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Abstract: Frequency response function technique is used to quantify a vibration field
in orthotropic plates considering both general-field and far-field conditions. If vibration
field is stationary, one transducer technique using Frequency Response Function (FRF) is
an alternative to conventional structural intensity measurements. It is free from finite
difference and phase mismatch errors that occur during data acquisition. In this study,
one-transducer technique using FRF is employed to formulate a structural intensity field
in the frequency domain without and the usage of finite difference approximation. As a
result, one transducer may be employed sequentially to quantify the vibration fields.
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Introduction

It is a good practice to subside vibration at the sources. It may also be possible to control its
propagation along structures before radiating, in the form of noise, into the surroundings.
Vibration Power Flow (VPF) or Structural Intensity (SI) is a good tool to use to solve Noise and
Vibration Harness (NVH) problems in industries. In the case of SI, measurements can be employed
on various points on the structures so as to produce an intensity map that gives a path of vibration
propagation. Proper damping treatment can be introduced only to the area of vibration
propagation. Therefore, SI gives important information for controlling noise and vibration in the
structures. This is why the method is widely used in industrial applications.

ST technique has a unique aspect. Tt does not depend on boundary conditions of the structures.
This enables SI to investigate the edge effects of vibration power transmission of pipes, plates and
beams. Most of the earlier methods using ST are usefill for simple structures typically beams and thin
plates in flexure (Noiseux, 1970; Pavic, 1976; Verheij, 1980; Linjama and Lathi, 1992; Bauman, 1994;
Arruda and Campos, 1996). In far field measurement two transducers are necessary (Noiseux, 1970)
but in the general field condition, eight transducers are useful (Pavic,1976). Some of these formulations
are in time domain (Pavic, 1976) and others are in frequency domain (Verheij, 1980; Linjama and
Lathi, 1992). Other than this contact method, non-contact such as acoustic holography (Williams
et af., 1985a; Maynard ef al., 1985, Williams ef «f., 1985b; Romano and Williams, 1993) and optical
measurements (Linjama, 1992; Pascal ez ai., 1993; McDevitt ef af., 1993; Berthelot et af., 1993) are also
available. Numerical analysis using a finite ¢lement approach is a good alternative (Gavric and
Pavic, 1993; Hambric and Taylor, 1994). Recently, SIis employed in more complex structures such
as in orthotropic plates in far-field conditions (Mandal ef &/, 2002) and in general field conditions
(Mandal ef al., 2003) using flexural waves considering either the two-transducer or eight-transducer
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method, respectively. It requires simultaneous acquisition of all field signals at a same time and
ensemble averaging should be performed. Proper attention should be provided in instrumentation so
as to make errors in measurements MInNimum.

From the literature search, it is identified that there is no literature relating to SI uses FRF
method for orthotropic plates. As these types of structures (corrugated plates, beam stiffened plates,
beam grid structures) are very useful in industries, any SI method applicable to orthotropic plates free
from possible error sources (finite difference and random) would be an important solution in the
area of noise and vibration control.

The objective this study is to modify the ST equations both in far-field (Mandal et af., 2002) and
general field (Mandal er al., 2003) conditions using one transducer technique. As a result, a
transducer can be used sequentially on every measurement point of structures when the vibration
field is stationary. Consequently, it provides a SI free from phase mismatch error due to phase
mismatch of transducers by virtue of small transducer spacing and finite difference error due to
large transducer spacing. This formulation is thus an extension of previous methods (Mandal ef /.,
2002; Mandal ez al., 2003).

Frequency Response Function (FRF) Method

The measurement methods (Mandal ez o/, 2002, 2003) are applicable for thin orthotropic plates.
The idea of thin plate results when the thickness of the plate (Fig. 1), h, is small compared to other
dimensions. In thin plate flexural wave equation, the influence of rotary inertia and shear deformation
is neglected. This approximation is valid when h<<, the flexural wave length (Cremer and Heckl,
1988). In this following section, one-transducer FRF technique is employed to modify first the
general field ST (Mandal e# «f., 2003) and then for far-field SI (Mandal ef al., 2002). For general
condition vibration power in x-direction of the plate (Fig. 1) for frequency domain using an eight-

point transducer array (Fig. 2) may be obtained as:

P,(f)= zml—BdB[Im{(SDx +4D,v, + 4H)G,, — 2D,G,, + 2D,Gy, +

(H- Dx\iy)G32 +(H- vay)G34 —(H+ vay)G35 —-(H+ vay)G37 + (0
(H+ Dx\/'y)G62 +(H+ Dx\/'y)G64 —(H 7vay)Gﬁj —{H 7vay)Gﬂ +
ny(st -G, -G, +G, iy

Where:
P (f) = General field power in x-direction,

D = Flexural rigidity in x-direction,
G = Cross-spectra of acceleration signals in different transducer array (Fig. 2),
v = Poisson’s ratio,
H = Effective torsional rigidity of the orthotropic plate (Troitsky, 1976),
. = Circular frequency,
Im = Imaginary part of complex field signals and d = transducer spacing (Fig. 1 and 3).

The y-component intensity can be obtained by interchanging x and v co-ordinates of Eq. 1.
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Fig. 1: Co-ordinate system of naturally orthotropic plate
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Fig. 2: 8-point measurement array required for the spatial derivative in the intensity equation

Far-field intensity in x-direction, on the other hand, is very simple. It requires only one cross
spectrum of acceleration signal as

L = MG @

B den
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Fig. 3. Two-point transducer array for measurement of vibration power

Where, m” is mass per unit area of the plate.

The assumptions and limitations are discussed briefly earlier in this section including thin
plate and bending wavelength issues. In the case of far-field power (Eq. 2), the flexural rigidity in
x-direction of the plate (D) is higher that thatin y-direction. This assumption was carried out when
the dimensionless parameters (Troitsky, 1976) were introduced to estimate far-field power. This
assumption carries an important aspect in the case when the Eq. 2 may be applied for corrugated
plates, where the nigidity in one direction is much greater than that in other orthogonal direction. It
requires that the direction of corrugation would be parallel to x-direction.

FRF Method for General Field Conditions

It is necessary to get simultaneous acquisition of all cross-spectra of acceleration field signals
of Eq. 1 for an intensity vector at a point on the structure to a particular direction. Consequently,
an eight channel FFT analyser or more is required. If one-transducer FRF method be used, it
is still able to obtain all cross-spectra by conventional two-channel FFT analyser. The first
cross-spectrum of the intensity equation in Eq. 1 is G. Two accelerometers, one at point 3 and another
one at point 6 (Fig. 2) are necessary. An estimate of this cross-spectrum G can be obtained with
this FRF method (Bandat and Piersol, 1986) using one accelerometer as,

=7 Z..C 3

GEﬁ FF
Where, &, is the estimate of true G, Z. and Z are the frequency response functions of a force
(reference) signal to accelerations at points 3 and 6, 7 is the auto spectrum of force signal and
asterisk represents complex conjugate of respective FRF.

It is not possible to measure exciting forces in some practical situations. In such a situation,
it is still possible to estimate the cross-spectra of the Eq. 1, using acceleration signal at any arbitrary

point as reference. Using this idea, the same estimate of cross-spectrum in Eq. 3 can be obtained as:

=7" 7 G {4

Here FRF is between reference signal of acceleration at any position and acceleration to the
position 3 and 6 and G is auto-spectrum of acceleration of that point. If phase error is not at all a
problem in the measurement, it is possible to make a reference acceleration signal at first measuring
point 3, the first suffix point of the cross-spectrum, G , the Eq. 4 takes simpler form as:

G (5)
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Using the ideas presentedin Eq. (3-5), the SI Eq. 1 can be formulated in three different forms
(Eq. 6 to 8) incorporating FRF functions as

P ()= ﬁ Im[{(8D, +4D,v_+ Az 72, 2D Z 2. +2DZ 7. +

(H-D¥v,)Z,Z,+(H-Dv )2 2, ~(H+D v )Z 2, —~(H+ Dy ) Z, + ©
(H+Dyv,)Z',Z,, + (H+ D,y )Z ,Z,,—~(H-D,v )Z',Z,, —(H-D¥v )Z . Z,, +
D (Z 2~ Z 320y — L 3 Zys + L0 2y 1G]

F27F7 F4™Fs

Above equation is the modified form of Eg. 1 using auto-spectrum of force signal and
making force signal as reference. If acceleration is considered as reference, Eq. 6 may stand for
another form as

1 . . .
E, = mlm[{(ng +4Dv_+ AMZ' 72 2D Z 72 +2DZ 2 +
(H- ]:)x\f"y)Z*aBZa2 +(H- Dx\"y)Z*ﬂZaa —-(H+ vay)Z*aBZaj —-(H+ vay)ZWaBZﬂ +
(H+ vay)Z"aﬁzﬂ +(H+ vay)Z:ﬁZM —(H- Dx\/'y)Z*mZaj —(H- vay)Z:ﬁZﬂ + N
ny(z*aEZaj 7Z*52Z57 7Z'*a4za5 + Z'*a4z'ai )}Gaa]

Using the idea of Eq. 5, making the acceleration reference signal to the first suffix point of
cross-spectrum, the Eq. 7 can further be written as

P (f)= 203173djlm[{(8Dx +4D,v, +4H)Z, —2D 7, +(H-D,v JZ, +

(H- vay)ZM —(H+ Dx\/'y)Z35 —(H+ vay)ZET}G33 +4{2D,Z,,
+(H+Dwv)Z,+(H+D,v )Z, —(H-Dv )2, - (H-Dwv )7Z,.}1G, + &)
ny{(z’zs -Z, )Gzz - (Zas -Z, )Gm}]

FRF Method for Far-field Conditions

Similarly in the case of far-field condition, a modified SI equation may be formulated using
FRF of force and acceleration signals as reference. First using the force signal as reference, Eq. 2
can take a new form as

2,/D m” N
Ifx )y = Tg} Im{Z 1=1Z1=2 GFF 3 ©)

Using acceleration as reference and making auto-spectrum of acceleration, the Eq. © may
stand for

24D, m”
L = N miz,z,G,) 10

If reference acceleration be at point 1 (Fig. 3), Eq. 10 will shape as

1) = 24D, ImiZ, G, } (1D

(DE
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Discussion

This is a one-transducer method, not incorporating finite difference technique for vibration
power flow estimation. The existing method (Mandal ef &f., 2002, 2003) for 81 in orthotropic plates
considers finite difference technique to approximate spatial derivatives in shear force and moments
relations. Both the methods used many transducers: a two-transducer array for far-field condition
(Mandal er @/, 2002) and an eight-transducer array for general field conditions (Mandal ez af., 2003).
Regarding this aspect, the present study is an extension of existing method. Considering possible error
sources In  measurements, the present method has more benefits compared to other methods
(Mandal ef al., 2002, 2003).

Finite difference errors may readily occur if sensor spacing is not sufficiently small compared
to the flexural wavelength. The ratio of spacing to wavelength (d/) should be equal or less than 0.2
(Linjama and Lathi, 1992; Kay and Swanson, 1996) so as to make finite difference errors minimum.
As such it may never be possible to eliminate finite difference error completely. Because of
application of one transducer in the present method, the finite difference error problem is not an
1ssue in measurements.

Phase mismatch error, on the other hand, may be less if spacing is quite large comparad
to the wavelength. For phase mismatch error, it is necessary to make fully propagative waves and
no reverberant fields in the plates. In fully propagative wave situation, however, the phase
mismatch of the sensors may exceed the true phase difference between two sensors due to structural
vibration. It is because the actual phase difference can be very small when they are located very
closely (s0 as to keep finite difference errors to a minimum) relatively to a very large wavelength.
Making fully propagating wave environment with no or little reverberation is a challenging task.
This can be achieved by providing strong end damping using sand or other damping materials to
suppress reflections of waves from the edges of the plates. As there is no scope of applying spacing
between two sensors, phase error is also not a problem in this one-transducer technique.

Random errors arise due to fluctuation (in either direction) of measurement. A large number of
averaging can reduce the error in the measurement. Systematic (bias) errors, by contrast, evolve
due to improper transducer (not change). Systematic errors can be studied through inter-
comparisons, calibrations and error propagation.

In contact method of measuring vibration, accelerometers are generally used. Mass of
accelerometer is a critical issue in vibration measurements. An eight accelerometer array is
necessary to measure vibration transmission in general field conditions (Mandal, er al., 2003); two
for far-field conditions (Mandal e af., 2002). If the mass of accelerometer is not small, it may change
a local vibration behavior of the plates. For one transducer method, this issue is not critical as
only one miniature accelerometer is employed. The mass loading problem is more severe in other
methods: eight-time for general conditions (Mandal ef &f., 2003) and two-time for far-field conditions
(Mandal ez al., 2002). Other than mass loading and local stiffness due to positioning of an
accelerometer, cabling damping effects could be minimal in this case. An analysis due to mass loading
and local stiffness is available in modal testing book (Ewins, 1986).

Through this study a thorough formulation of structural intensity is carried out using one
transducer frequency response technique with no useful experimental examples. As a
preliminary result, this note is put forward. However, it is possible, in future, to provide
experimental investigations of vibration power flow fields which includes near fields in presence
of evanescent waves. This is the most interesting aspect of intensity measurements with this
method.
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Considering all these factors, the FRF method may be a good alternative to existing finite
difference approximation SI techniques. If the vibration field is stationary, one transducer can be
used sequentially at different measurement locations to estimate required cross-spectra. Consequently,
there is no possibility of inherent error due to finite difference and phase mismatch. However,
it takes a little longer in measurement time.

Conclusions

The existing SI methods using finite difference technique are modified by one-transducer
FRF technique. This provides an alternative way of measurement with no finite difference and
phase mismatch errors. These models provide an extension of SI methods useful for orthotropic
plates. Instrumentation of these models is very simple and requires only a stable vibration field. A
popular two-transducer FFT analyzer can be easily used for data acquisition and there is no
need to take all cross-spectra of acceleration signals at a same time.
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