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Abstract
Background and Objectives: Biosensors are very popular and useful devices that have a very big area of use in various fields. This is the
main reason due to which they are  reliable,  cheap  and  highly  sensitive.  The  main  objective  of  this  study was  to  derive  an
approximate  analytical  solution  for the substrate concentration, inhibitor concentration and the product concentration for the three
basic types of reversible inhibitor enzyme systems and to discuss the effect of each parameter on the magnitude of concentrations.
Materials and Methods: The mathematical  model  has been solved using new approach to Homotopy  Perturbation  Method  (NHPM)
and Homotopy Analysis Method (HAM). Both the solutions  were  compared  with  the  numerical solution obtained using MATLAB.
Results: It was found that, though both the solutions make a good fit with the numerical results, HAM was better of the two for this
problem. Conclusion: The HAM was used to obtain the non-steady state expressions for substrate concentration, inhibitor concentration
and product concentration profiles and have been presented in this study for the first time. The output current for biosensors in each of
the cases have also been derived. The sensitivity analysis was performed for output current. 
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INTRODUCTION

Biosensor amperometric transducers usually work in static
mode and majority research papers are made in this mode1-5.
It is known that the decay time of transient process is long for
tissue biosensors and hence dynamic measurements could
also be considered6,7. 

In the enzyme reactions, enzyme E and substrate S react
and ES complex is formed. After that ES is transformed to a
transition complex ES. Competitive inhibitors can bind to E,
but not to ES. Competitive inhibition increases KS (i.e., the
inhibitor interferes with substrate binding), but does not affect
VS  (the inhibitor does not hamper catalysis in ES because it
cannot bind to ES). Non-competitive inhibitors have identical
affinities for E and ES (KI  = KI’). Non-competitive inhibition
does not change KS (i.e., it does not affect substrate binding)
but decreases VS  (i.e., inhibitor binding hampers catalysis).
Mixed-type inhibitors bind to both E and ES but their affinities
for these two forms of the enzyme are different (KI … KI’). Thus
mixed-type inhibitors interfere with substrate binding
(increase KS) and hamper catalysis in the ES complex (decrease
VS). All the three types of enzyme inhibitor kinetic models of
biosensors in dynamic mode with competitive  inhibition,
non-competitive inhibition and mixed inhibition have been
investigated previously7. The mathematical models thus
framed had been solved numerically using MATLAB and no
analytical solution has been reported. This study has been
written to derive approximate analytical expressions for the
steady state and non steady state concentrations of substrate,
inhibitor and product in all the three types of enzyme inhibitor
kinetic models. 

The derived expressions will help to analyze the effect of
the different parameters on the concentrations in all the three
types of enzyme inhibitor kinetic models. Further, a parameter
sensitivity analysis has been carried out to quantify the effect
of each parameter. The parameter sensitivities can be used to
identify where future experimental efforts should be focused
on.

Non-linear mathematical models similar to the
mathematical model considered here5,6 have been previously
solved only in the steady state8,9 using the new approach to
homotopy perturbation method. Till date, no non-steady state
solution has been reported for this kind of a model. In this
study, homotopy analysis method is proved to be a better
method for solving this model when compared to the new
approach to homotopy perturbation method. The non-steady
state solution thus derived is presented here for the first time.
The analytical solution derived here may be used to derive an
approximate analytical solution for all analogous models1-6.

The main objective of this study was to derive an
approximate analytical solution for the substrate
concentration, inhibitor concentration and the product
concentration for the three basic types of reversible inhibitor
enzyme systems and to discuss the effect of each parameter
on the magnitude of concentrations.

MATERIALS AND METHODS

The mathematical model previously framed1 has been
solved analytically using two semi-analytical methods.

Study area: The  mathematical  analysis  was  carried out at
the Department of Mathematics, The Madura College,
Madurai, Tamil Nadu, India from April-November, 2019.

Mathematical formulation of the problem: The partial
differential equations modeled for the biosensors in dynamic
mode follows1.

The governing partial differential equations for
competitive inhibition are:
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The governing partial differential equations for
non-competitive inhibition are:
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The governing partial differential equations for mixed
inhibition are:
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Subject to the following boundary conditions:

t = 0, S(x, 0) = S0, I(x, 0) = I0, P(x, 0) = 0 (10)

x = 0, S(0, t) = S0, I(0, t) = I0, P(0, t) = 0 (11)

At x = d:
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The output current is given by: 
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New approach to homotopy perturbation method and
homotopy analysis method: Solving non-linear reaction
diffusion equations play a vital role in different fields of
Science and Engineering. To solve such problems, there are
various analytical and numerical methods. In order to obtain
an approximate analytical solution of such non-linear
differential equations, semi-analytical methods such as; the
Variational Iteration method10, Adomian decomposition
method11,Homotopy analysis method12 and Homotopy
perturbation method13-19 are applied.

The homotopy perturbation method is a powerful and
efficient technique for finding solutions of nonlinear equations
without the need of a linearization process. The method was
first introduced in the  year  199820-25.  Homotopy  Perturbation

Method (HPM) is a combination of the perturbation and
homotopy methods. This method had been successfully
applied to solve many nonlinear mathematical models26-31.
Lately, a new approach to HPM32-35 is used to solve nonlinear
differential equations in zeroth iteration itself.

The    homotopy   analysis  method   is    a    powerful
semi-analytical technique to solve nonlinear ordinary/partial
differential equations. The homotopy analysis method uses
the concept of the homotopy from topology to generate a
convergent series solution for nonlinear systems. Homotopy 
Analysis Method (HAM) was first proposed in the year 1992
and has been successfully applied to solve many problems in
Physics and Science36-38. In comparison with other perturbative
and non-perturbative analytical methods, HAM offers the
ability to adjust and control the convergence of a solution via
the so-called convergence-control  parameter.  This  property
of the HAM has proved it  to  be  the  most  effective  method 
for obtaining analytical solutions to highly non-linear
differential equations. 

Approximate    analytical   solution   to   the    steady   state
of  Eq.  1-12  using  new  approach to homotopy
perturbation method: Using new approach to homotopy
perturbation  method,  the  solution  for  competitive
inhibition is:
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The solution for non-competitive inhibition is:
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The solution for mixed inhibition is:

(20) 
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Approximate  analytical  solution  to  the  steady  state  of
Eq. 1-12 using homotopy  analysis  method:  Using
homotopy analysis method, the solution for competitive
inhibition is:
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The solution for non-competitive inhibition is:
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The solution for mixed inhibition is:
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Approximate  analytical  solution to Eq. 1-12 using
homotopy analysis method: Using homotopy analysis
method      and     laplace     transform   technique,   the
solution   for   competitive   inhibition  in  the  non  steady
state is:
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(34)

The solution for non-competitive inhibition in the non
steady state is:
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The solution for mixed inhibition in the non steady state
is:
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Approximate analytical expression for current Eq. 13: Non steady state current for competitive inhibition is:
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Non steady state current for non-competitive inhibition is:

(42)
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Non steady state current for mixed inhibition is:

(43)
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Steady state current for competitive inhibition is:
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Steady state current for non-competitive inhibition is:
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Steady state current for mixed inhibition is:
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Numerical   simulation:   The  nonlinear  reaction   diffusion
Eq. 1-9 with respect to the initial  and  boundary  conditions
10-12 are also solved numerically. The function pdex4 has
been used in MATLAB software to solve the initial-boundary
value problem numerically. The derived analytical results are
compared with the numerical simulation. 

RESULTS 

The steady state approximate analytical expressions for
the substrate concentration, inhibitor concentration and
product    concentration   have   been  derived  using  the  new

homotopy  perturbation  method  (Appendix  A)  and using
homotopy analysis method (Appendix B).  The two results are 
compared  with  the  numerical  solution obtained using 
MATLAB  in  Fig.  1-3 and parameter values which are used in
graph construction of different figures are defined in Table 1.
The error percentage in each figure is tabulated in Table 2-10.
The non-steady   state  approximate  analytical   expressions
for   the  substrate  concentration,  inhibitor  concentration
and product concentration   have   been   derived   using
homotopy analysis method (Appendix C). The MATLAB
programs for the  mathematical models1 are given in
Appendix D. The sensitivity analysis was carried out for output
current of the biosensor with competitive inhibition, non
competitive inhibition and mixed inhibition for fixed values of
parameters (Table 11).

Figure 7-9 showed the substrate concentration, inhibitor
concentration and product concentration profiles for the
biosensor with non-competitive inhibitions for various values
of parameters. The figures indicate that substrate
concentration varies directly with KS and DS, while inversely
with VS and KI. A similar effect is experienced on the inhibitor
concentration as well. The product concentration varies
directly with VS.

Figure 10-12 showed the substrate concentration,
inhibitor concentration  and  product  concentration profiles
for biosensors  with  mixed  inhibitions  for various values of
parameters. The figures clearly indicate that substrate
concentration  increases  with increase in KS and DS, while
decreases  with  increase  in  VS,  KI  and KI’. The same effect is
experienced on the inhibitor concentration as  well.  The
product concentration varies as VS.

Table 1: Parameter values used in the construction of Fig. 1-21
Parameter S0 (mM) I0 (mM) VS d n F A KS KI KI’ DS DI DP h
Value 5 2 2 mM secG1 1 µm 2 96.5 A.s/mmol 7.85×10G7 m2 0.6 mM 0.6 mM 2 mM 2 (µm)2 secG1 2 (µm)2 secG1 3 (µm)2 secG1 -1
S0: Starting concentration of the measured substrate (mM), I0: Starting concentration of the inhibitor (mM), VS: Maximal reaction velocity (mM secG1), d: Thickness of
the active membrane (µm), KS: Reaction constant for substrate (mM), KI: Reaction constant for inhibitor toward E (mM), KI’: Reaction constant for inhibitor toward ES
(mM), DS: Diffusion coefficient of substrate (µm2 secG1), DI: Diffusion coefficient of inhibitor (µm2 secG1), DP: Diffusion coefficient of product (µm2 secG1), F: Faraday’s
number (A.s mmolG1), A: Area of the cathode of the indicator electrode (m2), n: Number of electrons taking part in electrochemical reaction on the electrode surface

Table 2: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 1a 

Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new

Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Substrate concentration (S) 
0 5 5 5 0 0
0.2 4.87962 4.88039 4.886957 0.015923 0.1504
0.4 4.78576 4.78737 4.799646 0.03371 0.290244
0.6 4.71858 4.72092 4.737607 0.049564 0.40318
0.8 4.67823 4.68105 4.700514 0.060408 0.476399
1 4.66477 4.66776 4.688171 0.064235 0.501722
Average absolute (%) error 0.037307 0.303657
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Table 3: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 1b

Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new

Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Concentration (I)
0 2 2 2 0 0
0.2 1.879617764 1.880394737 1.886956704 0.041337 0.390449
0.4 1.785755160 1.787368421 1.799645518 0.090341 0.777842
0.6 1.718582334 1.720921053 1.737606706 0.136084 1.106981
0.8 1.678226590 1.681052632 1.700513605 0.168395 1.32801
1 1.664766760 1.667763158 1.688170902 0.179989 1.405851
Average absolute (%) error 0.102691 0.834855

Table 4: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 1c

Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new

Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Product concentration (P)
0 0 0 0 0 0
0.2 0.04571683802 0.04385964914 0.04035087722 4.06237 11.7374
0.4 0.06873838850 0.06578947370 0.06052631582 4.29006 11.9469
0.6 0.0688774243 0.06578947370 0.06052631582 4.48326 12.1246
0.8 0.0459934168 0.04385964914 0.04035087722 4.63929 12.2681
1 0 0 0 0 0
Average absolute (%) error 2.9125 8.01283

Table 5: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 2a

Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new

Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Substrate concentration (S)
0 5 5 5 0 0
0.2 4.961837023 4.962541209 4.963458362 0.014192 0.032676
0.4 4.932029615 4.933406593 4.935099374 0.027919 0.062241
0.6 4.910670488 4.912596154 4.914876279 0.039214 0.085646
0.8 4.897827387 4.900109890 4.902755743 0.046602 0.100623
1 4.893541588 4.895947802 4.898717785 0 0
Average absolute (%) error 0.021321 0.046864

Table 6: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 2b

Analytical Absolute (%) Absolute (%)
Analytical solution solution using new error for error for new

Numerical using homotopy approach to homotopy homotopy approach to homotopy
Distance (x) solution analysis method perturbation method analysis method perturbation method
Inhibitor concentration (I)
0 2 2 2 0 0
0.2 1.961837023 1.962912088 1.963458363 0.054799 0.082644
0.4 1.932029615 1.934065934 1.935099373 0.105398 0.158888
0.6 1.910670488 1.913461538 1.914876281 0 0
0.8 1.897827387 1.901098901 1.902755747 0 0
1 1.893541588 1.896978022 1.898717786 0.181482 0.273361
Average absolute (%) error 0.056946 0.085815
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Appendix A: Approximate analytical solution for the steady state model using NHPM 
Equation 1-3 in steady state become:

(A.1)

2
S

S 2

S
I

VS
D S 0

x I
K 1 S

K


 

  
   

 

(A.2)

2
S

I 2

S
I

VI
D S 0

x I
K 1 S

K


 

  
   

 

(A.3)

2
S

P 2

S
I

VP
D S 0

x I
K 1 S

K


 

  
   

 

Homotopy for Eq. A1-A3 are constructed as follows:

(A.4)
2 2

S S
2 2

0
S S 0 S S

I I

V VS S
(1 p) S p S 0

x xI I
D K 1 S D K 1 S

K K

   
   
           
          

                              

(A.5)
2 2

S S
2 2

0
I S 0 I S

I I

V VI I
(1 p) S p S 0

x xI I
D K 1 S D K 1 S

K K

   
   
           
          

                              

(A.6)
2 2

S S
2 2

0
P S 0 P S

I I

V VP P
(1 p) S p S 0

x xI I
D K 1 S D K 1 S

K K

   
   
           
          

                              

Let the approximate solution of Eq. A4-A6 be:

S = S0+pS1+p2S2+ ... (A.7)

I = I0+pI1+p2I2+ ... (A.8)

P = P0+pP1+p2P2+ ... (A.9)

The boundary conditions for the above equations becomes:
At x = 0:

S0 = S0, S1 = S2 = S3 = ... = 0 (A.10)

I0 = I0, I1 = I2 = I3 = ... = 0 (A.11)

P0 = P1 = P2 = P3 = ... = 0 (A.12)

At x = d:

(A.13)0 1 2

x d x dx d

S S S
... 0

x x x 

  
   

  

(A.14)0 1 2

x d x dx d

I I I
... 0

x x x 
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P0 = P1 = P2 = P3 = ... = 0 (A.15)

Substituting Eq. A7-A9 in Eq. A4-A6 and equating the coefficients of p0, the following is obtained:

(A.16)

2
0 S

02

0
S S 0

I

S V
S 0

x I
D K 1 S

K


 

   
       

(A.17)

2
0 S

02

0
S S 0

I

I V
S 0

x I
D K 1 S

K


 

   
       

(A.18)

2
0 S

02

0
S S 0

I

P V
S 0

x I
D K 1 S

K


 

   
       

Solving Eq. A16-A18 using boundary conditions A10-A15 and using the approximation S . S0, I . I0, P . P0:

 S

0
S S 0

I

0

S

0
S S 0

I

V
cosh x d

I
D K 1 S

K
S S

V
cosh d

I
D K 1 S

K

 
 
 
               

 
 
 
 
              

 S

0
S S 0

I
0 S

0
I

S

0
S S 0

I

V
cosh x d

I
D K 1 S

K
S D

I I 1
D

V
cosh d

I
D K 1 S

K

  
  
  
                                                  

 S

0
S S 0

I
0 S

SS
P

00
S S 0S S 0

II

V
cosh x d

I
D K 1 S

K
S D

P

Vx xV
1 cosh dD cosh d

d dII
D K 1 SD K 1 S

KK

  
  
  
                                                                                     














 
 
 
 



The above three equations give the solution of the steady state of Eq. 1-3.
Similarly, solving the steady state of Eq. 4-6 and 7-9, the solutions given in Eq. 17-19 and 20-22 are obtained respectively.
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Appendix B: Approximate analytical solution for the steady state model using
HAM

The     homotopy    for    steady    state   of   Eq.   1-3   are   framed   as
follows:

(B.1)
2 2

S S S2 2
I

S I S
(1 p) ph D K 1 S V S

x K x

                        

(B.2)
2 2

I S S2 2
I

I I I
(1 p) ph D K 1 S V S

x K x

                        

(B.3)
2 2

P S S2 2
I

P I P
(1 p) ph D K 1 S V S

x K x

                        

Let the approximate solution of Eq. B.1-B.3 be:

S = S0+pS1+p2S2+ ... (B.4)

I = I0+pI1+p2I2+ ... (B.5)

P = P0+pP1+p2P2+ ... (B.6)

The boundary conditions for the above equations become:
At, x = 0:

S0 = S0, S1 = S2 = S3 = ... = 0 (B.7)

I0 = I0, I1 = I2 = I3 = ... = 0 (B.8)

P0 = P1 = P2 = P3 = ... = 0 (B.9)

At x = d:

(B.10)0 1 2

x d x dx d

S S S
... 0

x x x 

  
   

  

(B.11)0 1 2

x d x dx d

I I I
... 0

x x x 

  
   

  

P0 = P1 = P2 = P3 = ... = 0 (B.12)

Substituting Eq. B4-B6 in Eq. B1-B3 and equating the coefficients of p0 and
p1, the following is obtained:

(B.13)
2

0 0
2

S
p : 0

x






(B.14)
2

0
2

I
0

x






(B.15)
2

0
2

P
0

x






(B.16) 
2 22

1 0 0 01
S S 0 S 02 2 2

I

d S I Sd S
p : h D K 1 S V S

dx dx K x

                 

(B.17)
2 22

0 0 01
I S 0 S 02 2 2

I

d I I Sd I
h D K 1 S V S

dx dx K x

                 

(B.18) 
2 22

0 0 01
P S 0 S 02 2 2

I

d P I Sd P
h D K 1 S V S

dx dx K x

                 

Solving Eq. B13-B15 using boundary conditions B7-B12:

S0 = S0, I0 = I0, P0 = 0 (B.19)

Solving Eq. B16-B18 using boundary conditions B7-B12:

(B.20)
0 S

1

0
S S 0

I

hS V x
S x d

2I
D K 1 S

K

 
  

    
       

(B.21)
0 S

1

0
I S 0

I

hS V x
I x d

2I
D K 1 S

K

 
  

    
       

(B.22)
 0 S

1

0
P S 0

I

hS V
P x x d

I
2D K 1 S

K

 
  
       

Substituting Eq. B19-B22 in Eq. B4-B6: 

(B.23)
0 S

0

0
S S 0

I

hS V x
S S x d

2I
D K 1 S

K

 
   

    
       

(B.24)
0 S

0

0
I S 0

I

hS V x
I I x d

2I
D K 1 S

K

 
   

    
       

(B.25)
 0 S

0
P S 0

I

hS V
P x x d

I
2D K 1 S

K

 
  
       

The   above   three   equations   give  the  solution  of  the  steady state of
Eq. 1-3.

Similarly,      solving     the     steady     state     of     Eq.      4-6      and     7-9,
the solutions     given    in    Eq.    26-28    and    29-31    are     obtained,
respectively.
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The homotopy for Eq. 1-3 are constructed as follows:

(C.1)
2 2

S S S S S2 2
I I

I S S I S S
(1 p) K 1 S D ph K 1 S D V S

K x t K x t

                                                              

(C.2)
2 2

S I S I S2 2
I I

I I I I I I
(1 p) K 1 S D ph K 1 S D V S

K x t K x t

                                                              

(C.3)
2 2

S P S P S2 2
I I

I P P I P P
(1 p) K 1 S D ph K 1 S D V S

K x t K x t

                                                              

Let the approximate solution of Eq. C1-C3 be:

S = S0+pS1+p2S2+ ... (C.4)

I = I0+pI1+p2I2+ ... (C.5)

P = P0+pP1+p2P2+ ... (C.6)

The boundary conditions for the above equations become:
At t = 0:

S0 = S0, S1 = S2 = S3 = ... = 0 (C.7)

I0 = I0, I1 = I2 = I3 = ... = 0 (C.8)

P0 = P1 = P2 = P3 = ... = 0 (C.9)

At x = 0:

S0 = S0, S1 = S2 = S3 = ... = 0 (C.10)

I0 = I0, I1 = I2 = I3 = ... = 0 (C.11)

P0 = P1 = P2 = P3 = ... = 0 (C.12)

At x = d:

(C.13)0 1 2

x d x dx d

S S S
... 0

x x x 

  
   

  

(C.14)0 1 2

x d x dx d

I I I
... 0

x x x 

  
   

  

P0 = P1 = P2 = P3 = ... = 0 (C.15)

Substituting Eq. C4-C6 in C1-C3 and equating the coefficients of p0 and p1, the following is obtained:

(C.16)
2

0 0 0
S 2

S S
p : D 0

x t

 
 

 

(C.17)
2

0 0
I 2

I I
D 0

x t
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(C.18)
2

0 0
P 2

P P
D 0

x t

 
 

 

22
1 0 0 01 1

S 0 S S2 2
I

I S Sd S S
p : K 1 S D D

K dx t x t

                                  

(C.19)
2

0 0 0
S 0 S S 02

I

I S S
h K 1 S D V S

K x t

                        

22
0 0 01 1

S 0 I I2 2
I

I I Id I I
K 1 S D D

K dx t x t

                                  

(C.20)
2

0 0 0
S 0 I S 02

I

I I I
h K 1 S D V S

K x t

                        

22
0 0 01 1

S 0 P P2 2
I

I P Pd P P
K 1 S D D

K dx t x t

                                   

(C.21)
2

0 0 0
S 0 P S 02

I

I P P
h K 1 S D V S

K x t

                        

Applying laplace transform to Eq. C16-C21 with respect to t: 

(C.22) 2
0

S 0 02

S
D sS S (t 0) 0

x


   



(C.23) 2
0

I 0 02

I
D sI I (t 0) 0

x


   



(C.24) 2
0

P 0 02

P
D sP P (t 0) 0

x


   



(C.25) 2
0 1

S 0 S 1 1 S 02
I

I d S
K 1 S D sS S (t 0) h V S

K dx

                              

(C.26) 2
0 1

S 0 I 1 1 S 02
I

I d I
K 1 S D sI I (t 0) h V S

K dx

                              

(C.27) 2
0 1

S 0 P 1 1 S 02
I

I d P
K 1 S D sP P (t 0) h V S

K dx

                             

Solving Eq. C22 using boundary conditions C7-C15,   0
o

S
S x :

s


Taking the inverse laplace transform, S0 (x) = S0 (C.28)
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Solving Eq. C23 using boundary conditions C7-C15,   0
o

I
I x :

s


Taking the inverse laplace transform, I0 (x) = I0 (C.29)

Solving Eq. C24 using boundary conditions C7-C15,  
oP 0 :

Taking the inverse laplace transform, P0 (x) = 0 (C.30)

Solving Eq. C25 using boundary conditions C7-C15: 

(C.31) 
 

S 0
1

2 0
S 0

I

s
cosh x d

hV S Ds
S x 1

sI cosh ds K 1 S DsK

 
 
                  

Now, let us invert Eq. C31 using the complex inversion formula. 
In order to invert Eq. C31:

 
S 0

2 0
S 0

I

s
cosh x d

hV S Ds
Res 1

sI cosh ds K 1 S DsK

 
  
  
                     

needs to be evaluated.

Now, finding the poles of there is a pole at s= 0 and there are infinitely many poles given by the solution of the Eq:
1S ,

 s
cosh d 0

Ds


i.e., there are infinite number of poles at:

 2 2
S

n 2

2n 1 D
s

4d

  


where, n = 1, 2, 3, ....
Hence:

 
1 S 0

1

2 0
S 0

I
s 0

s
cosh x d

hV S Ds
L (S ) Res 1

sI cosh ds K 1 S DsK





 
                           

(C.32)
 

n

st S 0

2 0
S 0

I
s s

s
cosh x d

hV S Ds
Res e 1

sI cosh ds K 1 S DsK
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The first residue in Eq. C32 is given by:

 
S 0

2 0
S 0

I
s 0

s
cosh x d

hV S Ds
Res 1

sI cosh ds K 1 S DsK


 
                          

 
st S 0 S 0

0 0
S 0 S 0

I I

s
cosh x d

lt hV S hV Sd Ds
e t

s 0 ds sI Icosh dK 1 S K 1 S
DsK K

                                 

2
S 0 S 0

0 0
S 0 S S 0 S

I I

hV S x dhV S x

I I
2 K 1 S D K 1 S D

K K

  
      
                     

(C.33)
S 0

0
S 0 S

I

hV S x x
d

2I
K 1 S D

K

 
  
    
       

The second residue in Eq. C32 is given by: 

 

n

st S 0

2 0
S 0

I
s s

s
cosh x d

hV S Ds
Res e 1

sI cosh ds K 1 S DsK


  
   
   
                           

 S 0
st

n 2 0
S 0

I

s
hV S cosh x d

lt Ds
e

s s I d s
s K 1 S cosh d

K ds Ds

 
  
  

      
               

(C.34)
 

 

 

 

2 2
S

2

2n 1 D t
n 34d

S 0
3 3

n 0
S0

S 0
I

2n 1
1 e cos x d d

2d16hV S

2n 1 DI
K 1 S

K

 






 
      

    
       



Using the Eq. C33-C34 in Eq. C32:

  S 0
1

0
S 0 S

I

hV S x x
S x d

2I
K 1 S D

K

 
  
    
       

(C.35)
 

 

 

 

2 2
S

2

2n 1 D t
n 34d

S 0
3 3

n 0
S0

S 0
I

2n 1
1 e cos x d d

2d16hV S

2n 1 DI
K 1 S

K
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Solving Eq. C26 using boundary conditions C7-C15: 

(C.36) 
 

IS 0
1

2 0
S 0

II

s
cosh x d

DhV S
I x 1

sI cosh ds K 1 S DK

 
 
 

                 

Now, let us invert Eq. C36 using the complex inversion formula. 
In order to invert Eq. C36:

 
IS 0

2 0
S 0

II

s
cosh x d

DhV S
Res 1

sI cosh ds K 1 S
DK

  
  
  

               

needs to be evaluated.

Now, finding the poles of  there is a pole at s = 0 and there are infinitely many poles given by the solution of the Eq:
1I ,

I

s
cosh d 0

D


i.e., there are infinite number of poles at:

 2 2
I

n 2

2n 1 D
s

4d

  


where, n = 1, 2, 3, ...
Hence:

 
I1 S 0

1

2 0
S 0

II
s 0

s
cosh x d

DhV S
L (I ) Res 1

sI cosh ds K 1 S DK





                           

(C.37)

 

n

Ist S 0

2 0
S 0

II
s s

s
cosh x d

DhV S
Res e 1

sI cosh ds K 1 S DK


                                    

The first residue in Eq. C31 is given by:

 
IS 0

2 0
S 0

II
s 0

s
cosh x d

DhV S
Res 1

sI cosh ds K 1 S DK


                          

 
Ist S 0 S 0

0 0
S 0 S 0

II I

s
cosh x d

Dlt hV S hV Sd
e t

s 0 ds sI Icosh dK 1 S K 1 S
DK K
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2

S 0 S 0

0 0
S 0 I S 0 I

I I

hV S x dhV S x

I I
2 K 1 S D K 1 S D

K K

  
      
                     

(C.38)
S 0

0
S 0 I

I

hV S x x
d

2I
K 1 S D

K

 
  
    
       

The second residue in eqn. (C37) is given by: 

 

n

Ist S 0

2 0
S 0

II
s s

s
cosh x d

DhV S
Res e 1

sI cosh ds K 1 S DK


                                   

 S 0
Ist

n 2 0
S 0

I I

s
hV S cosh x d

Dlt
e

s s I d s
s K 1 S cosh d

K ds D

 
  
  

      
                

(C.39)
 

 

 

 

2 2
I

2

2n 1 D t
n 34d

S 0
3 3

n 0
I0

S 0
I

2n 1
1 e cos x d d

2d16hV S

2n 1 DI
K 1 S

K

 






 
      

    
       



Using Eq. C38 and C39 in Eq. C37:

  S 0
1

0
S 0 I

I

hV S x x
I x d

2I
K 1 S D

K

 
  
    
       

(C.40)
 

 

 

 

2 2
I

2

2n 1 D t
n 34d

S 0
3 3

n 0
I0

S 0
I

2n 1
1 e cos x d d

2d16hV S

2n 1 DI
K 1 S

K

 






 
    

 
    
       



Solving Eq. C27 using boundary conditions C7-C15:

(C.41) 
 

P PS 0
1

2 0
S 0

PI

s s
sinh x sinh x d

D DhV S
P x 1

sI sinh ds K 1 S DK

 
  
 

                 

Now, let us invert Eq. C41 using the complex inversion formula. 
In order to invert Eq. C41:
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P PS 0

2 0
S 0

PI

s s
sinh x sinh x d

D DhV S
Res 1

sI sinh ds K 1 S DK

                           

needs to be evaluated.

Now, finding the poles of  there is a pole at s = 0 and there are infinitely many poles given by the solution of the Eq:1P ,

P

s
sinh d 0

D


i.e., there are infinite number of poles at:

2 2
P

n 2

n D
s

d

 


where, n = 1, 2, 3, ...
Hence:

 
P P1 S 0

1

2 0
S 0

PI
s 0

s s
sinh x sinh x d

D DhV S
L (P ) Res 1

sI sinh ds K 1 S DK





                            

(C.42)

 

n

P PS 0

2 0
S 0

PI
s s

s s
sinh x sinh x d

D DhV S
Res 1

sI sinh ds K 1 S DK


                            

The first residue in Eq. C42 is given by:

 
P PS 0

2 0
S 0

PI
s 0

s s
sinh x sinh x d

D DhV S
Res 1

sI sinh ds K 1 S DK


                           

(C.43)
 S 0

0
S 0 P

I

hV S x
x d

I
2 K 1 S D

K

 
  
       

The second residue in Eq. C42 is given by: 

 

n

P Pst S 0

2 0
S 0

PI
s s

s s
sinh x sinh x d

D DhV S
Res e 1

sI sinh ds K 1 S DK
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(C.44)

   
2 2

P
2

n D t
n

d

2
S 0

3 3
n 0 P

0
S 0

I

n n x
1 e sin x d sin

d d2hV S d

n DI
K 1 S

K








     
           

  
       



Using the Eq. C43 and C44 in Eq. C42: 

   S 0
1

0
S 0 P

I

hV S x
P x x d

I
2 K 1 S D

K

 
  
       

(C.45)

   
2 2

P
2

n D t
n

d
2

S 0 p

3 3
n 0 P

0
S 0

I

n n x
1 e sin x d sin

d d2hV S D d

n DI
K 1 S

K








     
           

  
       



From Eq. C4-C6, S . S0+S1, I . I0+I1 and P . P0+P1, hence: 

S 0
0

0
S 0 S

I

hV S x x
S S d

2I
K 1 S D

K

 
   

    
       

(C.46)
 

 

 

 

2 2
S

2

2n 1 D t
n 34d

S 0
3 3

n 0
S0

S 0
I

2n 1
1 e cos x d d

2d16hV S

2n 1 DI
K 1 S

K

 






 
    

 
    
       



S 0
0

0
S 0 I

I

hV S x x
I I d

2I
K 1 S D

K

 
   

    
       

(C.47)
 

 

 

 

2 2
I

2

2n 1 D t
n 34d

S 0
3 3

n 0
I0

S 0
I

2n 1
1 e cos x d d

2d16hV S

2n 1 DI
K 1 S

K

 






 
    

 
    
       



 S 0

0
S 0 P

I

hV S x
P x d

I
2 K 1 S D

K

 
  
       

(C.48)

   
2 2

P
2

n D t
n

d

2
S 0

3 3
n 0 P

0
S 0

I

n n x
1 e sin x d sin

d d2hV S d

n DI
K 1 S

K








     
           

  
       



The above three equations give the solution of Eq. 1-3.
Similarly solving Eq. 4-6 and 7-9, the solutions given in Eq. 38-40 and 41-43 are obtained respectively.
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Appendix D: MATLAB program to find the numerical solution
Competitive reversible inhibition system (Eq. 1-3) 
function pdex1
m = 0;
x = linspace(0,1);
t = linspace(0,1000);
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
u3 = sol(:,:,3);
figure
plot(x,u1(end,:))
title('u1(x,t)')
xlabel('Distance x')
ylabel('time')
figure
plot(x,u2(end,:))
title('u2(x,t)')
xlabel('Distance x')
ylabel('u2(x,3)')
figure
plot(x,u3(end,:))
title('u3(x,t)')
xlabel('Distance x')
ylabel('u3(x,3)')
%------------------------------------------------------------------
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = [1;1;1]; 
f = [1;1;1].*DuDx; 
s0 = 5;
i0 = 2;
Vs = 2;
Ks = 0.6;
Ki = 0.4;
Kid = 2;
Ds = 2;
Di = 2;
Dp = 2;
F1 = -u(1)*Vs/(Ds*Ks*(1+u(2)/Ki)+Ds*u(1));
F2 = -u(1)*Vs/(Di*Ks*(1+u(2)/Ki)+Ds*u(1));
F3 = u(1)*Vs/(Dp*Ks*(1+u(2)/Ki)+Ds*u(1));;
s = [F1;F2;F3];
% --------------------------------------------------------------
function u0 = pdex1ic(x) 
lamda = 1;
u0 = [5;2;0]; 
% --------------------------------------------------------------
function [pl,ql,pr,qr]=pdex1bc(xl,ul,xr,ur,t) 
pl = [ul(1)-5;ul(2)-2;ul(3)-0];
ql = [0;0;0];
pr = [0;0;ur(3)-0];
qr = [1;1;0];
Non-competitive reversible inhibition system (Eq. 4-6)
function pdex1
m = 0;
x = linspace(0,1);
t = linspace(0,1000);
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
u1 = sol(:,:,1);

u2 = sol(:,:,2);
u3 = sol(:,:,3);
figure
plot(x,u1(end,:))
title('u1(x,t)')
xlabel('Distance x')
ylabel('time')
figure
plot(x,u2(end,:))
title('u2(x,t)')
xlabel('Distance x')
ylabel('u2(x,3)')
figure
plot(x,u3(end,:))
title('u3(x,t)')
xlabel('Distance x')
ylabel('u3(x,3)')
%------------------------------------------------------------------
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c =[1;1;1]; 
f =[1;1;1].*DuDx; 
s0 = 5;
i0 = 2;
Vs = 2;
Ks = 0.6;
Ki = 0.8;
Kid = 2;
Ds = 2;
Di = 2;
Dp = 3;
F1 = -u(1)*Vs/(Ds*(1+u(2)/Ki)*(Ks+u(1)));
F2 = -u(1)*Vs/(Di*(1+u(2)/Ki)*(Ks+u(1)));
F3 = u(1)*Vs/(Di*(1+u(2)/Ki)*(Ks+u(1)));
s = [F1;F2;F3];
% --------------------------------------------------------------
function u0 = pdex1ic(x) 
lamda=1;
u0 = [5;2;0]; 
% --------------------------------------------------------------
function [pl,ql,pr,qr]=pdex1bc(xl,ul,xr,ur,t) 
pl = [ul(1)-5;ul(2)-2;ul(3)-0];
ql = [0;0;0];
pr = [0;0;ur(3)-0];
qr = [1;1;0];
Mixed reversible inhibition system (Eq. 7-9)
function pdex1
m=0;
x = linspace(0,1);
t = linspace(0,1000);
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
u3 = sol(:,:,3);
figure
plot(x,u1(end,:))
title('u1(x,t)')
xlabel('Distance x')
ylabel('time')
figure
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Appendix D: Continued
plot(x,u2(end,:))
title('u2(x,t)')
xlabel('Distance x')
ylabel('u2(x,3)')
figure
plot(x,u3(end,:))
title('u3(x,t)')
xlabel('Distance x')
ylabel('u3(x,3)')
%------------------------------------------------------------------
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = [1;1;1]; 
f = [1;1;1].*DuDx; 
s0 = 5;
i0 = 2;
Vs = 0.5;
Ks = 0.6;
Ki = 0.6;
Kid = 2;
Ds = 2;
Di = 2;
Dp = 3;
F1 = -u(1)*Vs/(Ds*(Ks*(1+u(2)/Ki)+u(1)*(1+u(2)/Kid)));
F2 = -u(1)*Vs/(Di*(Ks*(1+u(2)/Ki)+u(1)*(1+u(2)/Kid)));
F3 = u(1)*Vs/(Dp*(Ks*(1+u(2)/Ki)+u(1)*(1+u(2)/Kid)));
s = [F1;F2;F3];
% --------------------------------------------------------------
function u0 = pdex1ic(x) 
lamda = 1;
u0 = [5;2;0]; 
% --------------------------------------------------------------
function [pl,ql,pr,qr]=pdex1bc(xl,ul,xr,ur,t) 
pl = [ul(1)-5;ul(2)-2;ul(3)-0];
ql = [0;0;0];
pr = [0;0;ul(3)-0];
qr = [1;1;0];

Figure 1-3 clearly  showed  that  the  solution  obtained
using the homotopy analysis method is the closest to the
numerical solution and hence  is the better of the two
methods for this problem. Thus, the homotopy analysis
method is used to find the non-steady state solution of the
problem.

Figure 4-6 showed the substrate concentration, inhibitor
concentration and product concentration profiles for
biosensors with competitive inhibitions for various values of
parameters. The figures clearly showed that substrate
concentration increases with increase in KS and DS, while
decreases with increase in VS and KI. A similar effect is
experienced   on  the  inhibitor   concentration  as  well.  That
is,  the  inhibitor   concentration   increases  with  increase  in
KS  and  DI,  while  decreases  with   increase   in   VS   and  KI.
The   product   concentration    increases    with    increase   in
VS.

Fig. 1(a-c): Profile  of  the  (a)   Substrate   concentration  (S),
(b) Inhibitor concentration (I) and (c) Product
concentration (P) versus distance (x) for the
competitive reversible inhibition system for values
of parameters given in Table 1
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Fig. 2(a-c): Profile  of  the  (a)  Substrate   concentration   (S),
(b) Inhibitor concentration (I) and (c) Product
concentration  (P)  versus  distance  (x)  for  the
non-competitive reversible inhibition system for
values of parameters given in Table 1

Fig. 3(a-c): Profile  of  the  (a)  Substrate   concentration   (S),
(b) Inhibitor concentration (I) and (c) Product
concentration (P) versus distance (x) for the mixed
reversible inhibition system for values of
parameters given in Table 1
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Fig. 4(a-d): Substrate concentration (S) versus distance (x) for the competitive reversible inhibition system obtained by varying
one parameter and keeping all other parameters fixed
Refer parameter values given in Table 1

Table 7: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 2c

Analytical solution Analytical solution using Absolute (%) error Absolute (%) error for
Numerical using homotopy new approach to homotopy for homotopy new approach to homotopy

Distance (x) solution analysis method perturbation method analysis method perturbation method
Product concentration (P)
0 0 0 0 0 0
0.2 0.01687097680 0.01538461538 0.01428571428 8.81017 15.3237
0.4 0.02538638454 0.02307692307 0.02142857142 0 0
0.6 0.02545351202 0.02307692307 0.02142857142 0 0
0.8 0.01700461295 0.01538461538 0.01428571428 9.52681 15.9892
1 0 0 0 0 0
Average absolute (%) error 3.05616 5.21882

Table 8: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 3a

Analytical solution Analytical solution using Absolute (%) error Absolute (%) error for
Numerical using homotopy new approach to homotopy for homotopy new approach to homotopy

Distance (x) solution analysis method perturbation method analysis method perturbation method
Substrate concentration (S)
0 5 5 5 0 0
0.2 4.925915766 4.928571429 4.930567633 0.053912 0.094437
0.4 4.867983631 4.873015873 4.876792003 0 0
0.6 4.826433133 4.833333333 4.838502347 0 0
0.8 4.801433531 4.809523810 4.815577081 0.168497 0.294569
1 4.793088591 4.801587302 4.807943407 0.177312 0.309922
Average absolute (%) error 0.06662 0.116488
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Fig. 5(a-d): Inhibitor concentration (I) versus distance (x) for the competitive reversible inhibition system, obtained by varying
one parameter and keeping all other parameters fixed
Refer parameter values given in Table 1

Table 9: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 3b

Analytical solution Analytical solution using Absolute (%) error Absolute (%) error for
Numerical using homotopy new approach to homotopy for homotopy new approach to homotopy

Distance (x) solution analysis method perturbation method analysis method perturbation method
Inhibitor concentration (I)
0 2 2 2 0 0
0.2 1.925915766 1.927857143 1.930567633 0 0
0.4 1.867983631 1.871746032 1.876792004 0.201415 0.471544
0.6 1.826433133 1.831666667 1.838502347 0 0
0.8 1.801433531 1.807619048 1.815577082 0 0
1 1.793088591 1.799603175 1.807943407 0.363316 0.828449
Average absolute (%) error 0.094122 0.216665

Table 10: Comparison between analytical values derived using homotopy analysis method and new approach to homotopy perturbation method with numerical values
in Fig. 3c

Analytical solution Analytical solution using Absolute (%) error Absolute (%) error for
Numerical using homotopy new approach to homotopy for homotopy new approach to homotopy

Distance (x) solution analysis method perturbation method analysis method perturbation method
Product concentration (P)
0 0 0 0 0 0
0.2 0.02180228850 0.02137566138 0.020680699 0 0
0.4 0.03283677425 0.03206349206 0.030923573 0 0
0.6 0.03295042719 0.03206349206 0.030842465 2.69173 6.39737
0.8 0.02203040289 0.02137566138 0.020518430 2.97199 6.86312
1 0 0 0 0 0
Average absolute (%) error 0.94395 2.21008
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Fig. 6: Product concentration (P) versus distance (x) for the competitive reversible inhibition system, obtained by varying VS and
fixing all other parameters as in Table 1

Fig. 7(a-d): Substrate concentration (S) versus distance (x) for the non-competitive reversible inhibition system, obtained by
varying one parameter and keeping all other parameters fixed
Refer parameter values given in Table 1
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Fig. 8(a-d): Inhibitor concentration (I) versus distance (x) for the non-competitive reversible inhibition system, obtained by
varying one parameter and keeping all other parameters fixed
Refer parameter values given in Table 1

Fig. 9: Product concentration (P) versus distance (x) for the non-competitive reversible inhibition system, obtained by varying
VS and fixing all other parameters as in Table 1
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Fig.10(a-e): Substrate concentration (S) versus distance (x) for the mixed reversible inhibition system, obtained by varying one
parameter and keeping all other parameters fixed
Refer parameter values given in Table 1
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Fig. 11(a-e): Inhibitor concentration (I) versus distance (x) for the mixed reversible inhibition system, obtained by varying one
parameter and keeping all other parameters fixed
Refer parameter values given in Table 1
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Fig. 12: Product concentration (P) versus distance (x) for the
mixed reversible inhibition system, obtained by
varying  VS  and  fixing  all  other  parameters as in
Table 1

Figure 13a depicted the substrate concentration for
biosensors with competitive, non-competitive and mixed
inhibition. From the figure, it is clear to observe that for fixed
values of parameters the substrate concentration is the least
for competitive inhibition, higher for mixed inhibition and
becomes  the  maximum  for non-competitive  inhibition.
From Fig. 13b, it can be seen that the same happened for
inhibitor concentration also. But, from Fig.  13c,  it  is noted
that the reverse happened for product concentration. The
product concentration  is  maximum  for  competitive  mixed
inhibition, lower for mixed inhibition and becomes the least
for non-competitive inhibition.

Figure 14-16 represented  the  non-steady  state solutions
for substrate concentration, inhibitor concentration and
product  concentration  for  biosensors  with  competitive,
non-competitive and mixed inhibition respectively.

Figure 17a-c showed three-dimensional substrate
concentration, inhibitor concentration and product
concentration  versus  time and  distance  for  a  biosensor
with competitive inhibition, while Fig. 18 and 19 represented
the same for biosensors with non-competitive and mixed
inhibitions respectively.

Figure 20-22 respectively showed the steady state output
current of the biosensors with competitive, non-competitive
and mixed inhibitions for various values of parameters. From
the figures, it can be seen that for biosensors with all three
inhibitions, the output current increases with increase in S0
and VS while decreases with increase in I0 and KS.

Fig. 13(a-c): (a) Substrate concentration (S), (b) Inhibitor
concentration (I) and (c) Product concentration
(P) versus distance (x) for the competitive, non-
competitive and mixed reversible inhibition
systems for values of parameters given in Table 1
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Fig. 14(a-c): Profile of the non-steady state, (a) Substrate
concentration (S), (b) Inhibitor concentration (I)
and (c) Product concentration (P) versus time (t)
for the competitive reversible inhibition system
for values of parameters given in Table 1

Fig. 15(a-c): Profile of the non steady state, (a) Substrate
concentration (S), (b) Inhibitor concentration (I)
and (c) Product concentration (P) versus time (t)
for the non-competitive reversible inhibition
system for values of parameters given in Table 1
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Fig. 16(a-c): Profile of the non steady state, (a) Substrate
concentration (S), (b) Inhibitor concentration (I)
and (c) Product concentration (P) versus time (t)
for the mixed reversible inhibition system for
values of parameters given in Table 1

Fig. 17(a-c): Three-dimensional, (a) Substrate concentration
(S), (b) Inhibitor concentration (I) and (c) Product
concentration (P), versus time (t) and distance (x)
for the competitive reversible inhibition system
for values of parameters given in Table 1
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Fig. 18(a-c):Three-dimensional, (a) Substrate concentration
(S), (b) Inhibitor concentration (I) and (c) Product
concentration (P), versus time (t) and distance (x)
for the non-competitive reversible inhibition
system for values of parameters given in Table 1

Fig. 19(a-c):Three-dimensional, (a) Substrate concentration
(S), (b) Inhibitor concentration (I) and (c) Product
concentration (P), versus time (t) and distance (x)
for the mixed reversible inhibition system for
values of parameters given in Table 1
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Fig. 20(a-c): Output current  of the biosensor with
competitive inhibition, obtained by varying one
parameter and keeping  all other parameters
fixed 

Fig. 21(a-c): Output    current    of    the     biosensor   with
non-competitive inhibition, obtained by varying
one parameter and keeping all other parameters
fixed 
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Fig. 22(a-c): Output     current   of   the   biosensor    with
mixed inhibition, obtained by varying one
parameter and  keeping all other parameters
fixed 

Table 11: Sensitivity analysis of parameters for output current for parameter
values given in Table 1

Nature of inhibition Parameter Rate of change in current
Competitive S0 9.674627980×10G6

I0 -3.721010755×10G6

VS 6.697819363×10G6

KS -0.1612437997×10G4

KI 0.1240336920×10G4

Non-competitive S0 2.608285428×10G6

I0 -2.675164537×10G6

VS 3.477713899×10G6

KS -4.347142377×10G6

KI 8.917215114×10G6

Mixed S0 5.925481030×10G6

I0 -3.418546752×10G6

VS 5.241771696×10G6

KS -9.875801698×10G6

KI 7.596770547×10G6

Table 1 gives the values of the parameters used in the
construction of graphs. Table 2-10 showed the percentage
deviation of the derived analytical results from the numerical
result obtained using MATLAB. The deviation percentage is
not more than 3% when the model is solved using homotopy
analysis method and hence is considered to be the better
choice of the two methods considered. Table 11 showed the
sensitivity analysis carried out for output current of the
biosensor with competitive inhibition for fixed values of
parameters. The  derived  result  showed  that S0, VS and KI
have a positive impact on  output  current,  while  I0  and  KS
have negative impact.  The  sensitivity  analysis  for  output
current of the  biosensors  with  non-competitive  and mixed
inhibition gave similar results. These results are also verified in
Fig. 20-22.

DISCUSSION

The steady state and non-steady state solutions for the
non linear mathematical model considered have been
presented. This is the first time that this kind of a model is
mathematically analyzed. Correlating the  result  derived  in
this study with the previous literature, it is found that the
three-dimensional graphs plotted using the analytical
solutions are identical to the three dimensional graphs
previously simulated using MATLAB7. This provides evidence
that the analytical solutions derived here make an excellent fit
with the numerical results and hence may be accepted as an
approximate analytical solution for the model7. Moreover, the
previous result presented7 was numerical, which is a point
wise solution, while the result presented here is a general
solution for any interval. 
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Though the analytical result derived here does make a
deviation with the numerical values, the error is not a big deal.
Hence, the solution derived under non-steady state will help
the researchers to interpret the effect of the different
parameters over the substrate concentration, product
concentration, inhibitor concentration and non-steady state
current. The researchers may use this result to predict the
outcome of the experiments they want to perform. This will
save time, money and energy.

From Table 11, the output current of the biosensor varies
directly with S0, VS and KI, while varies inversely with I0  and KS.
Hence, the key drivers in increasing  the  output  current  are
KI, S0 and VS.  Which means, an increase in either of the three
results in an increased output current. On the contrary, I0 and
KS have a negative impact on the output current. Their
decrease will increase the output current.

Mathematical models developed in similar situations1-6

have been until now been solved only in the steady state8,9.
The solution derived here will help in deriving time dependent
analytical solutions for all such similar models.

CONCLUSION

Time independent nonlinear partial differential equations
(steady state) for reversible inhibitor biosensor systems in
dynamic mode are solved analytically using the new
homotopy perturbation method and homotopy analysis
method. It is observed that the solution obtained using
homotopy analysis method makes a very close approximation
to the numerical solution obtained using MATLAB and hence
is considered to be the better of the two methods to solve this
problem. Consequently, the time dependent nonlinear partial
differential equations for reversible inhibitor biosensor
systems in dynamic mode are solved using homotopy analysis
method. Results obtained are in excellent agreement with the
steady state result. The results of this work will provide a better
understanding of the non-steady state. Further, the sensitivity
analysis will give a clear picture about the significance of the
parameters over the output current. 

To the best of our knowledge, no analytical solution has
been derived for the steady and non-steady state of this
mathematical model so far. The solutions presented in this
study are presented for the first time.

SIGNIFICANCE STATEMENT

This study proposes the analytical expressions for the
substrate concentration, product concentration and inhibitor
concentration in terms of other parameters. This study will

help the researchers to estimate the outcomes of an
experiment, before doing it practically. The derived results
could be used by researchers to extend their research and
frame more relevant mathematical models.
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