@

Academic
Journals Inc.

Trends in

Applied Sciences
Research

ISSN 1819-3579

www.academicjournals.com




Trends in Applied Sciences Research 1 (1): 48-60, 2006
ISSN 1819-3579
© Academic Journals Inc., USA

Post-buckling of a Thin Film Strip Delamination
in a Composite Laminate

'K.G. Muthurajan, *K. Sankaranarayanasamy,
’S.B. Tiwari and “B. Nageswara Rao
'Faculty of Mechanical Engineering, National Engineering College,
Kovilpatti-628 503, India
“Faculty of Mechanical Engineering, National Institute of Technology,
Tiruchirappalli-620 015, India
*Structural Analysis and Testing Group, Vikram Sarabhai Space Centre,
Trivandrum-695 022, India

Abstract: Studies are made to understand the delamination growth of general laminates with
general loading conditions. Post-buckling solutions are obtained for a laminate with clamped
ends applicable to thin film strip delamination in a base laminate under uniform membrane
loads. The strain energy release rate at the crack-tip (G) is derived in terms of the critical
equivalent base laminate sirain at the onset of the buckling (¢*_) and the applied equivalent
strain (£"). Itis also expressed in terms of the maximum amplitude (W,__) of the delaminated
layer. A Griffith-type fracture criterion with constant specific fracture energy (G,) of the
material is used to govern the delamination growth. The stability characteristics of the
delamination growth are discussed. The maximum amplitude (W) of the delaminated layer
increases with the applied load without enhancement in the length of the delamination for
the values of Gless than G.. Imitiation of the delamination growth can be expected when the
value of Gis very close to G...
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Introduction

Delamination represents a common and characteristic flaw in composite laminates that may be
introduced during processing or subsequent service conditions. The local instability of composite
laminates in the vicinity of interlaminar defects and the potential for delamination initiation and growth
may induce significant strength reduction under compressive loadings. Therefore, a fundamental
understanding of the mechanisms governing delamination initiation and growth is required to develop
appropriate failure criteria to assess defect criticality.

Chai ez al. (1981), Yinand Wang (1984) and Yin (1988) employed one-dimensional models to the
problems of buckling induced delamination in composite plates. Bottega and Maewal (1983) and Yin
(1985) examined the problems considering axisymmetric models, whereas, Chai and Babcock (1985)
and Simites ef af. (1985) utilized two-dimensional models. Davidson (1991) and Suemasu ef af. (1995)
have studied delamination in plates using the Rayleigh-Ritz method. Kardomateas (1993), Kardomateas
and Pelegri (1994, 1996) and Bruno and Greco (2000) have employed the perturbation techmique.
Larsson (1991a, b) numerically solved the governing equations for delamination buckling and growth
in circular and annular orthotropic plates.
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Chen (1991), Chattopadhyay and Gu (1994) and Kyoung and Kim (1995) have applied shear
deformation theory for delamination buckling of composite laminates. Transverse shear deformation
effects were found to significantly lower the delamination buckling load. Whitcomb (1981, 1986) and
‘Whitcomb and Shivakumar (1989) have presented a finite element formulation for the instability related
delamination growth. Srivatsa ef af. (1993) have analyzed the problem using coarse mesh in their finite
element model. Cochelin and Potier-Ferry (1991), Klug ef af. (1996), Kim (1997), Kim and Hong
(1997) and Hu er al. (1999) have applied higher order plate theories to examine the buckling induced
elliptic and circular delaminations in composite laminates. Lee ef af. (1995a, b) have studied these
problems utilizing the layer-wise theories.

Perugini e af. (1999) have carried out two-dimensional finite element analyses of through-width
delamination. Mukherjee et af. (1994), Riccio et ¢f. (2000) and Shen ef af. (2001) have carried out
three-dimensional finite element analysis of instability related delamination growth in laminated
composites. Nilsson ef af. (1995, 2001a and b) have made comparison of finite element simuilation with
experiments. These computational models can be expensive for use at the design stage. Although the
laminated structure has been modelled in several mumerical studies using finite element methods, these
studies do not undertake parametric analysis to determine the effects of layer structure and stacking
sequence upon the buckling load, the post-buckling deformation and the associated stress intensity
factors or energy release rates. Ttis well known that bending-stretching coupling reduces the buckling
loads of composite larminates. It is also known that since delamination often occurs between two
dissimilar layers or two identical layers with different orientations, the singularities of the stress at the
tip of delamination are generally more often complex than those associated with cracks in a
homogeneous medium.

This research examines one dimensional delamination models with arbitrary larminated structure
to obtain post buckling solutions for a laminate with clamped ends, which are applicable to a thin-film
strip delamination in a base laminate subjected to uniform membrane loads. The energy-release rate at
the crack-tip is evaluated to determine the stability characteristics of delamination growth.

Analysis

A thin laminated plate whose middle plane coincides with co-ordinate plane z= 0 of a rectangular
co-ordinate system (X, v, Z), is considered. The equilibrium equations of generally laminated plate are:

MN, Ny o (1)
ox ay
any+aI\17Y=0
ox dy 2
2 2 2 2 2 z
FM, OM, OM, dw o Fw o Fw (3)

+ + +N, —+ + =
ox’ axdy oy’ t oot ¥ oxdy "oy

wi e olld 0

The components in the matrices of the stress and moment resultants, viz.,

Where,
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N={N, N, N_}Tand M= {M,, M, M, }7 are defined as:

hil

MM = [ (L2)odz (k=xy.xy)

-hi2

N,. N,, N, are membrane forces per unit length, M,, M,, M, are the bending and twisting
moments per unitlength. The element A, By and D, (i, j = 1. 2, 6) in the 33 symmetric matrices of
A, BandD in Eq. 4 are defined as:

h/2
(A,.B,.D,)= j(Lz,zE)Q,jdz (ij=12.6).

-h/2

The element Ay, By and D, are, respectively, the membrane rigidities, coupling rigidities and
flexural rigidities of the plate. h is the thickness of the laminate. (Q; are the reduced stiffness
coefficients, which can be related to the more familiar engineering moduli by o = {Q,}e. The
components in the matrices of in-plane stress and strain are: 0 = {0, 0,0 }Tande={¢ &, e }"
The matrices of strains () and curvature changes (k) are written by considering von Karman type of

du 1 ¥
_+_
dx 2

2

e=ie, =10V L , )
ooy 2l
Sl lou v awaw

dy dx ox dy

geometric nonlingarity, as:

ow
ax
ow

I w
2
x ox
k=lx, b=- aay LAY 6)
oy d'w
2

oxdy

u, v and w are the displacements at the reference plane (z= 0) along x, y and z directions. ¢,, €,, ¢, are
the reference surface strains. ¥, ¥, x; are the curvature changes.

m: L(;:)T lﬂ {: } )

Where, [A"] = [A]™', [B"] = -[A] "'[B] and [D'] = [D] + [B] [B'].
The Airy stress function (¢), which satisfies Eq. 1 and 2 is defined by

Eq. 4 is rewritten as:
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2
N, e
oy
o
N, =1 o (®)
_9%
Ny dxdy
The compatibility equation is derived from relation (5) as:
re, Pe, e, (ow) _dwow ©)
ayt  ox*  odxoy | oxay ax? oy*
Using Eq. 7 and 8 in Eq. 3 and 9, one obtains
'w ’w w (10
L L =
AP —Ly(w)- [ ay} o
Li{w)+L.(¢)-L(pw)=0 (n
where the differential operators are:
N . 9 4 .0 . 0
L, :Du$+4Dlﬁ o ay+2(D12 +2Dﬁ6) ay 4D26W+DHW
.ot R .0 .o
L2:A22F_2Azsa 3ay+(2A12+A55) zayz _2A16W+A11¥
. a . o . ., o0
L3 :B a +(2B26 s1)fay+(B11 +2B22 2B66) za 2 (2B16 _Bsz)w'k 12 ?

0w I Fw Fo Iw
L(pw)=2? - .
)= o Toxt ay?  “oxdy axdy

Therefore, Eq. 10 and 11 are two coupled governing equations of arbitrarily laminated thin plates

Buckiing of the Delaminated Laver
The growth of a thin laminates strip delamination in a thick base laminate with clamped edges has

been studied. The delamination model is illustrated in Fig. 1. Tt is assumed that the stiffness of the

X
F 3

/ \_'-‘Z

—2 —l—— 2 ——

Fig. 1. Buckling of a thin-film strip delamination
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delaminated layer is negligibly small compared to that of the base laminate, such that the membrane
strains in the base laminate are not affected due to the buckling and growth of the thin delaminated
layer. Since there is no out-of-plane transverse deflection in the base laminate, the deflection and slope
of the delaminated layer at the delamination front are both zero. This simplified model is called
“thin-film delamination’.

A transverse deflection function w, is assumed as:

w X
W :ﬂ{lJrcos—},
2 a (12)

which satisfies the geometric boundary conditions:

W=@=03IX:ia.
ox 13

Substituting Eq. 12 into Eq. 10 and using the in-plane boundary conditions:
CE)

N, =—=-P atx==a3,

Ty (14)

2
= I =8 atx==a,

N —
¥ oxdy
(15
The Airy stress function, ¢ is obtained as:
v B, v B, w X
p=-P —Sxy+—L - w=-P—Sxy+—2 o= {lﬁ—cos—}
2 22 2 . 2 a (16)

Substituting w and ¢ into Eq. 11 and applying Galerkin’s method, one can get

. B2V aY Y
p=|p +B | B) p [Z
{ A JU U an

where D, gis the equivalent bending rigidity.

For a thin-film laminate having clamped edges at x =+ a, Eq. 12 represents the lowest buckling
mode and Eq. 17 gives the corresponding axial buckling load.

Post-buckling of the Delaminated Layer

Problems of general laminates with different symmetric and unsymmetric lay-ups and more
general loading conditions including axial compressive strain, transverse membrane strain and membrane
shearing strain are considered. However, symmetric laminates with different fibre orientations and
stacking sequences are commonly used in structures and as a consequence of delamination, an
unsymmetric lay-up may appear in the delaminated layer. Hence the delamination growth of general
laminates with general loading conditions is studied here.
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Using the transverse deflection function (w) assumed in Eq. 12, the curvature changes (x, , ¥, ¥)
obtained from Eq. 6 are:

i, = ma| T 2cosE

o2 1la a (18)
K, =0 (19
K, =0 (20)

Using the Airy stress function (¢) obtained in Eq. 16, the in-plane stress resultants (N, N, and
N,,) found from Eq. 8 are:

N, =P 21

B YW X

N =—| Za | [T Waw o TX
Y [A;z } (a} 2 (22)
N =S (23)

Unlike N, and N,, the transverse membrane force N js generally not a constant, if
bending-stretching coupling is present.
Using Eq. 18-23in Eq. 7, the strains of the middle surface are written in the form

_ X
g, =g, te cos-—~

(24)

g, =g (25
£, =8 e cos 2

a (26)

where 2,=-A/P+A S e =-AP+ALS e =—A P+A.S

B, .. . |(nY} B, .. . mY}w,,
g, =| AL +B | —| and g, =| - AL+ B | —
A a A a 2

Equation 25 indicates that e, is constant. The in-plane stress resultants are obtained from Eq. 4
using Eq. 18-20 for the curvature changes and Eq. 24-26 for the strains of the middle surface. These
are substituted in Eq. 1 and 2 to obtain the following relations:

2
w b

AE.+ A +B, —E = | =0
118, 16Ey Ty (a}

(27
wo.(mY)
AggBy t Ay TByg T[;J =0 (28)
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Using Eq. 18-28 in Eq. 4, one obtains the relations:
Aje, T AE+ A, =P, 29
A, t Ay tALE =8, (30

as well as the moment resultants (M,. M, and M,,), which are being used in Eq. 3 to obtain the
relation:

2
w b Pw
B, & +B +D,, —oe | | —am
1n<E men 11 2 {aJ 2 (31)

Using Eq. 17 for Pin Eq. 31, one can write a relation:

2
Wi T
B2, +Bye, +(D);; ~Dey) 3 (*J =0

(32)

The above relations 27 to 32 will be useful later while simplifying the energy-release rate
expression for a thin-film strip delarmination.
The maximum amplitude W, may be obtained from the kinematical relation for the total axial

shortening:
h 1/ ow Y
w35

TEWHBX ! —
™ =g, t¢,, (33)

where g, is the compressive axial strain in the base plate.

which implies that

Evaluation of the Strain Energy Release Rate at the Crack-tip

The results of the buckling analysis of a laminate are applied to an across-the width, thin-film
delamination in a thick base laminate, which is subjected only to the following constant membrane
strains:

Ex = 780 (34)
£, =%, (35
gy =8 (36)

When these membrane strains are sufficiently large, the delaminated layer of length 2a buckles and
deflects away from the base laminate. The stiffness of the delaminated laver, characterized by Eq. 4,
is assumed to be small compared to the stiffness of the base laminate so that the buckling of the layer
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does not affect the existing state of membrane strain in the base laminate. Hence, the layer has zero-
slope along the two end edges where it joins the base laminate. Tn above post-buckling deformation of
the layer, ; and €, are, respectively, the specified membrane strains for ¢, and e, in the base laminate.

Although the obtained post-buckling solution from the classical lamination theory does not deliver
the asymptotic stress field near the crack-tip, it can be used to determine the energy-release rate of
delamination theory. Yin and Wang (1984) and Yin (1985; 1988) was pointed out that the energy
release rate 1s not affected by superposition of a non-singular stress or deformation field. If one
superimposes the following constant strain field:

e e, 37
e, =% (3%
gy =%, (39)

upon the post-buckling solution of the delaminated layer and upon the constant strain of the base
laminate, then the base laminate becomes stress-free whereas the delaminated layer is now subjected
to the strain field

2
W7 X
€, =8 tE tZK = § +te, +| g T2 —| |cos—
2 la

a (40)
g, =0 41
g =& CC‘SE
wt oo a (42)
Hence,
G, =Q e, + Qlﬁexyt (43)
O, = Qien T Qs ot (44)

The energy-release can be evaluated by means of the J-integral (Yin and Wang, 1984). After
superimposing the constant strain ficld of Eq. 37-39, the base laminate becomes stress-free and
consequently the two segments of the path that intersect the base laminate do not contribute to the
J-integral. The contribution from the segment of the path which intersects the delaminated layer at
x = 0 delivers the energy-release rate,

1 hi2

G=J‘dJ=f j (stxt+cxzsm) dz
-h/2 x=0

_A 2

2

2 2
w, . (=® w, . (=®
By (& te, ) > [;] B, == [;] g,

4
Dy [ T
2 la (45)

(ED +e, +€§)2 +A (su +e, +s§)a

A
+ St e
m 2 m
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Using the relations 27 to 32, one can simplify Eq. 45 in the form

G=h(e +e )2+Wfﬂax ki 4D
2 o 3 8 a eff (46)

Using Eq. 33 in Eq. 46, one can express the energy-release rate as

1 Y
GE(su+Em){A“(su+am)+4Df{;} } “n

The net effect of the three membrane strains on the base laminate can be represented by a single
“‘loading” parameter, &', which is referred to as the ‘equivalent base laminate strain’ and is defined as
(Chai et al., 1981

E* - 80 _ (Alzg[i;— A‘lﬁgv) )
11

Using Eq. 17 and 29, one can write the loading parameter as
g’ =g +e, te, (48)

Where the critical equivalent base laminate strain at the onset of the buckling is defined by

e ’
T oA la (49
Using Eq. 48 and 49 in Eq. 47, one can express

G=%(e*—£;)(e*+3s’;) 50)

A Griffith-type fracture criterion is used to govern the delamination growth. If the equivalent
strain, ", applied on the base laminate is further increased from that of the buckling state, such that
the energy release rate at the delamination front ecquals to the specific fracture energy (G,) of the
material, delamination growth occurs. Thereafter the equivalent strain (g,") to initiate delamination
growth is maintained constant as the delamination growth proceeds. Eq. 50 preserves the formal
simplicity of the known formula for a thin-film delamination in a homogenecous isotropic or specially
orthotropic plate (Chai ef af., 1981; Yin and Wang, 1984). The present result (50), which takes into
account the laminated structure of the layer and membrane shear loading in the base laminate, generally
includes contributions to the encigy-release rate from all three modes of fracture.

Using Eq. 33 in Eq. 47, the energy release rate can also be expressed in terms of the maximum

amplitude (W) as

2

4
_ Wi 7 TT
G="r (AyWie +64Deﬁ)(g]

(51
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Stability Characteristics of the Delamination Growth

The post buckling solutions for a laminate with clamped ends are applied to a thin strip
delamination in a base laminate subjected to uniform membrane loads. The energy release rate (G) at
the crack tip is evaluated to determine the stability characteristics of delamination growth. From the
present post-buckling solution of laminated strip delamination for the thin-film model, the lowest value
of equivalent base laminate strain (¢" ol) can be obtained from the conditions:

G=G, and d—G=0 a a=a,
da (5D

The stains (e”), the delamination length (a_) and the corresponding maximum amplitude (W"__)
are obtained from the above conditions as follows:

174
o PO o n PPa( 280 gy - 2D
2A11 All 3Gc A‘ll (53)

The limit strain (g";,,) beyond which the strain energy release rate, G, exceeds the specific
fracture energy (G)), as a~ «, is obtained from the conditions: G (a,) = G, and G~ G, as a+ «. The
strain (e’ ), the delamination length (a,_) and the comesponding maximum amplitude (W, ) are

obtained from these conditions as follows:

174
S*Dhm :1‘2[:3C s Ay =T %]i:’f {QAlGl J and W, = SAD:E (534)
1 1 c 1

The equivalent base laminate strains required to initiate delamination growth is an increasing

function of the specific fracture energy, G..
Results and Discussion

The effect of laminated structure upon the buckling strength of the delamination is examined by
unsymmetric angle ply as well as cross-ply delaminations of E glass material. The material properties
considered for E glass material are: E;, = 60725 MPa; E,, = 24810 MPa; v,,=0.23 and G, =12115
MPa.

Table 1 gives the critical value of ¢ at the onset of buckling &*, for a two layered angle-ply (8 /-0)
strip delamination for different values of 6.

Figure 2 and 3 show the variation of the energy release rate (G) with axial compressive strain &',
It is noted that G increases with €'. The strain energy release rate, G increases with the strain
parameter €' of the base laminate.

Ifthe value of G for any ¢’ is less than the fracture toughness (G,) of the material, then there is
no change in the length of the delamination other than enhancing the maximum deflection of the

Table 1: The critical value of £" at the onset of buckling £",, for a two layered angle-ply (© /-8) strip delamination
0 (degree) 0 30 45 60 75 90
g 10 0.32899 0.29336 0.29924 0.31686 0.32716 0.32899
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Fig. 2: Energy-release rate versus compressive load parameter for a two layered angle-ply (0 /-0) thin
film strip delamination (2 a= 50 mm and h = 0.5 mm)
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Fig. 3: Energy release rate versus compressive load Parameter for a two layered cross-ply thin film
strip delamination (2 a= 50 mm, h=0.5 mm and ¢",, = 0.00028549)

delamination. Initiation of delamination growth takes place when G is approaching G.. Further
increasing in the strain energy release rate (G) may cause growth in the delamination.

The combination of the present analytical solution for post-buckling with calculation of the
energy release rate at the crack-tip from Eq. 50 or 51 and the measured specific fracture energy of the
material will be useful to describe the stability characteristics of delamination growth.
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Conclusions

The post buckling solutions for a laminate with clamped ends are applied to a thin-film strip
delamination in a base laminate subjected to umform membrane loads. The energy release rate at the
crack trip is evaluated to determine the stability characteristics of delamination growth. In the case of
one-dimensional delamination models, the total energy release rate can be obtained by evaluating the
J-integral of the post buckling solution based on lamination theory, without knowing the nature or
asymptotic form of the interlaminate stress between two dissimilar or differently oriented layers
represented by the delamination. Bending stretching coupling reduces the buckling load and enhances
the post-buckling deformation of the delaminated layer.
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