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Abstract: This study presents an exact solution for the flow of two immiscible fluids under
a general oscillatory time-dependent pressure gradient in a channel with one porous floor.
The oscillatory behavior of the time-dependent pressure gradient is expressed in terms of
Fourier series. At the interface, continuity of velocities and shear stresses is assumed.
Equations governing the flow are solved using the slip condition at the permeable interface
whereas the generalized Darcy’s law in the porous region. The unsteady flow depends upon
the Reynolds numbers of the fluids, slip parameter and porous parameter. Analytical
expressions are provided for the mass flow rate and wall shearing stresses. Numerical results
are presented considering water and mercury as the two immiscible fluids for the uniform
pressure gradient as well as for the sinusoidal time-dependent pressure gradient. Since the
formulation of the problem is general, it is possible to examine the unsteady flow of any two
immiscible fluids under any specified oscillatory time-dependent pressure gradient. This
study will be useful in learning how the pressure and viscous forces exert their influence to
produce different flow patterns.
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Introduction

Studies are made on the fluid flow in a porous channel to understand some practical phenomena
such as transpiration cooling and gaseous diffusion (Berman, 1953; Sellars, 1955; Yuan, 1956). Wang
(1971) studied the interesting problem of pulsatile flow in a porous channel bounded by rigid walls.
The pulsatile flow between permeable walls is important in understanding blood flow in the circulation
system, where the nutrients are supplied to tissues of various organs and the waste products are
removed. Vajravelu ez al. (2003) have analyzed the pulsatile flow of a viscous fluid between two
permeable beds and obtained the velocity field as well as the volume flux. The fluid in their
mathematical formulation is driven by an unsteady pressure gradient. The fluid flow between the
permeable beds is governed by Navier-Stokes equations and with the Darcy’s law. Darcy’s law is the
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most commonly used law to study the diffusion of one constituent through another. It is an
approximation to a basic balance law (Rajagopal and Tao, 1995).

The problem of flow through a channel formed by two parallel walls has also been examined by
a number of researchers. Such a problem when the lower wall is permeable finds applications in the
study of hvdrology, petroleum industry, agricultural engineering and mamny others. Russel and Charless
(1959) have examined the effect of a less viscous liquid such as water on the laminar flow of a high
viscous liquid. They have shown that the pressure gradient for the flow of the high viscous liquid can
be reduced, if water is injected into the channel. Considering the flow of a lighter fluid with less
viscosity over a heavier fluid with high viscosity in a parallel plate channel, Bird ef af. (1960) have
shown that the fluid having less viscosity flows more rapidly than that with high viscosity. Kapur and
Shukla (1964) have extended the analysis of Bird ef af. (1960) for the flow of two immiscible liquids
under time-dependent pressure gradient. Their results indicate that the interface velocity increases and
the skin-friction at the plates decrease with the Reynolds numbers for the flow of two immiscible
liquids. Beavers and Joseph (1967) have performed experiments to study the effect of tangential
velocity in Poiseuille flow with permeable bed. Richardson (1971), Taylor {1971), Rajasckhara er al.
(1975), have studied the effect of slip velocity in Couette flow. In these studies, the flow was
influenced by a constant pressure gradient. Practical situations, however, demand consideration of
unsteadiness in the flow where the unsteadiness may be caused by time-dependent pressure gradient.

Sai (1980) has examined the unsteady behavior of Poiseuille flow of viscous and incompressible
fluid in a plane charmel formed by two walls of which the upper one is solid and the lower one a
porous of infinite thickness. The pressure gradient is assumed to vary exponentially with time. He has
applied the slip condition at the porous surface and the generalized Darcy’s law in the porous region.
It is found that the mass flow rate for the time-independent pressure gradient is greater than the mass
flow rate for the time-dependent pressure gradient and velocity is found to attain maximum value at
the porous interface. Sai and Agarwal (1980) have investigated the flow of two immiscible fluids with
different densities and viscosities under constant pressure gradient in a parallel plate channel bounded
by a nigid wall at the top and a permeable bed of infinite thickness at the bottom. Using the Darcy’s
law for the flow in the permeable medium and Beavers and Joseph’s slip condition (Beavers and
Joseph, 1967) at the permeable interface it has been shown that the fluid velocity and mass flux
increase with the permeability of the bed. Sai (1989, 1990) has studied the unsteady flow of two
viscous, incompressible and immiscible fluids in a long parallel channel of which the upper one is
impervious and lower one is porous of infinite thickness by taking a pressure gradient of the form
Pexp(ct), where P and ¢ are constants. The porous medium is assumed to be homogeneous and
isotropic so that its permeability is constant. The positive value of ¢ is taken for a mathematical
convenience. However, such a positive constant could model a non-autonomous system in which, time
increasing pressure gradient can be maintained by a source. Beavers and Joseph’s slip condition at the
permeable interface and the generalized Darcy’s law in the porous region have been used. The analysis
reveals that the flow depends upon the Reynolds numbers for the upper and lower fluids, slip
parameter and the porous parameter. The two layer flow problems are of wide industrial importance,
and examples of their application include in-tube condensers, petroleum industry, a few types of
water-heat boilers and in the area of ground water technology.

In view of the practical situation of generation of pressure where crude is being pumped up and
the pumping suddenly stops (the so-called “water-hammer’ phenomenon), the flow is oscillatory and
it has to be generated through a simusoidal pressure gradient. These studies will have applications in
petroleum industry, where crude with water above may be confined between boundaries of rigid strata
above and porous bed below.
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Fig. 1. Physical model

The objective of this study is to formulate the problem by considering the unsteady flow of two
immuiscible fluids under a general oscillatory time-dependent pressure gradient in a channel with one
porous floor (Fig. 1). The oscillatory behavior of the time-dependent pressure gradient is expressed
in terms of Fourier series. Exact solution of the equations governing the flow is obtained. Analytical
expressions for the mass flow rate and wall shearing stresses are provided. Considering water and
mercury as the two immiscible fluids, numerical results are presented for the case of the time-
dependent sinusoidal pressure gradient. The present exact solution is usefill to examine the unsteady
flow of two immiscible fluids in a channel with one porous floor under any specified oscillatory time-
dependent pressure gradient.

Formulation

The problem investigated here is the fully developed laminar flow of two immiscible fluids under
an oscillatory time-dependent pressure gradient:

_? =P, + i{Pm cos(nft) + P, sin(nt)}, (0
X n=1

in a parallel plate channel bounded by a rigid and a permeable bed. Here Q is the frequency of
oscillations. The oscillatory behavior of the time-dependent pressure gradient in Eq. (1) is expressed

in terms of Fourier series, which is convenient to represent the actual variation of & with respect to
ax

time. In the present formulation, x-axis is in the direction of the flow whereas y-axis is perpendicular
to the flow direction. The origin is chosen mid-way between the plates (Fig. 1). The equations
governing the flow are:
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du op &u
w,_ o, Fu @
Plae  ax Mgy

Where, p; is the velocity, ; is the viscosity and p; is the density for, j = 1,2 fluids.
The no-slip condition at the solid wall is:

u, =0 at  y=h 3

Contimuty of velocities and shear stresses is assumed at the interface:

_ du, _ O al  y=0 @)
0 =y, 0 dy =My ay
The slip condition at the porous bed is:
gu o _
a—;=ﬁ(u2—u3) at y=-h (5)
The velocity, u,, in porous medium obeys the Darcy’s law (Yih, 1965):
ou
P20 O _p ©

G X K

Where, e and x are the porosity and permeability of the medium. ¢ is the non-dimensional
quantity for the porous material.

Definming the Reynolds number for two fluids, R, = % the porous parameter, 5= LK and
i
1= % . the solution of Eq. (1) to (6) for the governing flow is obtained as
% =P,(1- n)(% t8,)+ il (u,, cos(nft)+u,, sin(n€A}}, @
“ﬁ‘ji =P, {2(1 M+ 8,05, — M)+ rg{vm cos(nQt) + v, sin(nQt)}, ®
“ﬁ‘f - % + }“:1 fw,, cos(nt) +w _ sin(n€)}, ©

Wall shearing stresses {Tl = @) andT, = (4, %) . |at the top wall and at the permeable bed
ay " ay "

are:

—=-B {% +8, j+ i‘, m, {r_cos(n&dt)+r_sin(nft)}, (10)
n=1
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Table 1: Mass flow rate and wall shearing stresses for the oscillatory pressure gradient by considering water and mercury

as two immiscible fluids (_@ =Pcos(Qt))

ox
Ot Reynolds Mass flow rate, Wall shearing Wall shearing
number, R, u,Q stress, U stress, T2
PR’ Ph Ph
0 0.25 0.6100 -0.9758 2.0670
0.50 0.2121 -0.7094 1.7100
0.75 0.1130 -0.6335 1.5350
1.00 0.0734 -0.5950 1.3610
™2 0.25 -0.9378 0.0723 1.1350
0.50 -0.3280 -0.0830 0.1645
0.75 -0.1747 -0.1101 -0.4039
1.00 -0.1019 -0.1243 -0.8293
T 3 = .
f =P [5 -8, } + §:}1m2 {s,, cos(nfx)+s_ sin(nQt)}, an

The mass flow rate (Q = 'f udy = } u,dy +?u1dY] is:
-h -h o

1 1z .
“ﬁ—? = Py{285 — 18,0} 4 T cos(nQE )+ sinnQ)}, (12)

All the constants in Eq. (7) to (12) are given in the Appendix. It should be noted that when «~ o the
solution of the problem becomes independent of € and o.

Numerical Results

Analytical solution is obtained for Eq. (1) to (6) governing the unsteady flow of two immiscible
fluids under an oscillatory time-dependent pressure gradient in a channel with one porous floor. The
unsteady flow depends upon the Reynolds nmumbers of fluids, slip parameter and the porous
parameter. The solution of the problem for any oscillatory time-dependent pressure gradient can be
obtained after determining the coefficients in the Fourier series of Eq. (1). The interface velocity of the
two immiscible fluids is obtained from Eq. (7) or Eq. (8) at 1 = 0. Wall shearing stresses at the top
wall and at the permeable bed are obtained from Eq. (10) and (11). The mass flow rate is

obtained using Eq. (12).
Numerical results are obtained by considering water and mercury as two immiscible fluids. The

ratios of viscosities and densities for the fluids at room temperature are: M2 — | ssand Pz _ 134
K P

Values of the slip parameter (&) and the porosity (¢} are specified by assuming co and £o? as unity.
The mass flow rate (Q). and wall shearing stresses (1,,T,) are evaluated for the porous
parameter, o = 100.

For the case of uniform pressure gradient (_@ = p} . the non-dimensional mass flow rate,
ox

@ —1.134; the shear stress at the rigid plate, ;_}11 — 1204 and the shear stress atthe porous bed,
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Fig. 2: Velocityu*[zwiJ across the flow of two immiscible fluids (water and mercury ) for the
Ph

uniform pressure gradient : _9p_ P
ox

% = 0.79¢1. Shear stress (1,) at the porous bed (1= -1) clearly indicates the positive velocity

gradient, which implies increasing nature of the velocity near the porous bed. Shear stress (t,) at the
rigid plate (m= 1) shows the negative velocity gradient, which implies decreasing nature of the velocity
near the rigid plate. Due to difference in fluid properties, the velocity gradient may not vanish at the
interface (1) = 0) and hence, the interface velocity may not be maximum. Figure 2 shows the velocity
distribution across the flow. Because of the slip condition at the porous bed (1 = -1) and no-slip
condition at the rigid plate (1= 1), the velocity increases from the porous bed gradually to a maximum
value and start decreasing and finally vanishes at the rigid plate. The interface velocity is found to be
lower than the maximum attained velocity in the heavier fluid.

Table 1 gives the mass flow rate and wall sheaning stresses for the oscillatory pressure

gradient, _ 9P =peos{Qt). At the instant of time, t = 0, the mass flow rate, the shear stress at the
x

porous bed as well as the magnitude of the shear stress at rigid plate decrease with increasing the

Reynolds number. At the instant of time,  — ®_, the magnitude of the mass flow rate decreases with
20

increasing the Reynolds number. The positive and negative values of the wall shearing stresses at the
porous bed and the rigid plate are mainly due to the oscillatory pressure gradient. Figure 3 shows the
contour plot of velocity for the Reynolds number (R,= 1), which shows clearly the oscillatory
behaviour.

Conclusions

This study presents an exact solution for the unsteady flow of two immiscible viscous
incompressible fluids under a general oscillatory time-dependent pressure gradient in a channel with
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Fig. 3. Contowr plot for the velocity u*(_“luz] for the oscillatory pressure
Ph

gradient: —@=Pcos(£2t) and R =1
ox

one porous floor. Assuming water and mercury as the two immiscible fluids, mumerical results are
presented for the case of time-dependent sinusoidal pressure gradient. Since the formulation of the
problem is general, the solution of the problem can be easily obtained for any immiscible fluids under
any specified oscillatory ime-dependent pressure gradient. The present analytical solution can provide
not only a check against the computer experiments of the problem, but also provide a means of
parametric study which is useful in learning how the pressure and viscous forces exert their influence
to produce different flow patterns.

Appendix

Constants in Eq. (7) to (9) for velocity components are:
u =P U, +P U_;
u, =P U, -P U.;
Vo =B Uy +P Uy
v,=P U, -P U,
w,=P U, +P U,;
w, =P U, -P U.;

Uy, = AR mmy— AR, (mm) + AR, (mm) - AR, (mm);

1
2m?’

Uy, = ALR mm)+ AP, (mm) + A LR, (mm) + A B, (mm) —
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Uy, = AyB(mym) + Ay, (mom) + A, B, (mym) + A B, (mym) — 2711‘12;

Uy, = A, B (mm) — Ay B, (mym) + A B (mm) — AP, (mm)

2_2
g
U, = U ;
3
e 2.
U,=-2 my;

33

—al 2.
U, =2c +4m3;

(e d +e,d).
AL =— 1% 2d2 :

d,
e —€
L)
12
(fd +£L
A”: ldl Zdj),
dy;
S
12
Ay =8 A

A, SI[A12 2_111,2}+ﬁ;
A, =5A;
A, =8 AL
4=

d, =b,p, (m,)—a,p, (m, ) +a,p,{m,)—b,f,(m, )
d, =b,p(m)+af,(m)+ap (m)+bp,(m,)

b
€ :C1ﬁz(m1)7c2ﬁz(m1)+ 22 ;
2m

1

bl .
2m}’

e, =¢,f;(m,) +¢,p,(m )—

f=cfm)-c,ym)

1

f,= C1Ba(m1)+czﬁ1(m1)+2imlg;

a, =s,m, {f,(m,)— B,(m, )} + oo, (m, )
a, = §,m, {B,(m, )+ B, (m, )} + ciof, (m, )

by = yfs, [m, (B, (m, )~ B, (m, )} + oof, (m, )}
b, = fs; [m, (B, (m, ) +B,(m, )} + a0, (m, )]

¢, =¢,{a, —(1-8 Joof,(m, )} — oal,;

1 .
¢, = ¢, {a, — (1 +s,)oaf (m, )} - OCG[E +U,, }

2
1| s 1
T T T E
28 | m; m;
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2
G=L R thj’ m ﬁ
% i W, i 5
3
Z+=+ao
gt _2 ¢ C g =Py
1 > 2 > 3 >
W 1+(1+s, oo WP,

By (£) =cosh(E)cos(E):
B, (&) = cosh(E)sin(E);

B, (&) = sinh(E) cos(E);
B, (&) = sinh(E)sin(E).

Constants in Eq. (10) and (11) for wall shearing stresses are:
., =PV, +P_ V.
L, =PV, —P.V;

S =P Vy +P Vi
s, =PV, —P_V,.;

222

Vi = (A = Ay B (my) = (A + AR, (my) + (A = AP, (my) = (A + Ay OB, (m, );
Vig = (A + A B () + (A — A B () + (A + A )R, (my )+ (A — A B, (m);
Vi = (A = A, 0B () + (A + Ag )P, (my) = (Ay = Ay )B; (my ) — (A + Agy)By(m,);
Vag = (Ags + A0 (M, ) — (Agy — Ay 3P, (my )= (Ag + Ay P (my ) + (A — Ay OB, (my).

Constants in Eq. (12) for the mass flow rate are:

8 1
Qo = (B, Wy, TP W, )+ — (B, Wy + P W, )
m, m

4 2
8 1
Qen = _I(Pan1 —P W i+— (P, W, —P W,
m, m,
W, =V — A — Ayl
1
W, ==V, T A, - A, ——
m,
Wy ==V + Ay + Ay

1
W, =V, —A +tA, +—.
m

2
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