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Abstract: This research is concerned primarily with nonlinear oscillations of a modified van
der Pol equation. The motion is represented by the harmonic oscillator equation, with the
addition of a small nonlinear term. The governing differential equation falls under
autonomous category. The solution of the problem is examined utilizing the method of
slowly varving amplitude and phase (the Krylov-Bogoliubov-Mitropolsky technique).
Stationary values of the amplitude are obtained and discussed their stability. It is noted that
the stable limit-cycles of the differential equation in the higher order averaging method can
be identified easily from the time derivative of the amplitude function and the sign of its
derivative at the stationary value of the amplitude.
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Introduction

Most vibrations are nonlinear and transient in nature, occur suddenly and randomly, have varying
magnitudes and are difficult to analyze by linearizing and applying standard methods, as each case
differs from the other. It is now possible to study nonlinear vibrations analytically using differential
equations due to Duffing, van der Pol, Mathieu, etc., or graphically using integral or response curves
or phase-portraits (Stoker, 1966; Navfeh and Mook, 1979; Mickens, 1981; Thompson and Steward,
1989; Srinivasan, 1995). Interesting studies were made on nonlinear oscillations from the solution of
equations of motion related to undamped free vibrations, forced vibrations, damped free vibrations and
damped forced vibrations. These are characterized by the frequency and amplitude of oscillations. Rao
(1992), Sarma ef al. (1995, 1997a, b), Sarma and Rao (1998), Potti ef al. (1999), Swamy et al. (2003),
Muthurajan et af. (2005) and Tiwari et al. (2005) have obtained solutions of the equations of motion
of a conservative system by several methods.

The problem of the determination of limit-cycles is fundamental in the theory of oscillations of
nonlinear non-conservative systems. The limit-cycle is a closed integral curve in the phase-plane, which
corresponds to a periodic solution of the equation of motion. It has the important that all integral
curves in its neighborhood spiral toward it from both outside and inside. The problem can be solved
by direct methods only in a few cases. Itis a very difficult task to identify the presence of limit-cycles
for a given differential equation.

Burnette and Mickens (1996) have examined the stability of limit-cycles on a modified van der
Pol equation and proposed a criterion for identification of the stationary values of the amplitude
corresponding to the actual limit-cycles of a general nonlinear differential equation, which is
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represented by the harmonic oscillator equation, with addition of a small nonlinear term. This study
demonstrates the identification of stable limit-cycles of the modified van der Pol equation in the higher
order averaging method from the time derivative of the amplitude function. It also explains the
inadequacy of the criterion as proposed by Burnette and Mickens (1996).

Analysis
Burnette and Mickens (1996) have considered a modified van der Pol equation:

2
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to provide a criterion for determining the actual limit-cycles that occur in a general non-linear
differential equation:

2

%+y=sF[y,%}, Owg=c], (2

for which the averaging method of Krylov-Bogoliubov-Mitropolsky (KBM) can be applied. Here
F is a polynomial function of its arguments.

According to the generalized method of KBEM, the nth order approximation to the solution of
Egq. 2 is (Mickens, 1981).

y =acos(y) + T€ u,(ay) ()
i=1
Where uj, w,........ u,, are periodic functions of ¥ with a period 2 7. The quantities a (t} and Y,
are defined by
B k=5 A @)
dt i=l
(il—lf:1+ ési B.(a) (5

Here K (a) is the time derivative of the amplitude function.

Applying the second approximation {n = 2) of the KBM averaging method to Eq. 1, Burnette and
Mickens (1996} have obtained the amplitude Eq. 4, which is rewritten {after defining z = a*) in the
form:

%: A(z) (©)

For this case, A (z) is a cubic polynomial and one of the stationary values of the amplitude is
zero, which is reported as the unstable fixed point. They have obtained other two stationary values
of the amplitude by solving a quadratic equation and identified them as a stable and unstable limmt
peints. The behavior of these values was also examined from a plot showing the variation of A {z)
with z. Stationary amplitudes can be found from the points of intersection of the curve A (z)
with the z-axis.
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Though not explained clearly by Burnette and Mickens (1996), one can guess from the plot that
stable amplitudes correspond to the points where the curve intersects the z-axis from the upper side
and unstable amplitudes correspond to the points where the curve intersects the z-axis from the lower
side. This phenomenon can also be explained from the positive and negative values of dA/dz at the
stationary values of the amplitude. Stable stationary values of the amplitude are those at which
dA /dz <0, whereas unstable stationary values of the amplitude are those at which dA/dz > 0.

Bumette and Mickens (1996) have observed that the stationary values of the
amplitude comresponding to the unstable limit point increases without bound as - 0
(referred this to the spurious limit-cycle), wherzas the stationary values of the amplitude
corresponding to the stable limit point is bounded as € -+ 0 (referred this to the actual limit-cycle).
Based on this observation, they proposed a criterion for the determination of the actual limit-cycles
in the use of higher order averaging techniques. In that criterion, the actual limit-cycles correspond to
solutions of K (a) = 0 in Eq. 4 that are bounded as £ ~ 0. And suggested to ignore all other solutions
correspond to spurious limit-cyeles, in the analysis of the properties of the solutions to Eq. 1.
However, usage of this procedure to a general non-liner differential Eq. 2 requires expressions for the
stationary values of the amplitude in terms of & for applying the imit condition & -~ 0. The task is
involved, if one seeks a solution for Eq. 2 applying the higher order averaging method of KBM.

Itis very interesting to note that the cubic Eq. 11 of Burnette and Mickens (1996) reduces to a
quadratic equation, if one applies the limiting condition as € ~ 0 and the stationary values of the
amplitude correspond to the first order approximation of KBM averaging method. That is the reason
why one of the stationary values of the amplitude from the cubic Eq. 11 of Burnette and Mickens
(1996) becomes infinity, when £ = 0. In general, this criterion may not be convenient for identification
of the stationary values of the amplitude corresponding to the actual limit-cycles of a general non-linear
differential Eq. 2 through higher order averaging methods of KEM.

In second order approximation (n = 2), the functions in Eq. 3 and 5 are obtainad as

3
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The amplitude relation (9) of Bumette and Mickens (1996) needs correction due to their
erroneous expression for A, (a).

Defining z = a’ and using Eq. 8 and 9 in Eq. 4, one obtains

%K(Z)=”{1_[“%E+%}=“(1‘”Z)(l‘“zz)’ a2
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Where,

1 3ep
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It should be noted that ¢, and e, are greater than zero for € # 0. Hence, the stationary values of
the amplitude can be obtained from the three roots of A (2):

1 1
z=0;z,=—; ad z,=—.
o o

For the case =10,
1 1
cc1+(12=1,(11u,2=03nd(11—(12=1,
Which imply that
flanda =0
% =2 1=V

This corresponds to:

Z, =4 and z, = .

For a negligibly small €, &, in Eq. 12 becomes insignificant and the third stationary value of the
amplitude will be extremely large, whereas the second stationary value of the amplitude will be close
to that obtained from the first approximation of the averaging method.

Identification of stable limit-point for Eq. 1 is done here based on the positive and negative values
of dA/dz atthe stationary values of the amplitude as follows:

@_ £ =0 (at z, = 0, unstable limit point)
A 1 .. .
da € at . — — , stable limit-point
E=__(‘11—C¢z)<0 (at 2, o, point)
%:i(% —0) >0 (at ¢, = 1 unstable limit-point)
C(’Z

This leads to the conclusion that Eq. 1 has a single stable limit ¢ycle for the second approximation
of the averaging method of KBM. For sufficiently small value of €, the first approximation of the
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averaging method will give the properties of the differential Eq. 1. The addition of terms of higher
approximation does not modify the qualitative character of the solution, but merely modify their
quantitative nature slightly.

Results and Discussion

To demonstrate the identification of stable limit-cycle of the modified van der Pol Eq. 1 from the
time derivative of the amplitude function, the parameters in the differential equation are specified as:

e=0.1and p=0and 10

Figure 1 and 2 show the variation of A (z) and dA/dz with z. when P = 0, the amplitude
equation corresponding the second approximation reduces to that of first approximation,
having two stationary v alues of the amplitude. It can be seen from Fig. 1 that dA/dz =0 atz=0and

Table1: Variationof (a4, with [’ at the stationary values of the amplitude, a(=y7z) . for £= 0.1 (one of the stationary

amplitudes, z, =0, a0 0

lz=5

B Z dA/dzatz=z, Zz dA/dzatz=z,
0 4.0 -0.1 - -
1 3.7906 -0.0910 42.21 1.014
2 3.5660 -0.0841 2243 0.5291
3 3.3333 -0.0792 16.00 0.3800
4 3.1010 -0.0760 12.90 0.3150
5 2.8769 -0.0741 11.12 0.2866
6 2.6667 -0.0733 10.00 0.2750
7 24735 -0.0732 9.2408 0.2736
8 2.2984 -0.0736 8.7016 0.2786
9 21410 -0.0742 8.3034 0.2878
10 2.0 -0.075 8.0 0.3

0.2 -

0.14

-0.11

-0.2-

Fig. 1: Variation of A (z) and dA/dz withz for = 0.1 and p = 0 . Solid line represents variation of
A () whereas broken line represents variation of dA/dz . Star refers to the squared value of
the stationary amplitude
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0.4 1

0.2 ,

-0.2 4

-0.4-

Fig. 2: Variation of A (z) and dA/dz withz for e=10.1 and p = 0. Solid line represents variation of
A (7) whereas broken line represents variation of dA/dz . Star refers to the squared value of
the stationary amplitude

dA/dz <0 atz=4,is the stable limit-point. When P = 10, as expected, A () curve meets the z-axis
at three points. dA/dz at one of the stationary points of the amplitude is negative and hence it
corresponds to the stable limit-point of differential Eq. 1. Table 1 gives the variation of dA/dz with
P at the three stationary values of (z,, z, and z,) of the amplitude, a(=vz) . Itis found that z, is the

stable limit-point for all values of p (since, % oz, <0) » Whereas, z, and z, are the unstable limit-
points.

It can be seen from Fig. 1 and 2 that the stable stationary amplitudes correspond to the points
where the A (z) curve intersects the z-axis from the upper side (at the point of intersection,
dA/dz < (). The unstable stationary amplitudes correspond to the points where the A (2) curve
intersects the z-axis from the lower side (at the point of intersection, dA/dz > 0).

Conclusions

The stable limit-cycles of differential Eq. 1 in the higher order averaging method can be identified
casily from the time derivative of the amplitude function and the sign of its derivative at the stationary
values of the amplitude. Hence the new criterion of Burnette and Mickens (1996) may not possess amny
additional advantages in identifying the stable-limit point of a modified van der Pol equation.
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