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Abstract: We present a new approach to the construction of variable stepsize for a class of
general linear methods for the numerical solution of ordinary differential equations. These
methods provide an alternative to the Nordsieck technique of changing the stepsize of
integration. Order conditions are derived using a recent approach by Albrecht and examples
of methods are given which are appropriate for stiff or nonstiff systems in sequential or
parallel computing environments. Numerical experiments are presented which indicate that
the implementation based on variable stepsize formulation is more accurate and more
efficient than the implementation based on Nordsieck’s technique for second-order
DIMSIMs of type 1.
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Introduction

Butcher (1993) introduced diagonally implicit multistage integration methods (DIMSIMSs) for
the numerical solution of systems of ordinary differential equations (ODEs)

{y' (0 = (y(x), xe[x,, X], )
v(%) = Vo.

where the function £R™ ~R™ is assumed to be sufficiently smooth. These methods are given by

[ Y 1 [AlU] b))
vl Biv]l v

n=0,1,.,N-1,N,=X-x,. Here Y=[Y"..... Y.7|" are stage values which are approximatations to the

solution v of (1.1} at the points xnt+hci, i =1, 2,..., s and ¥¥ = [v,/7, .., vFI"T are approximations
at the integration step n. Assuming that

¥ = ¥ o, hFy® (x, O™

k=0

for some scalars o, and that
Y(x,teh) = y(x eh)+O(h™),

conditions are derived by Butcher (1993) which guarantee that
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¥ = B0,y (5, OB @
k=0

for some values of ¢,. This means that Albrecht (1985, 1987, 1989) has order p equal to the stage
order gq. Butcher and Jackiewicaz (1993) used a similar approach to derive conditions on the coefficient
matrices A, U, B and V and on the parameters «;, under which Albrecht (1985, 1987, 1989) method
has order p and stage order q =p-1.

To implement Albrecht methods in variable step mode it was proposed by Butcher (1993) to use
the Nordsieck technique for changing stepsize. In the context of DIMSIMs this technique is based on
the derivation of formulas of the form

7~ HBCY)+ ¥y,

where the components of (l*! are approximations of arder p to the components of the vector

[y hy ()7 REyP )T,

and where B and Vare constant matrices of appropriate dimensions. Examples of such
approximations are given by Butcher (1993). Usually these matrices B and V depend on some number
of free parameters which should be chosen to satisfy some compatibility conditions and to guarantee
that the method corresponding to the new stepsize has good stability propertics.

In this paper we propose the alternative technique for changing the stepsize of general linear
methods. This approach is based on the derivation of formulas based directly on nonuniform meshes.
This leads to variable stepsize formulation of DIMSIMs in which the coefficient matrices A, U, B, V,
the vector ¢ as well as parameters «;,. depend, in general, on the current stepsize and the past stepsize.

Let there be given a nonuniform mesh

X, X © s SR K T Ky, Xy T X

and let h,=x,-x,n =-p, -pl, ... N+l. Puto,;= h-1/h, i=1, 2, pando,=[o,... o]’ n
=-p,-pt1... N+1. The gridpoints x ... X, to the left of %, are introduced for notational convenience
to simplify the formulas in the next section.

Alternatively, we would consider only the grid (x,)N,_,= 0 and start the integration process at
X, for some integer p.

We will investigate methods of the form

Y=, Ao, YY) UGG, )y, &)
Y= B I (o, )y,

n=20,1,., N-1, where YU i =1, 2,..., s, are approximations (possibly of low order) to
y(x+ee ) and the starting valus v/, 1 =1, 2,..., 1, are approximations to the combination of V(X
V(X g1 )s- . ¥(X,). This will be made more precise in the next section. The coefficient matrices A{c,),
Ufer,). Ble,) and V(e have dimensions sxs, sxr, rxs and rxr, respectively, where s stand for the
number of internal stages and r for the number of external stages.

The product of matrices V{e,) determines stability properties of (1.3). The Albrecht method is
said tobe zero-stable if the product ",V (a,;) is bounded uniformly with respect ton. We will
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usually assume in this study that V{e) is a rank-one matrix, i.e., V(x) = evi(e,), wheree =[1,.. ,1]7
e and v{ew,) = [v,{et,)...., v,(e,)]" and that v{e,)e = 1. These conditions guarantee that Albrecht
methods is zero-stable since in this case the product

. .
HV(o,,)=Ilev (0, )= ev(o,)

is also a rank-one matrix with a single nonzero eigenvalue equal to one.
Order Conditions

To simplify the presentation we will derive the order conditions in the scalar casem= 1. Asin
the results can be casily generalized to the vector case m>1 by using the tensor product notation.

Tt will always be assumed that the vector Y of stage values is an approximation of at least order
one to the vector function z(x,) denoted by

7, (%) 1 =yt (e(0,0) -e) by ) (4

with the notation
yix, +ah _)=[y(x, +ah ).y, +ah ",

n=0, 1,..., N, where v is the solution to (1). To derive order conditions for variable stepsize method
(5), we assume that

§1 = 3 Bly(x,.) + O™, (5)

1=0

h =max h,, for some constant vectors

61 = [[31,1 , Bm ----- Bm]T,
and request that

Y = P By, )+ O,
=0

for the same vectors [3,. This is equivalent to saying that the correct value function (compare Hairer
and Wamner {1991)}is defined by

Z; (Xn) = 2 BIY(Xn—I)'

This gives rise to a method of order p provided there exists a starting procedure to generate the initial
vector vi¥ such that

P
¥ = 3 B(x,, )
1=0
Following (3) define the local discretization errors h,d, (x,.,) and h,d.(x,.,) by

2 (%0 ) = ALS (2, (2, )+ U(S, )2, (3, )+ hod (%), (6)
Lz (%on) = D, Blo )z (X, )+ V(0, )2, (x,) + Id, (%),

o+
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We have
h,d,(x,.,) = y(x, +c(0, )b, ) - U(o,) S By(x, . )~ b A(G, (%, +<(o, )h,),
B, (%,) = BBy (Rou)— V(O3 By ()~ h,B(o, (%, + oo, )h, )
and expanding

v(x, +c{o )h,) and y'(x_ +c(c_)h ) about the point x, after some computations we obtain

hd, (%, ) = Co(0, )9 (%, )+ S HAC, (0,07 (x, )+ O(h™),

p=l

(%) = O (0,)3(x,) + SN (0,07 (x,)+ O™,

n=l

where

cu(cn):=e—U(cn)in

o=k L (o)i[zo,vJ ~aE)

p=10,.. ,pand

GRS (I—V(cn))i i

&y, )—— “)”[EB{ T—V(GD)EB{EGD,‘,N—B(GD)C(“ﬂ)w,

(u—1

p=1,0,.. pand

(7

®)

Method (3) is said to be preconsistent if C,(c_)=0 and éo(cn) =0. This method is said to be

consistent if it is preconsistent and, in addition, C,{(c )=0 and ("jl(on):o . Observe that the

condition C (o )=0 means that method (1.3) has stage order at least one and that preconsistency

implies that —e
26

Subtracting (3) from (6) we obtain
Q{2 = Al )q(x,) +h Bl JUx, ) +hdix, ),

n=20,1,...,N-1, where

qix, )= {(h (Xn)} _ [Zl(xn) _ vyl }t(xn) _ F‘ (Xn)} _ [f(zl(xn)) £y |

G0 [2,(x,)-y™ L) [fz(x, ) - £

d(x,)= {dl x,) } » Ala)= [‘0“['](:'”)] ’ B{g)=
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The solution to (9) is

n-1 ol n-1-2
q(x,)= T A(o, . )a(x,)+ X hy 1T Alo,, JB(G,)t(x,,,)
=0

ool p-2

=30 T Ao, d(x,)
1=0

(10}

n=1,2,.... It can be verified that, for 0=1=n-2  we have

-1

w, [0V JIEEVie, ) B
“A“"[oi T V(o...) ]

a2

[TA B~

0

0 i Ul u)l'[".llfv(trm) B(g,)
0i II=V(c..)B(o)

and this leads to the following expressions for q,(x,) and q,(x,):

q,(x.)=Ulo,, ):Uj VG, o130, (%) +h Alo, 0t (%, ) +h, i (x,)

+ S0, T Vio,. B, (x,0) an

1=0

fltd a-1-2
+ 20 U0, ) TT Vo, ), (%),

=0
n-1
q,(x, )= gv(on—m Ja, (%) +h Blo, )t (x j+h_d(x)
a-i 13
+ 20 I Vi, B(o(x,,)
a-l-2

+ 3 h \1;[1 V(o o )d; (3%,)-

1
o

=)
]
)

o

These expressions lead to the following general order criterion for variable stepsize methods (3).

Theorem 1

Assume that method (3) is zero-stable (ie., the products T V(c, ) are uniformly bounded
q,(%,) = O®),d,(x,,)=0OMm*),1=0, 1,....n-1 and that

B(o)t, (x,,,) = O(h"),
1=0,1,...,n-1. Then
Q. (x,)= Oh?),

and

q,(x.)=h, Alo, It (x,)+h,d,(x,)+O(h7),
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where

B, (x,) = o0, y(%,) + (0, )y (x4 ) + O™,

p=1

and where the coefficients C, (c,).u=0, L..., p, are given by (7).

It follows from this theorem that if the zero-stable method satisfies d, (x,, )= O(h®), 1=1, 2,...., n-1
and (10) then itis convergent with order p and the error q,(x,) of the vector of stage values Y is given
by (11).

Similarly as in [13], we can express t,(x,,,) in terms of q,(x,, ) Let

g.(x +¢ (o, )h,)= (’”,M D;f(y(x, +¢,(c,)h,))
Vi
Then
g0, v (o, m,)= 3 ghoc) BT (G;?hn)u +O(’)
=0 :

where p% stands for the derivative of order p and putting

G.(0,)=diag(g,(x, +¢,(5,)h,,...g. (X, +¢,(o)h,

we obtain
pl h¥
G (o,)= Ef"gf,") {(x )T, (o, ) +O(h")
p=0 M’
where
I'.(g,)=diag(c,(c,).....c,(0,)
This gives
(%) = G100, (%) + G, (0, M@ (%)~ B (x5, P v Oy, (D)
Define
u=gq (Xn+1 )= hA(Gn+1 )t‘l (Xn+1 )= hndl (Xn+l )= 0O(h®),
V= 0,(X,,) = Gy (6,08, (X, ) — G5 (0, Xq, (X, ) — oo
Then

0 1
=det =(-1¥=0
by =D |:I 7G1(0n)}

u u
det| * ¢
v, v,

and it follows from the implicit function theorem that the functions q,(t.,)=q,(t

h ) and

t(x, )=t (x_,, h )are unique in a neighborhood of h, = 0 and have the following expansions

o+l *

a4, (%,,) =& (x )h?2 + &,(x )h? +..+ & (x Jh"! + O(h?), (13)
t (X0 =1, (xR +7, (X Oh2 +..+m_ (x )P +O(hP), (14)

provided that method (3) is consistent. We can generate £(x) and 7),(x,) recursively substituting (13}
and (14) into (12). This leads to the following result.
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Theorem 2
For m = 2, 3,..., p-1, the function &(x) and m/x) satisfy the following relations

E,(x,)=C (o, )7 (x, )+ Alo, M, (X)),
and

=2

ne)= Y T (BEL ) Y B0 NEE )

Y (% E ()G ()G
n=0,1,..., with nix,) o
Proof

We will prove this theorem by induction with respect to m. The above relations are satisfied for
m= 2. Assume that they hold for m = 2 Substituting (13), (14) and the expression for h_d,{x_,) into

(11) with n replaced by nt+1, we obtain
S8 G = 310, (0,09 G, + Ao, 3, 06, 05 + O(h2™)
k=2 k=2 k=2

By comparing the coefficients of h™ we get

£a (%,)=C, (0, )y (x,) + Alo, M, (x,).

which is the required relation for &_(x_). Define now

5.(%.) = BE, (x, )he.

Then q (x_,)=s_(x_)+O(h™") and substituting this relation and the expressions for G(g,) into
(14) we obtain

gnu(xn)h:

610, ) G0, 5 5, 14O

{gl (x)ltg (xn)hnn(onwgkxn)h?%n (o, +...J2h;&,<xn>

{gg (xnn+g;<xn)hnn<on>+g;<xn)h7§rc(onf +J2 HVE (x, )6 (x,)

{ga (%1 +g5 (x0T (0,) +g;(Xn)%Tc CAE }

XX BTEE 8 (x )G, (x )+ OB,

2Si+j+kEm

Comparing the coefficients of h™ yields the required relation for n,(x,) and the proofis complete.
It follows from Theorem 1 and formula (14) that method (3) has order pif

(Aju (o,)=0,
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forp=0,1,..., pandif
B(Gl)m (x)=0

for p =2, 3,..., p-1, where the functions m (x) satisfy the relation given by Theorem 2. The order
conditions up to p = 4 are listed below.

+  p=0(preconcistency):
Cy(0,)=0, B(o, ), (x,)=0
+  p=1(consistency):
¢,(0,)=0, C,(c,)=0

Big,)C,(0,)=0;

e p=4
C,(c,)=0,
B{c,)C,(c,)=0,
Bio,)A(0,)C,(c,)=0,
B{s,)I.(5,)C;(c,)=0

Here, C (o,) and (hju(cn) are given by formulas (7) and (8), respectively.
Numerical experiments

Here we will try to compare the reliability and efficiency of step changing techniques based on
variable stepsize formulation of DIMSIMs proposed in this study that based on the Nordsieck

approach given by Butcher (1993). Consider first variable stepsize type 1 methods of order 2 and stage
order 2 derived at the end which reduces to

alw ajln|es o
al— ap=le o
= = s -
wl— =] - =

When the stepsize is held constant. For comparison we also implemented the above method using
Nordsieck’s technique. Both methods have been applied to the problem

{y'(X) = My-px)+pi(x).  x=e[0,20]
y(0) =,
with exact solution
y(x) =y, —p(0)) exp(Ax) + p(x),
on the mesh generated according to the formula

h,=r*h, n=01.,
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where
! n=0,14,589,..
T n=236710.11.

This means that the stepsize hywas increased twice by the factor of 1, then decreased twice
by the factor of rand so on. We have listed in Table 1 the error at the endpoint of the integration
of the variable stepsize method versus implementation based on Nordsieck’s technique for
¥, =2, A=-20, p(x)=sinx, the ratios r =1, 5, 2, 3, 4 and initial stepsizes

1 1 1 1
d

200 40" 80 160

Observe, for example, that for h, = 1/20 the quantity Ah, is inside of the stability region of S for
the underlying fixed-stepsize DIMSIM for n=4;, =20, 1......, on the boundary of S for n= 2j+1,
=20, 1,..... and outside of Sfor n=4j+1, =10, 1,...... For this stepsize pattern with r = 2 the
Nordsieck technique is unstable (this is indicated by “*) while the variable stepsize method still
behaves in a very satisfactory way. As the ration r increases, both techniques are becoming less stable
but, again, variable stepsize methods outperform the

Nordsieck technique for a wider range of h, Similar behavior was also observed for other examples
and other step changing strategies. In Table 2 we have listed the number of floating point operations
(in KFLOPS) for both implementations. It follows that for the DIMSIM type 1 of order 2 the
implementation based on variable stepsize implementation is a little more than twice as efficient as the
implementation based on Nordsieck’s technique.

‘We have also tested methods of types 2. 3 and 4 derived in this study. The accuracy obtained for
the type-2 method was of the same order for both implementations. Contrary to type-1 methods, the
implementation based on Nordsieck’s technique proved to be somewhat superior to the
implementation based on variable stepsize formulation for DIMSIM’s of types 3 and 4. On the other
hand, the implementation based on variable stepsize formulation turned out to be more efficient than
implementation based on Nordsieck’s technique by factors of approximately 1.3, 1.7 and 1.1 for
second-order DIMSIMs of types 2, 3 and 4, respectively.

Table 1: Error for type-1 methods, variable stepsize versus Nordsieck

r=15 r=2.0 r=3.0 r=4.0
hy VB N Vs N VB N VB N
1/20 1.78E-2 1.56E-2 3.62E-2 * 2.50E-2 * * *
140 8.39E-3 T.22E-3 1.92E-2 1.92E-2 1.12E-1 * 2.80E-2 *
1/80 9.68E-4 3.06E4 1.43E-2 1.00E-2 2.50E-2 3.85E-2 5.15E-2 *
1/160 2.35E-3 1.98E-3 1.48E-2 3.06E-2 1.63E-2 9.60E-3 2.97E-2 3.72E3

Table 2: KFLOPS for type-1 methods, variable stepsize versus Nordsieck

r=15 r=2.0 r=3.0 r=4.0
hy VB N VS N VB N VS N
1/20 25 53 17 * 10 * * *
140 49 106 34 73 19 * 12 *
1/80 98 211 a8 146 38 82 25 *
1/160 197 422 137 293 77 165 49 106
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Conclusion

This study present an approach to the construction of variable stepsize for a class of general
linear methods for ordinary differential equations. The general form of order conditions is obtained
using the recent approach by Albrecht and a recurrence relation for convenient generation of these
order conditions is derived. As in the case of Diagonally Implicit Multistage Integration Methods
(DIMSIMSs) introduced by Butcher, these methods can be derived into four types depending on the
structure of the coefficient matrix A(o,). Type-1 and type-2 methods are appropriate for nonstiff or
stiff systems in a sequential computing environment. Examples of methods of all four types are given
for s =1 =p=2, where s is the number of internal stages, r is the number of external stages and p is
the order of the method. These examples are constructed in such a way that they reduce to DIMSIMs
with good stability propertics when the stepsize is kept constant.

Variable stepsize methods provide an alternative to the Nordsieck’s technique of changing the
stepsize of integration. Numerical experiments presented in the previous section indicate the technique
of changing sepsize based on variable coefficient formulation of these methods has better stability
properties than that based on Nordsieck’s approach for type-1 methods of order 2 demved. Both
techniques of changing stepsize have similar stability properties for type-2 methods of order 2
obtained while the technique based on Nordsieck’s approach is somewhat more stable than that based
on variable coefficient formulation for methods of types 3 and 4 and of order 2 derived.
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