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Abstract: Finite element analysis for adhesively bonded joints has been carried out by
developing a special 6 node isoparametric element for the adhesive layer. The adhesive layer
is assumed to be relatively thin and behaves elastically as simple tension-compression
springs and shear spring connecting the adherends. The results of a metal-metal single lap
joint are found to be in good agreement with the closed-form solution of Goland and
Reissner. This adhesive element can be utilized for modeling adhesively bonded joints having
shaped adherends for optimum joint efficiency.
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Introduction

Joints in components or structures incur a weight penalty, are a source of failure and cause
mamufacturing problems; whenever possible, therefore, a designer will avoid using them. Unfortunately
it is rarely possible to produce a construction without joints owing to limitations on material size,
convenience in manufacture or transportation and the need for access in order to inspect or repair the
structure (Mathews and Rawlings, 1999).

Developments in the application of advanced composites in vehicle design involve material
systems utilizing composites bonded to metallic structural members. These hybrid composites
combine the high tensile capacity of a composite with the shear strength of a metal to obtain a
structurally efficient and cost effective component. Applications have included horizontal stabilizers
of aircraft, tail sections of helicopters and high speed ground transportations vehicles. Basically, there
are two types of joint commonly employed with composite materials: adhesively bonded joints and
mechanically fastened joints. Welding is also a possibility for thermoplastic composites, but this
technmque is not well developed for load-carrying joints (Mathews et /., 2000). The joining of
structural components by adhesive bonding is extremely desirable, because both bolting and riveting
result in the cutting of fibres as well as the introduction of stress concentrations, of a more severe
magnitude than for a bonded joint. Bonded joints can be made by bonding (gluing) together pre-cured
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laminates with a suitable adhesive or by forming joints curing the manufacturing process, in which case
the joint and the laminate are cured at the same time (co-cured or co-bonded). A joint represents a
discontinuity in a structure and the resulting high stresses often initiate failure.

State of the Art

To extend the use of composites as reinforcing elements in vehicular structures, the transfer of
stress between the composite and the metallic substrate must be understood. There are many
publications concerned with the stress analysis of bonded joints and analyses have been carried out
for various joint configurations and for different properties of the adherends and adhesives. Results
have been obtained in closed-form or from numerical analyses.

Goland and Reissner (1944) were among the first of several investigators to analyze the single lap
joint configuration. They determined approximate stress state in the adhesive layer as a function of
geometric parameters and elastic properties of the adhesive and adherends, which were confirmed later
by Carpenter (1989). Erdogan and Ratwamni {(1971) developed a differential equation for a multi-step
scarf joint between dissimilar equal thickness axially aligned adherends. Chang and Muki (1974)
analvzed single lap joints between sirnilar and dissimilar adherends completely ignoring any adhesive
layer that might exist. They used integral transform techniques and reduced the problem to the solution
of a pair of Fredholm integral equations. Numerical results were given for stress intensity factors for
identical adherends of varying adherend thickness/lap length.

Hart-Smith (1973a, 1973b, 1973c, 1974) considered the effect of adhesive ductility on the
strength of lap and butt joints. He modeled the ductility by elastic-plastic behavior with three
parameters. The elastic-plastic parameters are fixed such that maximum shear strain, shear stress and
shear strain energy of the model are matched to their true values. This idealization gives accurately the
maximum capacity strength of long joints. Yuceoglu and Updike (1980) have carried out the stress
analysis of bonded plates and joints. However, the shaping of the adherends was found to have a
strong effect on the shear stress distribution in the adhesive considered by Ramamurthy and Rao
(1978). Many of these analytical solutions are valid only for special cases of geometry, material and
loading conditions.

Barker and Hatt {(1973) developed a special element to represent the thin adhesive layer as a
degenerate case of a rectangular element. This represents the tension shear springs very effectively.
Reddy and Sinha (1975) have applied the finite element methods to the stress analvsis of adhesive
bonded joints.

Standard finite elements may not always be well suited for the analysis of adhesive layers. It is
normally observed that the adhesive layer is extremely thin compared with other dimensions of a
bonded structure. Tt is also known that most elements give the best results when the aspect ratio of
the width to the height of the element is approximately unity. Distorted elements have poor
properties. It has been found that an element having a large aspect ratio becomes much stiffer in the
transverse direction and much weaker in the axial direction. Motivated by the work of Barker and Hatt
(1973) a special 6-noded isoparametric element is developed for the adhesive layer compatible with
the general 8-noded isoparametric quadrilateral element (Zienkiewicz, 1971), which is used to idealize
the adherends. The adhesive layers are assumed to be relatively thin and behave elastically as simple
tension-compression springs and shear springs connecting the adherends. This implies that stress
variation in the thickness direction through the adhesive layer is ignored and that only the transverse
normal stress and the longitudinal shear stress in the adhesive layer influence equilibrium.
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In the development of bonded joints for structures, a simple joint can be fabricated first and tested
for its suitability in structures. The size of the joint can be first estimated from the knowledge of the
part sizes to be joined, the allotted space for the joint and a general idea of how much overlap is
required to carry the load. With such knowledge, the preliminary joint designs can be made that can
be refined using an iterative analysis procedure. The finite element method is a powerful numerical tool
that can be used to estimate the direct and shear stress distribution required in the failure analysis.

Finite element analysis has been carried on a single lap joint containing dissimnilar isotropic or
orthotropic adherends. There are two main reasons for this interest. Firstly a lap joint which consists
of two most common joint designs employed in industry and secondly it is simple and convenient test
geometry for evaluating adhesive joints. However, the stresses in the adhesive layer are not, in practice
uniform and stress concentrations arise from the differential straining of the bonded substrate and form
the eccentricity of the loading path.

Formulation

In the method of finite elements, the structure is divided into discrete parts, cach of which has to
be compatible in the force and displacement continuum with adjacent elements. By applying suitable
boundary conditions, any form of the joint can be analyzed numerically by solving a series of equations
of the form:

{7} = {K}{s) cn

where {F}is a vector of the nodal forces, {K}is a stiffness matrix composed from the elemental
stiffness and {8} is a vector of the resulting nodal displacement. The basic steps involved in the finite
element method are: finite element idealization of the structure; evaluation of element stiffness by
deriving nodal force-displacement relationships;, Assemblage of the stiffness and force matrices for the
system of elements and nodes; introduction of boundary conditions; solution of the resulting equations
for nodal displacements; calculation of strains and stresses based on nodal displacements. An
interpolation function or a shape function which has unit value at one nodal point and zero value at
all other nodal points. When the geometry and displacements of the element are described in terms of
the same parameters and are of the same order then these element are called isoparametric elements.

A numerical procedure for the analysis of two dimensional bonded joints is described here using
quadratic isoparametric elements. Adherents are idealized by the 8-node isoparametric quadrilateral
element, whereas the adhesive layer is modeled by the 6- node special element. Geometrical details of
these elements are given in Fig. 1.

The geometry of the general element for adherends is represented by:

X H X
= N(&n) (2)
y o= (&) Y

where the shape functions, N, (1 =1 to 8) are

N, = (HEE) 1+ m)(EE +m — D)+ (1= €)1t + (g )1+ O
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The two dimensional square element shown in Fig. 1, having local co-ordinates (€,m) with its
boundaries defined by: m=-1, £=1, n =1, E&=-1. (§,n,) is a local coordinate for the node i in the eight
node square element. The displacements (u, v) at any point in the ¢lement are defined by:

! = 8 N, (ﬁﬂl) i (4)
v it v,
The element strains are
dudv du v .
e A U A 3 (5
= acayay Tax — P

where, [B] is the strain-shape function matrix. From Eq. 3 and 4, a part of the [B] matrix
applicable to the ith node 1s given by:

8N, N,
A 23
B—o &b oo & (6)
dy In
ON BN AN BN,
dy ox dn 0%
where, [J] is the Jacobian matrix given by
9% By
o8 a
= % % Y
& oy
on o

The general relationship between stresses and strains can be written as:
fot={o.0,n,} =} - e} +{oi} ®

where, {g,} are the initial strains and {o,} are the initial stresses. [D] is the elasticity matrix for plane
stress case given by:

E v 0
E x B
[D]:E xZAE nyEy Ey 0 (9)
—
o (E. — " E G
0 x Wy Xy
E
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Here E, and E, are modulus of elasticity, G, is the rigidity modulus in x-y plane and v, is the
Poisson’s ratio.
The clement stiffness is given by :

K]'= [BF[DIB] dx dy (10)

where, tis the thickness of the element.
Distributed loads at the edges of the elements and equivalent forces due to initial strains (such as
thermal strains) are considerad here. The nodal forces on an element under such loads are given by:

{F} =[KT & + (F) + {F an

where, {F}*, is a vector of the equivalent nodal forces due to thermal strains and {F}*, is a vector of
the nodal forces due to distributed loads at the edges of the clement.
The nodal forces due to distributed loading is given by:

{F, =— N} {gidx dy (12)

where, {g} is the distributed loading per unit area.
The initial strains can be computed from

= [B'[D]e, }t dx dy (13)

where, {g,} = {e, &, 0} AT for orthotropic materials in plane stress. e, and o, are the coefficients of
thermal expansions in x and y directions, respectively and AT is the temperature change within the
element.

Details on the 6-node special element for adhesive layer are given below. Since the adhesive layer
is relatively thin, the special element used to idealize it assumes identical coordinates for the top and
bottom nodes. In addition, the longitudinal direct stress and the variations of the other two stresses
across the thickness of the adhesive layers are neglected.

The geometry of the element (which is a two dimensional curve) is represented by:

X _ 3 Nl(g) X (14)
y o i

where the shape finctions, N,(i=1,2,3 ) are given as:

N =L +1- € as

The local top and bottom layer displacements are given by:
” 3 U,
= N@® (16)
i= :
i+3
hottom u
3
= _N® an
i=1 v,
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The local normal and shear strains in the adhesive layer are defined by:
£ = (v Py bememyit (18)
¥ = (19)

where t,1s the thickness of the adhesive element
The stiffness matrix for the adhesive element is:

' Ox By (20)
kI =t [RT[BT[DL[B]IR] — + = d
(k] ail[][][]a[][]ag o £
where, [B]={—B,—B,—B, B, B, B,}
0 0
B =0 -N,
NoO (21)
0 0 0
D=0 E 0 - (22)
0 0 G,
s 00 0 0 0
0 s 0 0 0 O
0 0 0 s 0 O
0 0 0 0 s 0O
0 0 0 0 s
. cosd sinf ) (24)
—sinf  cosf
and, 0 — tan™ Oy [ Ox (25)
o/ 98

E.and G, in Eq. 22 are the Young’s modulus and the shear modulus of the adhesive layer.
While evaluating the integrals for the element stiffness matrix as well as equivalent nodal forces, all the
Cartesian coordinates (x, y) system is converted to local coordinates (£,m) system through the
determinant of Jacobian matrix. The following 3-point Gauss quadrature rule is used to evaluate the
integrals

+

Codedy= () det[J] df dn (26)

-1 -1
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Table 1: Mechanical properties of materials for adherends and adhesive layer

Material E, (GPa) F,, (GPa) vy Gy (G Pa)
Aluminium 68.9 68.9 0.33 25.9

Steel 205.9 205.9 0.30 79.2
Boron 209.0 19.0 0.21 6.4
Adhesive 0.561 0.561 0.33 0.211

Table 2: Overall orthotropic properties of Boron/Epoxy laminate

Lay-up Exx (G Pa) Eyy (G Pa) Vxr Gzy (GPa)
Angle-Ply
[+ 30]° 70.8 17.0 1.347 43.0
[+ 45]° 23.1 23.1 0.805 552
[+ 60]° 17.0 70.8 0.324 43.0
Quasi-isotropic
[0/+45/90]°s 81.1 81.1 0.326 30.8
JIY
4
a .G Adherendl l
t, » X
T Adhesive M
1 %(,
Adherend2 &

Fig. 1: Geometrical details of single of lap joint
Results and Discussion

To examine the adequacy of the developed six-node isoparametric element for the adhesive layer,
a single lap metal-metal joint for which closed form solution available, is modeled here. The thicknesses
of the adherends are: t, = t,= 1.0 mm. The overlap length, a =4 mm. The origin of the reference is at
the canter of the adhesive layer. The total length of single lap joint is 16 mm. Figure 3 shows the finite
clement idealization. A total of 70 ecight-node iso-parametric quadrilateral elements for the two
adherends and 10 special six-node iso-parametric elements for the adhesive layer and 300 nodes were
used in the present study.

Due to the eccentric load path, the single lap joint is not at moment equilibrium, if tensile forces
are applied parallel to the adherend plates. External moments are required to satisfy the moment
equilibrium condition as shown in Fig. 2. In the present analysis aluminium, steel and Boron/epoxy
materials are considered for adherends. Table 1 gives the mechanical properties of materials considered
for adherends and adhesive layers. Table 2 gives the overall orthotropic properties for angle-ply
Boron/epoxy laminate and quasi-isotropic Boron/epoxy laminate.

Figure 4 shows the normal and shear stress distribution in the adhesive layer of aluminium-
aluminium single lap joint The finite element solution is found to (adhesive thickness, t, = 0.1mm). The
finit solution is found be in good agreement with the closed-form solution of the Goland and Reissner
(1944). The normal and shear stresses at the ends of the overlap are found to be the maximum and the
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n

Fig. 2: Quadratric isoparametric elements (a) General element for adherends (b) Special element for

adhesive

Fig. 3: Finite element idealization of single lap joint
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Fig. 4: Normal and shear stress distributions in the adhesive layer of aluminium-aluminium single lap
joint (adhesive thickness, t, = 0.1mm)
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Fig. 5: Normal and shear stress distributions in the adhesive layer of aluminium-aluminium single lap
joint with different adhesive thickness
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Fig. 6: Comparison of normal and shear stress distributions in the adhesive layer of single lap joints
having different adherend materials (adhesive thickness, t, = 0.1mm)
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Fig. 7: Comparison of normal and shear stress distributions in the adhesive layer of single lap joint
having different angle-ply boron/epoxy adherends (adhesive thickness, t, = 0.1mm)
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Fig. 8: Comparison of normal and shear stress distributions in the adhesive layer of alumimum -
aluminium single lap joint (adhesive thickness, t,=0.1mm)
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Fig. 9: Comparison of normal and shear stress distributions in the adhesive layer of single lap joint
having aluminium adherend connecting with different angle-ply boron/epoxy adherends
(adhesive thickness, t, = 0.1 mm)
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distribution is symmetric in either side from the centre of the joint. Figure 5 shows the normal and
shear stress distributions in the adhesive layer of aluminium - aluminium single lap joint with different
adhesive thickness. The results indicate that the normal stress zone tends to become narrow and the
peak stress becomes higher as the thickness of the adhesive layer decreases. Figure 6 shows the
comparison of normal and shear stress distributions in the adhesive layer of a single lap joint having
different adherend materials. Figure 7 shows the comparison of the stress distribution in the adhesive
layer of a single lap joint having different angle-ply Boron/epoxy adherends. The normal and shear
stress distribution for a single lap joint under the horizontal applied force (without external moment)
are shown in Fig. 8. Since the joint undergoes rotation, there is no symmetry as expected in the stress
distribution on either side from the center of the joint. Figure 9 shows the comparison of stress
distributions in the adhesive layer of single lap joint having aluminium adherend connecting with
different angle-ply boron/epoxy adherend. It is very interesting to note that the normal and shear stress
distributions for the single lap joints under the horizontal applied force with the external moment
showed un-symmetry in the stress distribution on either side from the center of the joint because of
different adherend materials.

Conclusions

Accurate finite element stress analysis results can be obtained for complex adhesively bonded joints
by modeling them with the six-node special element for adhesive layer and the eight-node iso-
parametric quadrilateral element for adherands. By loading the structure in increments and through the
use of an iterative procedure, it is possible to extend the linear solution of the elasticity problem into
the plastic range. Future work is towards the evaluation of failure load and its validation through
experimental results.
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