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Abstract: A simple procedure was established to obtain analytical solution for the general
case of multi-layer thick evlindrical shell with each laver having different material properties
under axial inertia loading. Design formulae in handbooks or monographs for a two-layer
reinforced propellant grain, was shown to be a special case of the present general analytical
solution. The solution of the problem was found to be useful for slump displacement
evaluation of the propellant grain in a rocket motor under vertical storage condition. The
slump displacement at the inner bore of the propellant grain was found to increase rapidly
within an hour and later on increases slowly with time. When the elastic modulus varied
monotonically in the ascending order from the inner radius to outer radius, the slump
displacement at the inner bore of the propellant grain was found to increase compared to the
case where the modulus varied monotonically in the descending order. Finite element
solutions of all the above problems were found to be in good agreement with the present
analytical solutions.

Key words: Analvtical solution, rocket motor, steel casing, insulation, propellant grain,
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Introduction

One of the important design conditions for a solid propellant rocket motor concerns its structural
integrity under inertia loading. Problems associated with spin stabilization, storage, maneuvering, wind
shear and acceleration fall into this category. The particular inertia problem to be discussed is a rather
restricted and simple example of the more general one, which ordinarily occurs in practice. It is
proposed to restrict our consideration to the problem of axial inertia alone, whether at rest as in a
storage condition for a long time or in accelerated flights for short times.

The major portion of the solid propellant motor (Fig. 1) can be considered to be a multilayered
thick cylinder consisting of three layers of different materials namely, solid propellant, insulation and
metallic or composite casing. Fitzerald and Hufferd (1971) as well as Anonymous (1973) were
presented the design formulae for slump displacement across the web (along the radial direction) in an
infinitely long cylindrical grain under vertical storage by assuming the grain to be reinforced by the rigid
metallic casing. It may be noted that, though insulation is also a high polymeric material, its Young’s
modulus is usually lower than that of propellant material. Therefore, to get an accurate estimation of
slump displacement and interface shear stresses at both the interfaces (i.e., to propellant as well as to
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Fig. 1: A typical rocket motor

casing), it is necessary to consider the insulation as a separate layer in the analysis. Also, the
conventional analysis of stresses and strains in a solid propellant rocket motor is based on the
assumptions that the strains are small and a state of plane strain exists in the grain. This permits a
simplified approach of the structural integrity evaluation of grains of higher length. In a region away
from the end of the grain an approximate solution can be obtained if the length to radius ratio is large.
However, for a short length propellant grain the effects of the end conditions should be considered,
since the end effects do not damp out completely but influence the deformation as well as stress
distribution throughout the grain in which case a three-dimensional analysis is required.

An elastic analysis would indicate that there is no essential difference between a 1-g storage
loading for long time and n-g acceleration loading for short times, apart from the obvious magnitude
factor due to the increased effective weight. However, because the grain material is viscoelastic, a time
dependency arises due to the sensitivity of the material. Hence, it is essential to carry out the
viscoelastic analysis for slump estimation of propellant grains in a rocket motor.

Most of the engineering viscoelastic materials, such as polymers, follow the Boltzman’s
superposition principle (Flugge, 1967) and so their constitutive or stress-strain relationship can be
expressed in terms of either linear differential operators or linear integral operators. The viscoelastic
constitutive relations in the linear differential operator form can be associated with the response of a
model consisting of a series of springs and dashpots, i.e., in the form of the simple Kelvin and the
Maxwell units. However, in view of certain limitations of these models, a realistic representation of
the behavior of a viscoelastic material can be achieved only by a sufficiently large number of these
clements. Accuracy over long time ranges requires a combination of a very large number of these
elements. Such a combination would, however, give rise to constitutive relations with higher order
differential operators containing a large number of unknown constants, which renders the analytical
treatment quite cumbersome.

The main problem that occurs in the viscoelastic stress analysis is that the stresses, strains and
displacements are all functions of time. If this time variable could be removed by a transform operation,
the resulting problem would be an equivalent problem in the theory of elasticity (called the associated
clastic problem) in terms of the transform parameter, with the load and boundary conditions in the
form of transforms of the original time-dependent functions. The inverse transformation of the solution
of the associated elastic problem into the real time variable would give the solution to the original
viscoelastic problem. The disadvantage of the method of elastic-viscoelastic analogy is the difficulty
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involved in the inversion of the associated elastic solution into the real time variable. To overcome this
difficulty, Schapery (1961) proposed a dirsct method of inversion which is simple to apply, and is
given by:

£(t) = [s ()] O

Where , (s)is the Laplace transform of a function f{t) and s is the transform parameter. To apply
the method it is necessary to multiply the transformed function by s and obtain the results at s = 1/2t.
The above method of inversion generally represents satisfactorily the overall behavior of the time-
dependent quantities. If the expressions for transformed quantities are obtained numerically, the
subsequent inversion is accomplished by multiplying them by s and obtaining their values at s = 1/2t.
But, if the values of these expressions result from some numerical solution, then the inversion is done
by substituting s = 1/2t for discrete values of ¢ in the operational quantities involving the Laplace
parameter, like E(s) =sE(3) , v(s)=s¥(s), etc.Thus, for each value of the transform parameters,
there are corresponding values of E(s) and v(s) which are the associated Young’s modulus and
Poisson’s ratio to be used in the associated elastic solution. The finite element solution obtained for
these values at s = 1/2t gives directly the viscoelastic solution at time (t). Adey and Brebbia (1973)
have applied a similar procedure for the analysis of nuclear reactor pressure vessels.

The general assumption of homogeneity of solid propellant materials is subjected to certain
restrictions. Such an assumption is valid only if a good quality control can be achieved and the
mechanical properties are confined within narrow limits. In reality, these properties may have large
variations within the same grain. Also, during the casting of large size grains due to various reasons
related to the propellant mixing and shury flowing characteristics, regions of multiple voids/porosity
are noticed at certain radial locations almost throughout the circumference of the grain. Presence of
these multiple voids/porosity can change the compressibility properties of the propellant at those
locations. Therefore, it is essential to examine the influence of modulii (Tensile/shear and bulk modulii)
variation on structural integrity of rocket motors considering grain to be made of various circumferential
layers of different properties.

The purpose of this study was to develop a methodology to obtain an analytical solution for the
general case of multi-layer thick cylindrical shell with each layer having different material properties,
for axial inertia loading. The method of analysis is validated through comparison of existing analytical
expressions for a two-layer case, and finite element solutions for a typical three-layer cylindrical shell
portion of the solid propellant rocket motor.

Analytical Method of Analysis

The analysis for a thick cylindrical multi-layer grain in a metallic casing of a rocket motor is based
on the equations for stresses and deformation in a hollow thick cylinder (Fig. 2) with uniform thickness
and subjected to the axial inertia. The radial coordinate is r, and the axial coordinates is z in the direction
of the acceleration ng. For these conditions of axial symmetry of the geometry and body force loading
pngin the z direction, the three equations of equilibrium reduce simply to

l—a(n") +png=0
r o

2

Where, T, is the shear stress.
By integrating Eq. 2 with the boundary condition,
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—d___
| Cross-section
Fig. 2. A hollow thick cylinder under axial inertia
T,=T;, atr=R, 3
We get
T *&r +lpn {R: r}
= r 1 2 g r (4)

Here, R, is the inner radius of a hollow cylinder and 1, is the shear stress. The stress-strain-
deformation relation for the present problem is
E E ow
= Y= .
2A1+v) 2(1+v) or (5

Here E and v are the Young’s modulus and the Poisson’s ratio, respectively vy, is the shear strain
and w is the axial displacement, respectively.
Using Eq. 5 in 4 and integrating with the boundary condition,
» atr=R, (6)

W =W,

we get

0

2{1+v) T 1 r. RI-r
=w, +——2| R 1 log{i—)+—png <« R:log{—)+ —= (M)
E { T g(RU) P18 R, g(RU) 5 H

The multi-layer grain in the present study is an m-layer cylindrical vessel subjected to axial inertia.
Each layer is having different material properties. When the boundary condition, t;= 0 is applied to
the bore of the inner cylinder (r =R,). a shear stress distribution is induced in the composite structure,
and at the interfaces (1=R , R .. ... R.). Here E,, v; and p; are the Young’s modulus, Poisson’s ratio
and the density of the ith ¢ylinder. The ith c¢ylinder is subjected to an internal shear stress (atr =R))
and an external shear stress T..,. From Eq. 4, we obtain a relation:
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=R ong Ri g L foris2m (8)
- Ri+l ' 2 ' Ri+l -
ie., T, = %plng {Ef -R, } (from boundary condition, t~= 0)

R 1 R: R ete.
T, =—"T,+ P, -
3 R 2 2p2 g R 3

3 3

Thus, Eq. 8 becomes a recurrence relation for shear stress at interfaces. For the multi-layer case bonded
solid propellant grain under vertical storage with un-supported base, T, gives maximum interface shear
stress value. Shear stress within the i* cylinder can be obtained by substituting the interfacial shear
stress, T, in the equation:

: 9
’c:’:r‘£+lping{£fr} ©)
r 2 r

Similarly, for the case of rigid casing material, the boundary condition for axial displacement at outer
boundary can be written as:
w=w,, atr=R _,, (10)

Replacingw, =w_,T, =T,v=v,E=E,p=p, R =R and R, =R  in Eq. 7, we get the axial
displacement for ith cylinder as:

WO —w 4 2(1+v)
E)

il

r 1 r R -1
Rt log(—)+ —pngq R log(—)+ —* (11
T g(R ) 2p)gj[ : g(R ) 5 H

i+l il

The axial displacement, w;, at inner radius (r = R ) of the ith cylinder can be obtained from
Eq. 11 as:

2(1+v) R .. 1 .. R . R -R (12)
w=w +—— Y RTloe(—3+-—-pne:R’lo Ly e i
L= W, z { T g(R ) 2p,g{ X g(R ) 5 H

i 14 i+l

which can be used fori=m, (m-1),............ 2.1

s

i W *LPFV“‘) R_t_lo £+lpn R:lo R, +7R‘]‘“‘7R‘]“ fir =
ie, W, B b gR 7P g1, gR 5 (from Eq. 10, w,,,,= 0)

m m+1 ml

m-1 m E m-1 “m-1

m-1

2014v_ ) R 1 R R’-R’
w,_ =w, +—— =R 1 log—=2+_—p ng R: log—=tq = =, elo
{ 2] R 2pm4 g{ w1 108 R 5 }}

m m

Thus Eq. 12 represents a recurrence relation for the axial displacement. w, gives maximum slump value
at the inner bore of the multi-layer grain. The axial displacement within the ith cylinder can be obtained
directly from Eq. 11 after determining displacements from Eq. 12 at interfaces.
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Analytical expressions presented by Fitzerald and Hufferd (1971) as well as Anonymous, (1973)
for shear stress and axial displacement in a plane strain, circular port grain (with two layers i.e.,
propellant and rigid metal casing) under axial inertial load can be obtained easily from the present
analytical solution assuming m =1, R=a, R,=Db, 1, = 0 and w,=0. The properties of the propellant
material are: E,=E, V|, =V, and p; = p. The interface shear stress (t,) at outer surface of the propellant
(i.e., atr =R ,=b) can be obtained from Eq. 8 for i =1 as:

1 a’
t ~Longi® b (13)
=3P g(bg )

The maximum axial displacement (w,) at inner surface of the propellant (i.e.,atr=R ,=a)can
be obtained by using Eq. 13 in Eq. 11 fori=1 as:

(1+v)png | | a, b -&
w o=-—"—"4qa'log(—)+
1 v g(b) 2

— (1+v)pngb {lalogeb } (14)
2E b’ :

It is evident from Eq. 14 that rapid increase in slump displacement can be expected in the
cylindrical grains with higher outer radius (b) and lower a/b ratio (i.e., higher web thickness).

Results and Discussion

The analytical solution for multi-layer thick cylindrical shell subjected to axial inertia load is
examined for a propellant grain with insulation and metallic casing (a three-layer cylindrical shell). The
analytical solution of the problem is compared with finite element solution.

The basic input considered for the analysis is as follows:

Grain inner radius (a) =50 cm
Grain outer radius (b) =138.4 cm
Insulation thickness =0.5¢cm
Casing thickness =0.78 cm

The Young’s modulus (E ), Poisson’s ratio (v.) and density (p_) of the steel casing material are:

E, =1900000 kg em*, v=03and p=0.0178 kg cm*

The Young’s modulus (E,,), Poisson’s ratio (v,,.) and density (p,) of the insulation material (assumed
to be ¢lastic) are:

Ei, = 20kgem™,v,=0.5; and pj,= 0.0012 kg cm™?

Bulk modulus (K assumed to be constant) and density (p,) of the propellant are :

K =35300kgoem™, p,=0.00178 kg cm™ and Inertia load =lg

The relaxation modulus, E,, for a HTPB based propellant material is expressed in the Prony series
form as;

t

E (0 —E. + ¥ Ae (15)
k=1

where, E_ is the equilibrium modulus, T, are the relaxation times and A, are constants.

The first 16 values of T, (in seconds) and A, (in kg cm™?) are (Renganathan ez af., 2000

7, =10%° fork =1, 2...16. and the corresponding values of A, are 1.17, 158.8, 387.3, 530.2, 225.6,
1303, 52.2, 456, 13.9, 11.9, 4.46, 4.14, 0.26, 0.1, 0.445 and 0.655. The equilibrium modulus,
E.=20kg em™.
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The Laplace transform for the relaxation modulus defined in Eq. 15, is:

B (s)=te s 32 (16)

The operational modulus, E(s)is given by:

sA,

E(s)=sE_(s)=E_ +z a7
st—
2T

3

Using the bulk modulus (K) and the operational modulus E(s), we can write the operational Poisson’s
ratio in the form @)
1 E(s
vigy=— 1—— (1 8)
©) 2 [ 3K

At any time t, substituting the value of s = 1/2tin Eq. 17 and 18, the value of operational modulus E(s)
and the corresponding value of the Poisson’s ratio w(s) can be obtained. The values of operational
modulus E(s) and the Poisson’s ratio, v(s) are used for E and v in the elastic analytical solutions to get
time dependent viscoelastic solutions.

For an infinitely long multi-layer eylindrical shell under axial inertia load, the structure can be
modeled as a strip by dividing into a number of quadrilateral elements along the radial direction and
constraining radial displacements on top and bottom surfaces of the cylinder, in addition to the
constraint of axial displacement at the outer surface of the cylindrical shell (Fig. 3). o
—W =

Radial displacement u=10
T h J

é_’

Zz

Radial displacement u =0
L w=0

Fig. 3: Finmte element idealization of an infinitely long case bonded propellant grain

Table 1: Comparison of maximum slump displacement at inner surface of the grain with time for 1-g vertical storage load

Time, t Operational modulus, Maximum slump at the inner surface (mm)

(sec) Ef(s) of the propellant

logt (KSC) Analvtical solution Finite element solution
-8 1588 0.179 0.176
-7 1514 0.183 0.180
-6 1259 0.204 0.202
-5 832 0.268 0.267
-4 427 0.446 0.445
-3 237 0.738 0.736
-2 132 1.262 1.259
-1 83 1.960 1.956
0 50 3.200 3.196
1 37 4.296 4.293
2 28 5.651 5.649
3 24 6.580 6.579
4 21.4 7.376 7.375
5 21.1 7.459 7457
6 20.9 7.547 7.544
7 20.4 7727 7723
8 20.0 7.880 7.875
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Table 2: Comparison of slump displacement across the web of the propellant grain corresponding to the equilibrium
modulus for 1-g vertical storage load

Radial distance, r (cm) Slump displacement (mim)

(from inner bore to outer

surface of the propellant) Analytical solution Finite element solution
50.00 7.880 7.875
58.89 7.780 7.775
67.78 7.497 7.493
76.67 7.051 7.047
85.56 6.455 6.451
94.45 5717 5713
103.34 4.834 4.841
112.23 3.840 3.837
121.12 2.709 2.708
130.01 1456 1.455
13840 0.081 0.081

Table 3: Comparison of slump displacement along the radial direction (from the inner bore to outer surface of the
propellant) for the variation of elastic modihis across the web in (Case-T) ascending order of 30 to 50 insteps of
Skgoem™ and (case-II) descending order of 50 to 30 in steps of -5 kg cm™?

Case-I Case-II

Radial distance, r (cm)  Analytical solution  Finite element solution ~ Analytical solution  Finite element solution

50.00 3.737 3.735 4.475 4.472
58.89 3.670 3.668 4.435 4.432
67.78 3.482 3.480 4322 4.319
76.67 3.227 3.225 4.123 4.121
85.56 2.886 2.885 3.858 3.856
94.45 2.517 2.516 3.489 3.487
103.34 2.081 2.079 3.053 3.051
112.23 1.635 1.634 2479 2.478
121.12 1.113 1.113 1.833 1.832
130.01 0.631 0.630 0.997 0.997
13840 0.081 0.081 0.081 0.081

Results of analytical and finite element solutions in Table 1 show a good comparison of maximum
slump displacement of inner surface with time. The slump displacement is found to increase rapidly
within an hour, and later on increases slowly with time, and approaches a value corresponding to
equilibrium modulus (E.). Table 2 gives comparison of slump displacement across the web of the
propellant grain corresponding to the equilibrivm modulus.

Using the finite element idealization of Fig. 3, a five-layer propellant grain with insulation and
metallic casing (a seven-layer eylindrical shell) is analyzed considering: variation of elastic modulus in
ascending order of 30 to 50 kg em?in steps of 5 kg om™ and descending order of 50 to 30 kg em™
in steps of-5 kg cm™, from inner radius to outer radius of the propellant. Since, the propellant material
is nearly incompressible, the Poisson’s ratio, =0.499 is used in the analysis. In the finite element
model, each layer of the five-layer propellant material is divided into two elements hence 10 elements
are used for the propellant material (Fig. 3). Specifying the mechanical properties of propellant,
insulation and metallic casing, the grain is analyzed for 1g axial inertia load. Results in Table 3 indicate
a good comparison of analytical and finite element solutions of slump along the radial direction. The
slump displacement at inner bore of the propellant grain increases when the Young’s modulus of the
material varies monotomically in the ascending order from the inner radius to outer radius, compared
to the case where the modulus varies monotonically in the descending order.
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Conclusions

This study presents a simple methodology to obtain analytical solution for the general case of
multi-layer thick eylindrical shell (with each layer having different material properties) for axial inertia
loading. The existing analytical solution for a reinforced propellant grain is shown to be a special case
of the present study. Finite element solutions, for grains having more numbers of layers with different
material properties are in good agreement with the present analysis results.
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