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Abstract
Background and Objective: The study of elastic moduli (bulk or nanoscale) of materials in extreme conditions is a complex and volumetric
task requiring separate consideration. Therefore, the need arose for a universal method that allows one to study the elastic properties
of materials using first-principle methods. A method was proposed in this study for estimating the energy of the samples external surfaces
and for taking into account their influence on the internal state of the electron-ion system. Materials and Methods: The temperature
dependences of the elastic moduli of materials (metals, high-entropy alloy, ceramic materials, borides, nitrides, dielectrics and eutectic
systems, etc.) are calculated from the first principles and analytically presented with taking into account the size factor. The dependence
of the elastic moduli on temperature and size, for single-phase samples, are described by the same law in the form of two factors that
separately depend on the temperature and size of the material. Results: With increasing temperature, as well as reducing the size of the
sample, the elastic moduli decrease. Conclusion: The constants, included in these formulas, depend on the basic parameters of bulk
materials. The calculated values   of the melting temperature of nanoplates (single-phase and two-phase) are consistent with experimental
data.
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INTRODUCTION

When calculating the stiffness and strength of various
structures, to assess the residual stresses, fatigue strength,
wear resistance and other operational properties of materials,
knowledge of the values of their elastic constants is required.
One of the main requirements for composites, the products of
which are used in extreme operating conditions in internal
combustion engines, gas pipes, aircraft jet engines-is their
performance at high temperatures.

For reliable estimation of the stress-strain state of working
blades based on Ni3Al and TiAl intermetallic compounds, there
is no information on the temperature dependence of the
elastic modulus of materials1.

From the works of a computational experiment
concerning borides where, using the theory of the density
functional, the bulk modulus and anisotropic elastic constants
for TiB2 were calculated2,3. But, these studies do not consider
the dependence of mechanical characteristics on temperature
for transition metal borides and even more so for LaB6-МеB2
systems. This is due to the complexity of accounting for the
thermal part of the energy of the system. With increasing
temperature, the thermal vibrations of atoms do not obey the
harmonic approximation.

Taking into account non-harmonic terms is a rather
complicated task in the framework of quantum-mechanical
calculations, but the question of the dependence of
mechanical characteristics on temperature remains relevant.
As for the estimation of the elastic modulus of nanoscale
materials, there are opposite data.

A method for determining the elastic modulus of a
material of micro and nanoparticles based on an
interconnected analysis of the results of experimental
indentation and numerical computer simulation was
proposed4.

A review of methods for determining the mechanical
properties of nanostructures is presented by Shushkov and
Vakhrushev5. Some authors showed a tendency to increase
the elastic modulus with a decrease in size. However,  there
are opposite results as well6-10. In view of the fact that the
results are ambiguous and sometimes contradictory, this study
aimed to evaluate the temperature dependence of the elastic
modulus on the size of nanostructures and to  develop a
generalized, accurate method for determining the elastic
properties of nanomaterials and nanoparticles. 

MATERIALS AND METHODS

The purpose of the work is to study the temperature
dependence  of  the elastic modulus  taking  into  account  the

size factor based on the first principles computational
experiment (a priori pseudopotential method) for a different
class of materials11.

The method of "a priori pseudopotential" (authoring) was
tested on different materials to calculate the basic parameters,
the value of which is consistent with the experiment
(maximum error 5-7%)12,13. The basic parameters include the
following: type of crystal lattice, lattice parameters, elastic
moduli (volumetric, linear), characteristic parameters
(concentration and temperature at the eutectic point) of
quasibinary eutectics (based on carbides, borides, nitrides,
semiconductors and metals, etc.), theoretical strength, etc.

The work is a theoretical study in the field of solid state
physics, performed at the Frantsevich Institute of Materials
Science of the National Academy of Sciences of Ukraine in the
Department of "Mathematical Modeling in Materials Science"
for 2018-2019 as part of the thematic plans

THEORY AND CALCULATION METHODS

It is believed that the surface energy of a nanoparticle
plays a major role in changing its physical and mechanical
properties. For bulk samples, the fraction of surface energy is
small compared to volumetric energy, therefore, it can be
neglected and for sufficiently small particles the values of
these energies are comparable.

The presence of an external surface leads to an increase
in the total energy of the electron-ion system of crystals.
Therefore, in the transition from bulk crystals to nanocrystals,
it is first of all necessary to estimate the size of the contribution
of the energy of the external surface compared to the energy
of the bulk.

Previously, it was developed a method for taking into
account the influence of the size factor on the physical
properties of nanoparticles with a diamond-like structure14,15,
based on the interaction energy of close-packed atomic
planes16.

Strength characteristics will be determined through the
energy of the electron-ion system per one-unit cell. This
approach is successful when calculating the energy of
carbides, borides of transition metals17.

FORMULATION OF THE PROBLEM

The problem is solved in following stages:

C Assessment of the energy of the outer surface of a
nanoscale material and its effect on the internal state of the
electron-ion system

C Calculation of physical characteristics taking into account
the dimensional factor
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C The influence of the dimensional factor on the temperature
dependence of physical characteristics:

C Metals, multi-element metal equiatomic alloys (HEAs),
ceramic materials, carbides, borides, nitrides

C Quasibinary eutectic systems based on carbides, borides,
metals and  dielectrics etc

Energy of the outer surface and its influence on electron-ion
system of nanoplate: In the ideal case (a sample of material
that is infinite along the three coordinate axes), let the energy
per unit cell be Φ0. The energy of the electron-ion system Φ0 is
calculated by using the pseudopotential method. For a
material whose size is limited by at least one coordinate, when
calculating the energy of a unit cell, the energy of external
surfaces must also be taken into account. In the case of a
nanoplate, there are 2 closing (atomic) surfaces.
A semi-infinite sample is considered in which the free

surface coincides with the basal plane of the plate.
The main thing in calculating the physical characteristics

of nanoparticles in the form of a nanoplate is the assumption
that the outer surfaces of the nanoparticles have energy Φ1/2 
(the surface of the nanoparticle has positive energy), where, Φ1
is the energy of the electron-ion system per atomic plane
parallel to the surface of the plate in the unit cell.
As an example, let us consider LaB6 and MeB2

nanocrystals, where is one “representative element” of LaB6 or
MeB2 (Me-are transition metals of the IV-VI group) per unit cell.
In this case, the energy of the outer surface can be determined
based on the total energy of the electron-ion system of the
unit cell. It distributed the total energy of the electron-ion
system per one unit cell evenly along the faces. For MeB2, the
total face are will be:

2S 4 a c. 2a 3    

Then for the energy density along the outer surface of the
cell we have:

(1)2
0 2

MeB
4 a c. 2a 3

  
   

where, Φ0 (MEB2) is the energy of the electron-ion system of
one MeB2 cell, a and c are the parameters of the hexagonal
lattice. The surface energy per basal planes will be:

2
1 1S a 3    

In the case of crystals with a cubic structure (LaB6), the
energy per area of one face is (a0 is the lattice parameter):

(2)2 6
1 1 0 0 2

0

LaBS a ,
6 a

       


In those cases when the “representative element” is an
atom, the energy of the electron-ion system of the atom must
be multiplied by the number of atoms of the unit cell.
The energy of the electron-ion system of one-unit cell

inside the crystal always has a negative sign, the surface
energy has a negative sign with respect to an infinitely distant
point and is positive in comparison with the energy inside the
crystal. The influence of the external surface on the internal
states of ions and electrons is estimated by averaging the
energy of neighbouring unit cells.
To estimate the energy of a nanocrystal, use the averaging

technique to estimate the energy of crystals having close-
packed atomic planes14,15, only with the difference that energy
is averaged over two neighbouring cells and not over atomic
planes.
To determine the energy of a unit cell in the presence of

a free surface, the following averaging over 2 neighbouring
cells is proposed. Consider a nanoplate having a limited size in
thickness.
Let, the energy in the 0th order be equal  Φo for the first

and second cells and the free surface has energy (-Φ1/2). The
energy of the first cell is defined as the arithmetic mean:

(3)1 1
I 0 0 0 2

1 ( )
2 2 2

 
      

For the 2nd cell, the energy is determined based on the
specified value of the energy of the 1st cell:

(4)1
II I 0 0 3

1 ( )
2 2


      

And for the ith cell:

(5)1
i 0 i 12 


   

Thus, the distribution of surface energy in the cells is
obtained depending on the distance from the outer surface
(implicitly expressed in the unit cell number).
If the object has a limited size along the spatial axis z, then

the influence of the energy of the second free surface must be
taken into account. Let, this surface have energy (-Φ1/2). The
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method for calculating the energy distribution of unit cells,
taking into account the 2nd external surface is the same as for
the first. As a result, it turns out for the ith unit cell:

(6)i 0 1 2 1 2i 1 j 2 i j 1

1 1 1 ( )
2 2 j 2          



where, j is the number of unit cells in the nanoparticle along
the z-axis.
Believing that: Ф1 = Ф2 = K*P Ф0, we get:

(7)* * *
i 0 P 0 P 0 P 0i 1 j 2 i j

1 1 1K K K
2 2 j 2         



KP is a coefficient which depends on the unit cell
parameters of the material.
The last term in Eq. 7 provides the law of conservation of

the total energy of the system with a limited number of unit
cells along the z-axis.
To determine the average energy of the nanoplate, it is

summarized in Eq. 7 for all unit cells along the z-axis and
divided by the number of unit cells j. 
The result for a nanoplate with an infinite basal plane:

(8)
*
P

0
K(1 )

j
  

The number of layers is j = d/c, where, d is the thickness of
the nanoplate, c is the unit cell parameter along the z-axis (for
LaB6, the lattice parameter is a0 for MeB2, c).
As a result, for the average energy of the electron-ion

system of a nanoplate with a thickness d, obtained data is:

(9)P
P 0

K(1 )
d

   

where, Φ0 is the energy of the electron-ionic system of the
elementary lattice of a bulk crystal, Kp = KP*.c.
In the case of a nanoparticle, the form of an infinitely

nanobar or a limited nanobar, the average energy of the
electron-ion system is determined by  the  same  formula  in
Eq. 9, but with different coefficients KS  (infinite nanobar) and
KΩ (limited nanobar), which depend on the crystal lattice
parameters of the nanoparticle.
Given that the linear elastic modulus is determined

through  the 2nd  derivatives   of   the  energy   of   the
electron-ion system with respect to the lattice parameter and
the derivatives with respect to the lattice parameter of 1-KP/d 
are equal to 0, it turns out: 

Ed = E0 (1-Kp.dG1) (10)

where, E0 is the elastic modulus of the bulk material at T = 0K.

Temperature dependence of physical characteristics: The
second part of the problem is the study of the temperature
dependence of the elastic moduli of a nanocrystal.
To identify the dependence of mechanical characteristics

on temperature, it is necessary to calculate the energy values
of the electron-ion system of the materials at different
temperatures. In the framework of the pseudopotential
method, this means finding the change in the volume of unit
cells of crystals at temperatures other than 0, i.e., to obtain an
explicit dependence of the total energy on the lattice or
volume parameters at a non-zero temperature.
With increasing temperature, the thermal vibrations of

atoms cease to obey the harmonic approximation. The
developed model17-19 within the framework of quantum
mechanical calculations makes it possible to study the effect
of high temperatures on the tensile strength of borides and
eutectic systems.
To take into account the non-harmonic terms in the total

energy of the electron-ion system of materials must use the
quasi-harmonic approximation method19, the essence of
which is as follows:

C The minimum energy U (Ω) of the electron-ion system
determines the lattice volume (Ω) in the equilibrium state
of the crystal

C The total energy U* = U0+UT of the system is calculated at
non-zero temperatures (T…0). The average value of thermal
energy associated with lattice vibrations is determined by
the ratio:

q
T

qq
U

exp 1
kT











where, the summation is over all types of oscillations and
ω q is  the  oscillation frequency (according to the Einstein
model ωq = ω for all q). The oscillation frequency is
determined through force constants using the
pseudopotential method18,19

C The new value of the volume of the crystal lattice is
determined from the equation:

min 0 1U ( ,T) U( )   

As a result, the temperature dependence of the unit cell
volume is obtained.
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For each volume value (corresponding to a given
temperature), the energy of the electron-ion system is
calculated. Using standard methods20, stresses and elastic
moduli are calculated.

As a result of these calculations, the dependence of the
relative values of the elastic moduli on temperature for all the
materials under study was obtained by using the following11:

(11)2

0 max max

E (T) T T1 0.2 0.25 ( )
E T T

    

Tmax is the melting temperature of the bulk material. For
a nanoparticle with size d, the elastic moduli are determined
from the relation:

T Ti

1
d i i pE (T ) E(T ) (1 (K d ) )



   

Coefficient Kp linearly depends on the crystal lattice
parameters (a, c) and if it assumed that the nanoparticle
expands uniformly with increasing temperature, then:

1

p p
T T T 0

K K
( ) ( )

d d 

It follows that the temperature dependence of the elastic
modulus of nanoparticles can be estimated from the relation:

(12)1 2
d 0 P

d max d max

T TE (T) E (1 K d ) 1 0.2 ( 0.25 )
(T ) (T )

        

where, (Td)max is the melting temperature of a nanoparticle
with a linear size d.

From the standpoint of thermodynamics, the transition
from a solid to a liquid state, with an increase in temperature,
begins with the appearance on the surface of an infinitely
small liquid layer, when the inside remains solid. From the
Gibbs-Tolman-Koenig-Buff equation, where the curved surface
of the condensed phase is considered, it can obtain the
relation for estimating the melting temperature of a
nanoparticle (with radius R)21:

(13)max max
4T (R ) T exp( )
2R

 




where, R is the radius of the nanoparticle, δ is the Tolman
constant, equal in order of magnitude to the thickness of the
surface layer (R>>δ).

In the case of a nanoplate, the melting temperature is
estimated by the formula:

(14)max max
4cT (d ) T exp

c d





Using Eq. 14 to estimate the melting temperature of a
gold nanoplate with a thickness of d = 10 nm, leads to the
value Tmax (d) = 1136 K, which is 36 K higher than the melting
temperature of gold nanoparticles with a radius of R = 5 nm21.

This discrepancy has a simple physical explanation. A
nanoplate having nanoscale only in thickness has physical
characteristics closer to bulk materials than nanoparticles
(having nanoscale in 3 directions)14.

The basic formula for assessing the influence of the size
factor on the temperature dependence of the Young's
modulus is:

(15)1 2
d 0 P

T TE (T) E (1 K d ) (1 0.2 0.25 )
T(d) T(d)

        

Where:

(16)max
4cT(d ) T exp( )

c d





where, E0 and Тmax are Young's modulus and the melting
temperature of bulk material (metals, HEAs, dielectrics,
semiconductors, borides, carbides and nitrides, etc.).

The KP coefficient is determined from the type and lattice
parameters of the material. For a cubic lattice (with parameter
a) KP = a/6, in the case of a hexagonal lattice (with parameters
a and c) KP = cCa2%3/(aCc+2a2%3).

Small-scale eutectic systems: When passing to eutectic
systems with a limited size, it is necessary to take into account
that in this case not only the melting temperature of the
eutectic changes, but also the concentration of the
components depending on the size of the object22.

In  contrast  to  the above materials for eutectic systems
(for example, LaB6-MeB2), when the size factor is taken into
account, the melting temperature is estimated based on the
interfacial interaction energy taking into account the presence
of an external boundary-the junction of two components
forming a nanoplate, which has a volume ΩAB = CE ΩA+ (1-CE)
ΩB, CE is the eutectic concentration for bulk materials and the
unit cell volumes of the components is ΩA and ΩB, respectively.
If we assign a cubic structure with parameter av to a virtual cell,
then we can write:
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(17)3 3 2 1/3
AB v v 0 E Ea , a  0,5(a C (1 C )a c 3)      

After determining the energy of the area of one face, it
can obtained  the final  formulas  for  the  energy  of
interaction of representative elements, taking into account the
size factor:

(18)

0 1
AA AA AA

0 1
BB BB BB

0 1
AB AB AB

U U (1 K d )
U U (1 K d )

U U (1 K d )







  

  

  

With coefficients:

(19)
2

0
AA BB AB v2

a c a 3K , K ,K 0,072a
6 4 a c 2a 3


  

   

By using Eq. 18 and 19, we obtain:

U0
AA =  Φ0,  KAA =  KP

Also, applies to the coefficients and the interaction energy
of component B and the energy of inter-component
interaction between A and B.

The method for calculating the eutectic concentration
and temperature for small-scale eutectic systems is the same
as for bulk materials, but only with new values of the
interaction energy between the representative elements of
the components (Eq. 18). In relation (Eq. 18), an increase in the
mean square displacement of atoms at small sizes and a
decrease in the Debye temperature are taken into account in
implicit form. Based on the results of calculations by using the
approximating function, relations are derived that describe
the relationship between the concentration and temperature
of the eutectic on the plate size of two-component
composites22:

(20)0
E E

B

0.01dC (d) (1 0.05exp( )). C
r


 

(21)0
E E

B

0.01dT (d) (1 0.26exp ( )) T
r


  

where, rB = 0,0529 nm (Bohr radius), CE (d), TE (d) are the
eutectic concentration and temperature for the composite
with thickness d and CE0, TE0  are the corresponding values for
bulk composites.

It follows from Eq. 21 that at d = 4 nm, the melting
temperature  of  the eutectic  composition of the Au-Ge
system is  TE  (d).579   K  (for  bulk  material   TE  =  634 K)  and
СE (d) = 0,9965 CE0. Those, a change in concentration with a
change in the thickness of the plate is small and can be
neglected23.

A decrease in the size of the composite leads to an
increase in the concentration fraction of the strengthening
phase and to a decrease in the eutectic temperature. The
course of the relative change in the eutectic concentration
and temperature versus the size of the composite is the same
for different two-component systems.

Temperature dependence of the elastic modulus of
nanoscale eutectic systems: In order to derive the
temperature dependence of the elastic modulus of eutectic
systems taking into account the size factor,  the  following
step-by-step approach to solving the problem is needed:

C The calculation of the elastic modulus of the bulk
composite at T = 0K
The calculation of the physical characteristics of

eutectic systems, taking into account the insolubility of the
components, leads to the calculation of the corresponding
characteristics of the components. To assess the elastic
moduli of a eutectic system, it is perfectly acceptable to use
the mixture rule:

E0 K, = δAE0, A+δB E0, B (22)

where, E0,A, δA and  E0,B, δB are the elastic moduli and volume
fractions of the A and B components in the bulk material.
Volume fractions are directly related to component
concentrations18

C Calculation of the elastic modulus of a composite having a
limited size in one direction (nanoplate) at T = 0K
It is assumed that the outer surfaces of the plate

coincide with the basal plane MeB2 and the (001) LaB6
plane.
The components in the alloy do not dissolve and retain

their structure.
The elastic modulus of the nanoplate, taking into

account changes in the eutectic concentration, will be:

EK (d) = δA (d) EA (d)+δB (d) EB (d) (23)

Where:
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(24)AA BB
A 0,A B 0,B

1 K 1 KE (d) ( ) E , E (d) ( ) E
d d

 
 

For LaB6-MeB2 (Me-Ti, Zr, Hf) systems, the КАА.КВВ

and then the elastic modulus of the nanoplate at T = 0 K is
determined from the following relation:

(25)BB
K,d 0,K

1 KE E
d


 

C The temperature dependence of the elastic modulus of
small-sized eutectic systems is determined from the
relation:

(26)K,d K,d 2
E E

1 0.2 T TE (T) E 0.25
T (d) 0 T (d)
 

  


Or taking into account the ratio by using Eq. 25:

(27)2BB
K,d 0,K

E E

1 K 1 0.2 T TE (T) E 0.25 ( )
d T (d) T (d)

   
   

The melting temperature of the TE (d)  is determined by
the Eq. 21

RESULTS AND DISCUSSION

Using Eq. 16 and 21, one can calculate the melting
temperature of a nanoplate depending on its thickness for the
eutectic system.
The calculated results are presented in Table 1. For some

materials, basic parameters are also given (type and
parameters of crystal lattices and elastic moduli calculated
from first principles) as well as experimental values of the
melting temperature of the components that make up the
eutectic.
Figure 1 and 2 showed the temperature dependences of

the normalized Young's modulus E/ET = 0 on the temperature
and size of the materials.

Compared to single-phase objects, in eutectics with
decreasing plate size, the melting temperature and the elastic
moduli decrease significantly. In two-phase systems, a
decrease in the size of an object enhances the influence of
external surfaces on the interphase boundaries and weakens
their bonds, which explained the low values of the melting
temperature of the nanoplate and the elastic modulus by
increasing the total energy of the electron-ion system.
In the studies on the dependence of the elastic modulus

on the size factor, there are plenty of opposite data. In some
studies (experimental and theoretical), data were obtained on
the growth of the elastic modulus with decreasing sample
size6-8.
The obtained results for the larger nanostructures fairly

agreed to the values reported in the literature for the
macroscopic elastic modulus of the corresponding materials7. 

The authors26 argued that the method also gives the
correct results for smaller sizes, when it is known that
measuring the characteristics of nanoparticles with small sizes
is difficult to solve.
In studies based on simple theoretical models6,8 for TiO2,

Si, Ag, Au and Cu and Si, Ge, an increase in the elastic moduli
with a decrease in the size of the nanoparticles was obtained.
In previous study9,10, a decrease in Young's modulus with a
decrease in particle size is observed.
In the work9, the presented dependence of the elastic

moduli on the shape and size of nanoparticles (Al, Cu, Pd, Pt)
with sizes less than 30 nm is completely identical to the
previously obtained dependence of theoretical strength on
the shape and size of diamond-like nanoparticles14,27. In
works14,27,  a  decrease  in  the  theoretical strength of
diamond-like materials with a decrease in their size was
proved. This result does not contradict physical laws, since we
are dealing with theoretical strength, which is the maximum
value for a given material with an ideal structure.
The presented approaches and methods in favor of the

work are also supported by the consistency of calculated and
experimental data on the melting temperature of nanoplates
(single-phase and two-phase).
The developed methods for the temperature dependence

of   the   strength   characteristics   for   borides,   carbides  and

Table 1: Basic  parameters  of  materials  are a, с (lattice  parameters),  Tmax  and  T(d)  (melting  temperature  of  bulk  materials  and  nanomaterials),   E0   and Ed
(Young's modulus of bulk materials and nanomaterials)

T(d), K T(d), K Ed, GPa Ed, GPa
Parameters Crystal cell  (a, c) nm Tmax, K d = 10 d = 5 E0, GPa d = 10 d = 5
NiCoCrFe fcc 0.3561 1861 1622,9 1426,3 216,61 210,81 205,60
AlNiCoCrFe bcc 0.2890 1675 1497,5 1346,6 187,23 185,08 183,12
LaB6 CaB6 0.4177 2800 2385 2056 495,64 474,82 454,00
TiB2 hex 0.301,0.3245 3280 2881 2535 587,08 582,70 578,19
Tmax, K24,25
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Fig. 1: Dependence   of   the   normalized   Young's  modulus
Ed (T)/E0 on T/Tmax (d)  for different values of the plate
thickness d for high-entropy alloy NiCoCrFe
(1) for a bulk material (the thickness tends to infinity), (2) d = 10 nm and
(3) d = 5 nm. (E0 is the  modulus  of  elasticity  of  the  bulk  material  at
T = 0 K, Tmax (d) is the melting temperature of the plate, depending on
the size of its thickness)

Fig. 2: Dependence   of   the   normalized  Young's  modulus
Ed (T)/E0on T/Tmax (d) for different values of the plate
thickness d for
(1) bulk LaB6 material, (2) LaB6 nanoplates with a thickness d = 5 nm, (3)
for the LaB6-TiB2 system with thickness d = 10 nm and (4) LaB6-TiB2 with
thickness d = 5 nm

eutectic systems are also successfully used for metals, where
the calculated and experimental data coincide28.
In the transition from bulk materials to nanoparticles, its

external surfaces become the main defects. Atoms on the
surface are weakly  interconnected  and  have  positive  energy
compared to the energies of internal atoms. On average, this
leads to a noticeable increase in the electron-ion system, i.e.,
to   a  decrease  in  the  bond  strength  of  atoms,  if  only  the

number of external atoms is comparable to the number of
internal atoms. In this case, the theoretical strength and elastic
moduli decrease.

CONCLUSION

Elastic characteristics are not structurally sensitive as
strength, which means that from the first principles, the
calculated elastic moduli are characteristics of real (i.e.,
defective) materials.
With a decrease in the grain size in the materials, the

movement of the dislocation becomes more complicated,
which leads to an increase in the yield strength, hardness, but
not the elastic modulus.
The obtained analytical formulas have significant practical

value.
These formulas make it possible to obtain the elastic

modulus of different materials (metals, HEAs, semiconductors,
dielectrics, borides, carbides, nitrides and eutectic quasi-binary
composites based on metals, carbides and borides, etc.)
depending on the temperature and size of the plate thickness,
at the presence of basic parameters of the bulk materials
under study (lattice parameter and elastic modulus).

SIGNIFICANCE STATEMENT

Representation of the dependence of the elastic modulus
on the crystal temperature in form E (T)/E0 as a function of
temperature ratio (Tmax/T) removes the need to clarify the
crystallographic directions of the elastic moduli. The
temperature dependence of the normalized elastic modulus
is the same for different materials and in different
crystallographic directions.
The implementation of the developed methodology for

determining the temperature dependence of the elastic
modulus taking into account the dimensional factor of
materials does not depend on the type of pseudopotential
applied. To calculate the total energy of the electron-ion
system, any pseudopotential (or the corresponding software
package) that adequately describes the electron-ion
interaction in the material can be used.
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