conditions C7-C15:

cosh |5 (x—d)
Il(x)sz[Ks[:jiz}so]{l ShsEDd e

Now, let us invert Eq. C36 using the complex inversion formula.
In order to invert Eq. C36:

( cosh\/g(x—d)
hVeS, 1 D,
ssz[lﬁ-lI(—‘)‘jﬁ-S)L COSh\/DEId

Now, finding the poles of E thereis a pole at s = 0 and there are infinitely many poles given by the solution of the Eq:

cosh |=-d=0
Dl

Res|

needs to be evaluated.

i.e., there are infinite number of poles at:

~(2n+1)" %D,
S, = yre
where,n=1,2,3,..
Hence:
( cosh, |2 (x~d)
L*(I,) =Res VS, 1- '
o cosh id
[32K5[1+KJ+S0] D,

s=0

+Res| & VS - ‘ (€37
| S
SZ[K{hKO.}S“]L cosh Ed
=S,
The first residue in Eq. C31 is given by:
( cosh ,Di(x—d)
Res hVsS, 1 '
2 I sh > d
s [Ks[lJrK”]Jrsb]L Co! D,
' s=0
cosh i(x—d)
- It d ot hVsS, D, S t
s—>0d
—Ee KS[1+|—°]+SDL cosh Did KS[1+I|(—°]+S0
I ! I
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hVS,x®

dhV S x

Z[Ks[h'KoI}so]D

hV Sx

ek

=

KS(1+I—°]+S0 D, (C.38)
I<|
The second residue in eqn. (C37) is given by:
( cosh D—(x—d)
Res| € VS 1- ‘
2 ! sh. [=d
s [KS[1+K°|]+SO co D,
Js=s,
hVS, cosh i(x—d)
It o D,
Tsos,t
" @ k1o |es [ o [Sod
K ds D,
(2n+1)°x2D;t
(-)’e  “ cos 2n+1n(_x+d) d*
—16hVS, < 2d
= h) — (C.39)
I Pl (2n+1) °D,
Ks| 1+ = [+S
K\
Using Eq. C38 and C39in Eq. C37:
1(x) = S [d7§]
|
[KS[1+}(D]+S)]D|
(2n+1)wDyt
(-)'e  “ cos 2n+ln(—x+d) o
16hV,S, = 2d
— (C40)
[ [ |0} ]no (2n+1)'%°D,
K| 1+—- [+§
KI
Solving Eq. C27 using boundary conditions C7-C15:
) (sinh fDix—sinh Di(x—d)
T V.
R(x)= S i P -1 (41

bt

Now, let us invert Eq. C41 using the complex inversion formula.
In order to invert Eq. C41:

sinh [--d
DP
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e (snh\/ix snh\/7x d)
§[K{1+}'<°I]+SOJL S““\/;

Appendix C: Continued

Res|

needs to be evaluated.

Now, finding the poles of El there is a pole at s = 0 and there are infinitely many poles given by the solution of the Eq:

sinh |=_d=0
DP

i.e., there are infinite number of poles at:

_ -n’n’D,

where,n=1,2,3, ...
Hence:

(snh\/:x snh\/ﬁ X — d
L’l(E) =Res VS,
SZ[K{1+}I<°I]+SOJL smh\/;

(smh\/ix smh\/i X — d
WS -1 (C42)
S [K [1+ J+SD]L snh\/;

+Res

The first residue in Eq. C42 is given by:

smh\/:x smh\/i(x d)
VS, D, Dy )

Res

2 I inh |24

s [K{HK"I}-SDM sin D,
s=0
= hVeSx (x-d)
2{K5[1+|°J+SDJDP (C43)
KI
The second residue in Eq. C42 is given by:

Res| €

=5,
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s (—1)”97" C {sin[n—;[(xfd)jfén(nit;(n

= | 2 D (C44)
K| 142 )
Using the Eq. C43 and C44 in Eq. C42:
1()()7 hV Sx ’x—d)
2{K5[1+|°J+SDJDP
K\

o T (g . nnx
2hVSD,d? & (2)e [sn[T(x_d)]_sn(T]]

|0 o T'I3TIZ3Dp
K S[14— K—I] +S

From Eq. C4-C6, S = Sg+5,, | = ly+1; and P = Py+P;, hence:

'
+

(C.45)

<3

(2n+2) 72Dt

(—1)n e cos[ 2n+1 n(—x+ d)jd3

2d

[K{MKO}SD] " (2n+2)"xD;

(C.46)

(24222t
C(-)'e cos( 2251n(—x+d)jd3

[K{hk}%j " (2n+2) =D,

(C.47)

o T (np - ( nnx
s ) (-1)°e [sn[F(x—d)]—sn(T]]

[t )]

The above three equations give the solution of Eq. 1-3.
Similarly solving Eqg. 4-6 and 7-9, the solutions given in Eq. 38-40 and 41-43 are obtained respectively.

'
+

(C.48)

S
>
a
©
O
°
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Appendix D: MATLAB program to find the numerical solution u2 =sol(;;2);

Competitive reversible inhibition system (Eq. 1-3) u3 =sol(;;3);

function pdex1 figure

m=0; plot(x,uT(end,:))

x = linspace(0,1); title('u1(x,t)")

t = linspace(0,1000); xlabel('Distance x")

sol = pdepe(m,@pdex1pde,@pdexlic,@pdex1bcx,t); ylabel('time')

ul =sol(;;1); figure

u2 =sol(;:;,2); plot(x,u2(end,:)

u3 =sol(;:,3); title('u2(x,t)")

figure xlabel('Distance x")

plot(x,ul(end,)) ylabel('u2(x,3)")

title(u1(x,t)") figure

xlabel('Distance x') plot(x,u3(end,:)

ylabel('time') title('u3(x,t)")

figure xlabel('Distance x")

plot(x,u2(end,:)) ylabel('u3(x,3)")

title('u2(x,1)") %

xlabel('Distance x') function [c,f,s] = pdex1pde(x,t,u,DuDx)
ylabel('u2(x,3)") c=[1;1,1];

figure f=[1;1;11.*DuDx;

plot(x,u3(end,:) s0=>5;

title('u3(x,t)") i0=2;

xlabel('Distance x') Vs=2;

ylabel('u3(x,3)") Ks =0.6;

% Ki=0.8;

function [cf,s] = pdex1pde(x,t,u,DuDx) Kid = 2;

c=[1;1;1]; Ds=2;

f=1[1;1;11.*DuDx; Di=2;

s0=5; Dp=3;

i0=2; F1=-u(1)*Vs/(Ds*(1+u(2)/Ki)*(Ks+u(1)));
Vs=2; F2 =-u(1)*Vs/(Di*(14+u(2)/Ki)*(Ks+u(1)));
Ks = 0.6; F3 = u(1)*Vs/(Di*(14+u(2)/Ki)*(Ks+u(1)));
Ki=0.4; s=[F1;F2;F3];

Kid = 2; %

Ds=2; function u0 = pdex1ic(x)

Di=2; lamda=1;

Dp=2; u0 = [5;2;0];

F1 =-u(1)*Vs/(Ds*Ks*(1+u(2)/Ki)+Ds*u(1)); %

F2 =-u(1)*Vs/(Di*Ks*(1+u(2
F3 =u(1)*Vs/(Dp*Ks*(1+u(2
s=[F1;F2;F3];

%

)/Ki)+Ds*u(1));
) 0

u
/Ki)+Ds*u(1));;

function u0 = pdex1ic(x)
lamda=1;
u0 = [5;2,0];

%
function [pl,gl,pr,qrl=pdex1bc(xl,ulxr,ur,t)
pl = [ul(1)-5;ul(2)-2;ul(3)-0];

ql =1[0;0,0];

pr = [0;0;ur(3)-01;

qr=[1;1,0%;

Non-competitive reversible inhibition system (Eq. 4-6)

function pdex1
m=0;

x = linspace(0,1);

t = linspace(0,1000);

sol = pdepe(m,@pdex1pde,@pdexlic,@pdex1bc,x.t);
)A

ul =sol(;;1);

function [pl,gl,pr,qrl=pdex1bc(xl,ulxr,ur,)
pl = [ul(1)-5;ul(2)-2;ul(3)-01;

gl =1[0;0,01;

pr = [0;0;ur(3)-0J;

gr=1[1;1,0;

Mixed reversible inhibition system (Eq. 7-9)

function pdex1

m=0;

x = linspace(0,1);

t =linspace(0,1000);

sol = pdepe(

ul =sol(;:,1);
)
)

u2 =sol(:,2);
u3 =sol(;:,3
figure
plot(x,uT(end,:))
title('u1(x,t)")
xlabel('Distance x')
ylabel('time')
figure

’

m,@pdex1pde @pdexTic,@pdex1bc,xt);
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plot(x,u2(end,:)
title('u2(x,1)")
xlabel('Distance x')
ylabel('u2(x,3))
figure
plot(x,u3(end,:)
title('u3(x,1)")
xlabel('Distance x')
ylabel('u3(x,3))

0y
(4

function [cf,s] = pdex1pde(x,t,u,DuDx)

c=[1;1;1];

f=1[1;1;11.*DuDx;

s0=5;

i0=2;

Vs=0.5;

Ks = 0.6;

Ki=0.6;

Kid = 2;

Ds=2;

Di=2;

Dp=3;

F1 =-u(1)*Vs/(Ds*(Ks*(1+u(2)/Ki)+u(1)*(1+u(2)/Kid)));
F2 =-u(1)*Vs/(Di*(Ks*(1+u(2)/Ki)+u(1)*(1+u(2)/Kid)));
F3 = u(1)*Vs/(Dp*(Ks*(1+u(2)/Ki)+u(1)*(1+u(2)/Kid)));
s=[F1;F2;F3];

%
function u0 = pdex1ic(x)
lamda=1;

u0 = [5;2;0];

%
function [pl,gl,pr,qrl=pdex1bc(xl,ulxr,ur,t)
pl = [ul(1)-5;ul(2)-2;ul(3)-0;

ql =[0;0,01;

pr = [0;0;ul(3)-0];

qr=1[1;1,0;

Figure 1-3 clearly showed that the solution obtained
using the homotopy analysis method is the closest to the
numerical solution and hence is the better of the two
methods for this problem. Thus, the homotopy analysis
method is used to find the non-steady state solution of the
problem.

Figure 4-6 showed the substrate concentration, inhibitor
concentration and product concentration profiles for
biosensors with competitive inhibitions for various values of
parameters. The figures clearly showed that substrate
concentration increases with increase in K and Ds, while
decreases with increase in V. and K. A similar effect is
experienced on the inhibitor concentration as well. That
is, the inhibitor concentration increases with increase in
K; and D, while decreases with increase in Vs and K.
The product concentration increases with increase in
Vs.
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Fig. 1(a-c): Profile of the (a) Substrate concentration (S),
(b) Inhibitor concentration (I) and (c) Product
concentration (P) versus distance (x) for the
competitive reversible inhibition system for values
of parameters given in Table 1
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Fig. 2(a-c): Profile of the (a) Substrate concentration (S), Fig. 3(a-c): Profile of the (a) Substrate concentration (S),

(b) Inhibitor concentration (I) and (c) Product (b) Inhibitor concentration () and (c) Product
concentration (P) versus distance (x) for the concentration (P) versus distance (x) for the mixed
non-competitive reversible inhibition system for reversible inhibition system for values of
values of parameters given in Table 1 parameters given in Table 1
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Fig. 4(a-d): Substrate concentration (S) versus distance (x) for the competitive reversible inhibition system obtained by varying

one parameter and keeping all other parameters fixed
Refer parameter values given in Table 1

Table7: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 2c

Distance (x)

Numerical
solution

Analytical solution
using homotopy
analysis method

Analytical solution using
new approach to homotopy
perturbation method

Absolute (%) error
for homotopy
analysis method

Absolute (%) error for
new approach to homotopy
perturbation method

Product concentration (P)

0
0.2
0.4
0.6
0.8
1

0
0.01687097680
0.02538638454
0.02545351202
0.01700461295
0

Average absolute (%) error

0
0.01538461538
0.02307692307
0.02307692307
0.01538461538
0

0
0.01428571428
0.02142857142
0.02142857142
0.01428571428
0

0
8.81017
0
0
9.52681
0
3.05616

0
153237
0
0
15.9892
0
5.21882

Table 8: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 3a

Distance (x)

Numerical
solution

Analytical solution
using homotopy
analysis method

Analytical solution using
new approach to homotopy
perturbation method

Absolute (%) error
for homotopy
analysis method

Absolute (%) error for
new approach to homotopy
perturbation method

Substrate concentration (S)

0
0.2
0.4
0.6
0.8
1

5

4.925915766
4.867983631
4.826433133
4.801433531
4.793088591

Average absolute (%) error

5

4928571429
4.873015873
4.833333333
4.809523810
4.801587302

5

4.930567633
4.876792003
4.838502347
4.815577081
4.807943407

0
0.053912
0

0
0.168497
0.177312
0.06662

0
0.094437
0
0
0.294569
0.309922
0.116488
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Fig. 5(a-d): Inhibitor concentration (I) versus distance (x) for the competitive reversible inhibition system, obtained by varying

one parameter and keeping all other parameters fixed
Refer parameter values given in Table 1

Table9: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values

in Fig. 3b

Numerical
Distance (x) solution

Analytical solution
using homotopy
analysis method

Analytical solution using
new approach to homotopy
perturbation method

Absolute (%) error
for homotopy
analysis method

Absolute (%) error for
new approach to homotopy
perturbation method

Inhibitor concentration (I)

0 2 2 2 0 0
0.2 1.925915766 1.927857143 1.930567633 0 0
0.4 1.867983631 1.871746032 1.876792004 0.201415 0.471544
0.6 1.826433133 1.831666667 1.838502347 0 0
0.8 1.801433531 1.807619048 1.815577082 0 0
1 1793088591 1.799603175 1.807943407 0.363316 0.828449
Average absolute (%) error 0.094122 0.216665

Table 10: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values

in Fig. 3¢

Numerical
Distance (x) solution

Analytical solution
using homotopy
analysis method

Analytical solution using
new approach to homotopy
perturbation method

Absolute (%) error
for homotopy
analysis method

Absolute (%) error for
new approach to homotopy
perturbation method

Product concentration (P)

0 0 0 0 0 0
0.2 0.02180228850 0.02137566138 0.020680699 0 0
0.4 0.03283677425 0.03206349206 0.030923573 0 0
0.6 0.03295042719 0.03206349206 0.030842465 269173 6.39737
0.8 0.02203040289 0.02137566138 0.020518430 297199 6.86312
1 0 0 0 0 0
Average absolute (%) error 0.94395 2.21008
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Fig. 6: Product concentration (P) versus distance (x) for the competitive reversible inhibition system, obtained by varying Vs and
fixing all other parameters as in Table 1
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Figure 13a depicted the substrate concentration for
biosensors with competitive, non-competitive and mixed
inhibition. From the figure, it is clear to observe that for fixed
values of parameters the substrate concentration is the least
for competitive inhibition, higher for mixed inhibition and
becomes the maximum for non-competitive inhibition.
From Fig. 13b, it can be seen that the same happened for
inhibitor concentration also. But, from Fig. 13c, it is noted
that the reverse happened for product concentration. The
product concentration is maximum for competitive mixed
inhibition, lower for mixed inhibition and becomes the least
for non-competitive inhibition.

Figure 14-16 represented the non-steady state solutions
for substrate concentration, inhibitor concentration and
product concentration for biosensors with competitive,
non-competitive and mixed inhibition respectively.

Figure 17a-c showed three-dimensional substrate
concentration, inhibitor concentration and product
concentration versus time and distance for a biosensor
with competitive inhibition, while Fig. 18 and 19 represented
the same for biosensors with non-competitive and mixed
inhibitions respectively.

Figure 20-22 respectively showed the steady state output
current of the biosensors with competitive, non-competitive
and mixed inhibitions for various values of parameters. From
the figures, it can be seen that for biosensors with all three
inhibitions, the output current increases with increase in S,
and Vs while decreases with increase in |, and K.
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Table 11: Sensitivity analysis of parameters for output current for parameter
values given in Table 1

Nature of inhibition Parameter Rate of change in current
Competitive So 9.674627980x 107°
lo -3.721010755X10°°
Vs 6.697819363 X 10°°
Ks -0.1612437997 X 10~*
K 0.1240336920x 10~*
Non-competitive So 2.608285428 X106
lo -2.675164537X107°
Vs 3.477713899X 1076
Ks -4.347142377X107°
K 8.917215114X 1076
Mixed So 5.925481030x 10°°
lo -3.418546752X 107
Vs 5.241771696 X 107°
Ks -9.875801698 X 10-°
K 7.596770547 X10-°

Table 1 gives the values of the parameters used in the
construction of graphs. Table 2-10 showed the percentage
deviation of the derived analytical results from the numerical
result obtained using MATLAB. The deviation percentage is
not more than 3% when the model is solved using homotopy
analysis method and hence is considered to be the better
choice of the two methods considered. Table 11 showed the
sensitivity analysis carried out for output current of the
biosensor with competitive inhibition for fixed values of
parameters. The derived result showed that S, Vs and K
have a positive impact on output current, while I, and K
have negative impact. The sensitivity analysis for output
current of the biosensors with non-competitive and mixed
inhibition gave similar results. These results are also verified in
Fig. 20-22.

DISCUSSION

The steady state and non-steady state solutions for the
non linear mathematical model considered have been
presented. This is the first time that this kind of a model is
mathematically analyzed. Correlating the result derived in
this study with the previous literature, it is found that the
three-dimensional graphs plotted using the analytical
solutions are identical to the three dimensional graphs
previously simulated using MATLAB’. This provides evidence
that the analytical solutions derived here make an excellent fit
with the numerical results and hence may be accepted as an
approximate analytical solution for the model’. Moreover, the
previous result presented’” was numerical, which is a point
wise solution, while the result presented here is a general
solution for any interval.
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Though the analytical result derived here does make a
deviation with the numerical values, the error is not a big deal.
Hence, the solution derived under non-steady state will help
the researchers to interpret the effect of the different
parameters over the substrate concentration, product
concentration, inhibitor concentration and non-steady state
current. The researchers may use this result to predict the
outcome of the experiments they want to perform. This will
save time, money and energy.

From Table 11, the output current of the biosensor varies
directly with Sy, Vs and K, while varies inversely with |, and K.
Hence, the key drivers in increasing the output current are
K, Sp and V.. Which means, an increase in either of the three
results in an increased output current. On the contrary, |, and
K; have a negative impact on the output current. Their
decrease will increase the output current.

Mathematical models developed in similar situations'®
have been until now been solved only in the steady state®®,
The solution derived here will help in deriving time dependent
analytical solutions for all such similar models.

CONCLUSION

Timeindependent nonlinear partial differential equations
(steady state) for reversible inhibitor biosensor systems in
dynamic mode are solved analytically using the new
homotopy perturbation method and homotopy analysis
method. It is observed that the solution obtained using
homotopy analysis method makes a very close approximation
to the numerical solution obtained using MATLAB and hence
is considered to be the better of the two methods to solve this
problem.Consequently, the time dependent nonlinear partial
differential equations for reversible inhibitor biosensor
systemsin dynamic mode are solved using homotopy analysis
method. Results obtained are in excellent agreement with the
steady state result. The results of this work will provide a better
understanding of the non-steady state. Further, the sensitivity
analysis will give a clear picture about the significance of the
parameters over the output current.

To the best of our knowledge, no analytical solution has
been derived for the steady and non-steady state of this
mathematical model so far. The solutions presented in this
study are presented for the first time.

SIGNIFICANCE STATEMENT

This study proposes the analytical expressions for the
substrate concentration, product concentration and inhibitor
concentration in terms of other parameters. This study will
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help the researchers to estimate the outcomes of an
experiment, before doing it practically. The derived results
could be used by researchers to extend their research and
frame more relevant mathematical models.
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