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Abstract: In engineering practice, structural intensity gives valuable information of sources
and sinks of vibration excitations as well as a detailed knowledge of energy propagation
through structures. As a result, proper damping treatment can be employed to mitigate noise
and vibration harness (NVH) problems. In this study, a complete description of general
vibration intensity fields (Wm™) in the frequency domain for isotropic plates is formulated
considering flexural waves which is not based on some approximation such as far-field
conditions. An 8-point transducer array is required to get an intensity vector in a particular
direction taking into account as many as fifteen cross-spectra of field signals. A multi-
channel FFT analyser is useful for this measurement. However, one transducer frequency
response method is also employed to estimate these cross-spectra alternately. It gives the
measurements free from phase mismatch errors.
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Introduction

Structural Intensity (SI) or vibration intensity is a valuable tool for localizing and ranking vibration
sources and sinks on the structures. Tt also gives essential information on vibration transmission paths
through the structures. As a result, proper damping treatment can be employed to the area of energy
transfer on the surfaces to suppress noise and vibration levels of the structures and consequently, less
acoustic energy is radiated into the surroundings. Another essential aspect of ST is that it is also useful
for the estimation of quantities based on energy flow through joints and junctions such as the
transmission loss factors and the reflection coefficients.

Vibration intensity is defined in the solid media, but its measurements can usually be carried out
on the surface of the structures. This is because of the fact that in thin structures, the waves,
propagated through the structures, could be reasonably assumed that it would be parallel to the surface
of the structures (Pavic, 1981). Therefore, it is convenient to use the concept of wave type estimation
when addressing the experimental detection of energy flow within the structures. Greater complexity
of the mechanical wave field and limited access to the interior of structure bodies, structural vibration
implies a higher degree of measurement difficulties as compared to acoustic intensity (Linjama, 1994).
This restricts the application of vibration energy flow measurements mainly to relatively simple
structures such as pipes, beams and thin plates where propagation of mechanical waves should be
considered only parallel to the surface.

ST technique has a unique aspect. It does not depend on boundary conditions of the structures.
This enables researchers to investigate the edge effects of vibration power transmission of pipes, plates
and beams. But far-field power flow inherently contains some limitations in selecting measurement
points. The measurement points should be away from the boundary and inhomogeneities of the plates.
The effects of boundaries and inhomogengities of the plates are called near-field effects. The near field
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effects decay exponentially as filnction of position and extend to a distance of approximately half the
bending wavelength from the boundaries and inhomogeneities of the plates (Noiseux, 1970). Atlow
frequencies, the disturbing near-fields cover a large part of the plate and valid measurement could be
made in the center region only. The far-fild concept also enables the use of two sensors to determine
an intensity vector at a point in the particular direction. The distance between two sensors, called
spacing, is selected with regards to bending wavelength, such that the ratio of spacing to bending
wavelength is 0.2 for the upper frequency limit and 0.15 for the lower frequency limit (Kay and
Swason, 1996). The use of this spacing criterion provides an optimal trade-off between the reduced
finite difference errors afforded by small sensor spacing and reduced sensitivity to standing wave
related errors (phase errors) afforded by larger sensor spacing.

Most of the works undertaken by SI so far were related to simple structures, typically beams and
plates in flexure, using the analysis both in time domain and frequency domain (Noiseux, 1970;
Pavic, 1976; Verheij, 1980; Linjama, 1992; Bauman, 1994; Arruda and Campos, 1996). The methods
so far presented are contact methods based on finite difference technique. Structural intensity can be
computed numerically when predictions of structural behavior in various conditions are needed for
complex build-up structures. Vibration intensity, generated by the interaction of dynamic stresses and
vibration velocities for beams and plates, can be found by the finite element method (Gavric and Paive,
1993; Hambric and Taylor, 1994).

Other than contact method and computational technique, some non-contact measurements using
near field acoustic holography (NAH) (Williams and Dardy, 1985, Maynard et al., 1985) were
proposed and it was successfully applied in plates (Williams ef @f., 1985) and shells (Romano and
Williams, 1993). In this technique a simple microphone or hydrophone was used to detect the acoustic
pressure to a plane very close to the vibrating surface.

An optical technique, another approach of non-contact measurements of vibration intensity, is
laser vibrometer. The structural intensity can be measured by automated laser vibrometer in plates
(Linjama, 1992; Pascal ef al, 1993; McDevitt ef al., 1993) for bending waves and in beams
(Berthelot ef al., 1993) for longitudinal waves. In addition to straight beams and flat plates, initial
investigations of power flow had been undertaken for curve structure member (Mayer ef af., 1988) and
structures of arbitrary shape (Pavic, 1987). Recently SI is applied for thin orthotropic plates for
estimating vibration energy transfer considering in-plane waves (Mandal et af., 2000, 2006) and
flexural waves for far-field conditions (Mandal e &f., 2002, 2005). Mandal and Biswas (2005)
presented a review to emphasis the usefilness of this method for noise and vibration control in
industries.

It has been seen, using related literature search, that vibration energy transfer has been mainly
explored using two-transducer method (Noiseux, 1970; Pavic, 1976; Verheij, 1980; Linjama and Lahti,
1992; Bauman, 1994). It is very casy to use and gives good results with reasonable accuracy (Linjama
and Lahti, 1992). So far, no complete description of general intensity fields for isotropic plates in the
frequency domain is available. In the case of low frequency analysis when bending wavelength is
higher, two-transducer method in the frequency domain (Linjama and Lahti, 1992) is not suitable for
practical measurements. Less area on the plates is available for measurement. Therefore, a general
structural intensity in the frequency domain is necessary for plates. This is the purpose of this article.
Thin isotropic plates are usually used in industry especially in automotive, aircraft and ship structures.
Consequently this method can be suceessfully used in industrial applications for noise and vibration
control.

Theory
Classical Isotropic Plate Theory

This study considers a thin homogeneous isotropic plate with small deflections compared to the
uniform thickness of the plate. The idea of thin plate results when the thickness of the plate, h, is small
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Fig. 1: Schematic diagram of plate with its small element: typical plate with co-ordinate systems
{above), internal shear force and moments on small element (below)

enough compared to other dimensions. In thin plate flexural wave equation, the influence of rotary
inertia and shear deformation are neglected. This approximation is valid when h<<A, the flexural wave
length (Cremer and Heckl, 1988). It is considered in this analysis.

A typical coordinate plane xoy coincides with the middle plane of the plate denoting downward
direction of z-axis positive as shown in the Fig. 1. The thin plate assumption implies a plane stress
state, given by the following stress-strain relations expressed in the coordinate system parallel to the
principal material directions with no body forces.

G, U, U, Uy ||s
o, = |U, Uy Uy g,
Ty Us Uy Uss | |7y (1)
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where o,, 0, T,; are in-plane normal and shear stress components, &, €, A, are in-plane normal and

shear strain components. U; is the stiffness matrix which can be defined in terms of engineering
constants:

E Ev
U,=U,= U, :77\}2; U;g=G, Uy=U,=0

where, E is the Young modulus, G, the shear modulus and v, the Poisson’s ratio.

The bending moments M, M, and the twisting moments M, along with the vertical shearing
forces, (O, and Q,, the magnitudes of all moments and the forces are per unit length shown in Fig. 1,
can be expressed as (Cremer and Heckl, 1988):

2 2 2 2 2
M, = DT v I, M, _ p2¥ 2w, M, =-D,, ow
ox ay ay ax oxay
0 0w O'w 0 d'w O'w
S AL AN B O A AL
A dax oxt oy’ > By(8x2 ayz) )]

Where D is called the flexural rigidity and the quantity D, is called torsional rigidity of the plate
such as,
Eh’ _ Gh?

D=———, and D
12 -vH R )

Complex Power Flow

The power in the frequency domain (spectral density, W/Hz) is defined as a conjugate product
of the Fourier transforms (0 and | (f) of the time domain signals v{t) and F(t) of transverse
velocity and input force as:

P(f) =" () F(f) (3)

Where the asterisk denotes complex conjugate and f'is frequency. This complex power, P(f), has
two components such as active power and reactive power. The active power is generally the quantity
of interest since it is associated with the energy flow. The order of conjugating of the signals only
affects the sign of reactive power. The complex power P(f) can be estimated by the one-sided cross-
spectral density function Gy (f) (Bandat and Piersol, 1986) of the signals. This one-sided cross-
spectral density function can be expressed as (Linjama and Lahti, 1992):

G,.(f) = <V'(f)F(f)> where <> denotes the ensemble average.

The real part of the complex power corresponds to the time average net power, called active
power, [, is given by

I =Re{G .(f) (€)]
The imaginary part of the complex power, called energy density, is defined as the standing wave

power per unit width or it can be described alternately as that portion of the energy which resides in
the stationary waves and is, essentially, stored within the medium.
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In the flexural wave field, the contribution of complex power results from shear force (Q) and
moments: one bending moment (M) and other one twisting moment (M,) together with transverse
velocity (v) and angular velocity (§). In the following section, complex power flow formulation is
carried out for shear force followed by moment contributions. Differentiating all the moment and shear
force equations with respect to time and performing Fourier transform of all, it is possible to get the
moment and shear force equations in terms of transverse velocity (v) of the plate.

_ i i _ 2D i
M, - -2V L0V g, - e 9V
jo 9x jo 0xdy (5)
— 1 d°v 3’y
Q, = D+ =

jo 9x® 9xay’

P, and P,,,. the components of complex power from shear force and moments respectively in the
x-direction of the plate, are given by:

P,f) = G,, (NandP,,; = GexMx(f) + G'eylvl”(f) (6 a,b)

Where G,, (f) is the cross-spectrum of transverse velocity and shear force along a plane
perpendicular to x-axis and G b, (Dand G, (D are the cross-spectra of the angular velocities

(0) with bending moment and twisting moment. The total real part of complex power in the x direction
can be obtained either by summing of the real part of P4(f) and P,,,(f) or by taking the real part of the
sum of P,.(f) and P, (). The former option is illustrated below,

ReP (1)} = Re{G,, } +Re{G,, ) + G, (O Y

Here Re{P.(f)} denotes the real part or active part of complex power, P.(f) in the x-direction of
the plate.

Complex Power from Shear Force

The field quantities of shear force component power at a particular point are the transverse
velocity and shear force at that point. The spatial derivatives of these field quantities can be obtained
by using the finite difference approximations of velocity signals using eight-point transducer array
(Fig. 2) (Pavic, 1976).

In terms of Fourier transformed transverse velocity, the spatial derivatives of shear force and
transverse velocity can be obtained as:

21

b _ _ - _ —
X~f_—d3(vl+v275v3+v4+5v67v77v8)

10
_ 1 _
V:E(V3+V6)

Complex power from the shear force component in the x-direction of the plate, P, (f), can be
obtained as:

P.(f)= <V, 4V, (U, +7, WV, +V, + 5V, -V, —V,) >

2jmd’

(8)
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Fig. 2: 8-point measurement array (spacing not in scale)

where d is the transducer spacing (Fig. 2). Negative sign of shear force is cancelled by the negative
sign imposed in the velocity term on power flow formulation so as to make a positive power flow in
positive direction (Pavic, 1976).

Noting that <v° v >=Gand G =G,; and taking the averages of all the terms in the
ensemble average notation separately, the final form of shear force component of complex power can
be obtained as follows,

D .
P () = W{S(Gsa =Gy) +10JIm(G )+ Gyt Gy + Gy, =Gy =Gy =Gyt
G+ Gy + Gy — Gy — Gy — Gl &

All the cross-spectral terms rather than auto-spectral terms of velocity signals in the above
equation are complex. Active power of the shear force component alone in the x-direction of the plate,
L. can thus be obtained by taking the real part of the above complex power equation.

D
[,=Re{P D)} = m[ Im{l0G,, +G, +G,, +G,, —G,,—G,,—G,; + (10)

Gm + G62 + G64 7Gas 7Ga7 7Gax}]-
Complex Power from Moment Components
The spatial derivatives of bending and twisting moment and its angular velocities (§ anq 6 ) can
S ¥

be obtained in terms of Fourier transformed transverse velocity of the plates using an 8-point
transducer array (Fig. 2) as:
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M ——{ dz(v1 V=Vt v, )+2 SV, -2V, + v, -2V, + V)i and
— D(l vy, 1 o
Mxy _](I) {2d2 V4 7V5 +V7)}

S AP 1
BX:E(\%fvﬁ) and Byzﬁ(vzf\zﬁrvsﬂg)

Similarly as in the case of shear force component, the real part of complex power of moment
component in x-direction of the plate, I;; may be obtained as:

D
Ly =Re{P ()} = m[ Im{2G s — Gy — Gy + G + Gy + V(4G —
aQ-v)
G32 _G34 _G35 _G37 + Gﬁz + Ga4 + Ga5 + Gﬂ) + T( G25 -
G, -G, +G, )l (11

Total Power
Total active power in the x-direction of the plate can be achieved by adding the Eq. (10)
and (11) as:

I =

b4

o t (-v)G,+(1-v)IG, - (1+v)G,;, -

(A+v)G, —2G,; +2G, +(1+v)G, + (1+v)G, —(1-v)G, —(1-v)G,, +

1-v
T(st =Gy - Gt Gy )il (12)

This general energy transmission model in the x-direction of the plate (Eq. 12) cannot be
considered as an exact because of the finite difference approximation. To estimate the general structural
intensity equation of bending waves in isotropic plates requires simultaneous acquisition of fifteen
cross-spectra of field velocity signals (G, using a multi-channel FFT analyzer. It is also possible to
re-model the equation using cross-spectra of acceleration signals. Similarly, the y-component of general
energy transmission could be obtained. In this case, it is necessary to interchange the suffix of T “x” by
v in the eq. (12) and to rotate the measuring 8-point cell (Fig. 2) by 90 degree so as to make it parallel
to y-axis.

Velocity was taken as a key term in the mathematical modeling of power flow. Since
accelerometers are widely used in vibration measurements, it is therefore customary to use acceleration
signals instead of velocity signals in the formulation of energy transfer. B

In the frequency domain, the relation between velocity and aceeleration is v = _i . This leads

jo

tog = G for power spectral densities of velocity and acceleration where v and a are the signals
2

WV

of velocity and acceleration in the frequency domain respectively. The following cross-spectra, G; refer
to the signals of acceleration rather than velocity signals. Using the cross-spectral field signals of
acceleration, the x-component of energy transmission would be:
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I, = %[Im{(u 4Gy + (1=V)Gy + (1-v)Gy, — (14 V)G —

oy
(A+V)Gy —2G,+2G, + 1+ V)G, + 1+ V)G, —(1-v)G, —(1-v)G,, + U
1-v

T(st o G27 o G45 + G47 3]

where, all fifteen G;are cross-spectra of acceleration signals. The y-component of intensity vector
can be obtained by only changing the subscript x to v and re-positioning the measurement array parallel
to y-direction.

Complex Power by Frequency Response Function (FRT) Method

It is necessary to get simultaneous acquisition of all cross-spectra of acceleration field signals of
Eg. (13) for an intensity vector at a point on the structure to a particular direction. Consequently, an
eight channel FFT analyser or more is required. If one-transducer FRF method be used, itis
still possible to obtain all cross-spectra by conventional two-channel FFT analyser. The first
cross-spectrum of the intensity equation in Eq. (13) is G;,. Two accelerometers, one on point 3 and
another one on point 6 (Fig. 2) are necessary. An estimate of this cross-spectrum, G-, can be obtained
with this FRF method (Bandat and Piersol, 1986) using one accelerometer as follows

G :H*FSHFﬁGFF (14)

where ("}36 is the estimate of true G,,. Hy; and Hg, are the frequency response functions of a
force (reference) signal to accelerations at points 3 and 6. Ggpis the auto spectrum of force signal. This
method has no phase error problem.

In some practical situations, it is not possible to measure exciting force. In such a situation, it is
still possible to estimate the cross-spectra of the Eq. (13), using acceleration signals at any
arbitrary point as reference. Using this idea, the same estimate of cross-spectrum in Eq. (14) can be
obtained as:

C'}36 = HsaBHaﬁGaa (15)

Here FRF is between reference signal of acceleration at any position and acceleration to the
positions 3 and 6. If phase error is not a problem in the measurement, it is possible to make a reference
acceleration signal at first measuring point 3, the first suffix point of the cross-spectrum, G.,. the
Eq. (15) takes a simpler form as:
=H

G, (16}

36 36

Similarly, other cross-spectra in Eq. {(13) can be evaluated using one-transducer FRF technique
positioning one accelerometer sequentially to all required positions. As the number of cross-spectrum
increases, time required for this method is also increased significantly. Estimating all cross-spectral
terms using a frequency response method, the structural intensity Eq. (13) can be written incorporating
auto-spectrum of reference force signal, G as:
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D - - -
= mlm[{(12+4V)H e+ 1=v)H 5 Hey +(1-v)H Hey —

(I VIH  Hyy (1 VH o Hyy —2H y Hy +2H  Hyy + (L v)H S He £ 17y

. . . I-v .
(1+v)HH, —(1-v)H  H., - (1-v)H ,H, +T(H £ Hes —

b4

H*FZ He, - H*F4 Hes + H*F4 Hg, )}GFF]

Considering frequency response function of reference acceleration and using auto-spectrum of
acceleration, the above Eq. (17) can also be written as:

D . . -
I, = m m[{{(12 + 4v)H"  H; + (-v)H  H,+(1-v)H ;H, -
(1+vyH" ,H, -Q+v)H H_ -ZH" H, +2H H +{1+v)H H_+ (18)
1-v

(1+vH H, -(1-vH H,-(1-v)H" ,H, + = (H,,H, -

H*az Ha7 - H*atl HaS + H*a4 Ha? )}Gaa]

Using the idea of Eq. (16), making the acceleration reference signal to the first suffix point of
cross-spectrum, the Eq. (18) can be further written as:

D
= ol Im[{(12+4v)H,, + (1-v)H,+{-v)H, —(1+v)H, —

(1+v)H,, ~2H,}G,, + {2 H, +(1+v)H, + (1+v)H, —(1-v)H,, - (19)

1-v
(1 7V)Hﬁ7}Gﬁﬁ + T{( st B Hz7)G22 B (H45 o H47 )G44}]

b4

Discussion

Mathematical modeling of SI for the isotropic plates was performed in frequency domain
considering 8-point transducer array method and one transducer frequency response method. Finite
difference approximation and Fourier transform are used in these formulations. There are several
reasons for selection of this approach as compared to a direct time domain implementation. The
completed integrals and derivatives in time domain power can be replaced by spectral approach in
frequency domain and it is carried out internally by FFT analyzer.

If an cight-channel FFT analyser is available, simultaneous acquisition of all fifteen cross-spectra
(Eg. 13) and their ensemble averages can be obtained readily to obtain energy transfer in one direction.
A total of sixteen accelerometers are necessary to get a complete intensity vector. Alternately, a
one-transducer frequency response technique may be employed to get all cross-spectra (Eq. 17)
sequentially using a familiar two-channel FFT analyser. This method is free from phase errors.

It is well known that the shorter is the spacing, d, of the sensors, the less is the finite difference
error. On the other hand, the shorter is the spacing, the greater is the phase mismatch error. Therefore,
it is necessary to make a trade-off for selecting a suitable spacing of transducer keeping all errors to a
mimmum level. The criteria for selecting spacing are available in literature (Linjama, 1994; Kay and
Swanson, 1996; Linjama and Lahti, 1992). The maximum value of d/A should be 1/5 (= 0.2) (Kay and
Swanson, 1996; Linjama and Lahti, 1992) and higher than this, finite difference error starts to appear.
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The phase mismatch error, on the other hand, comes due to mismatch of phase. The phase error,
generally, results due to small spacing relative to flexural wave length and a reverberant vibration field.
It can be quite large if the coherence values are not close to unity. In eight-point and two-point
transducer methods, both finite difference and phase mismatch errors occur readily. A proper strategy
is necessary to make the error magnitudes to an acceptable level. These errors are not a problem in one-
transducer method, where vibration field should be stationary. The selection of transducer
(accelerometer) in 8-point method is very critical such that the mass of accelerometers should be much
less so as not to disturb vibration ficlds due to its mass, stiffness and cabling. The problem of mass
loading is very minimal in one transducer frequency response method.

Minimization of error depends on the selection of spacing, end-damping, number of average taken
in data acquisition and good values of coherence functions between input and output quantities.
Random errors, on the other hand, occur by virtue of its nature and it would not be a problem if a large
amount of averages is taken during data acquisition (Linjama, 1994).

The eight-point transducer method, by contract to two-transducer method, gives more flexible
measurement environment by providing its measurements very close to vibration sources and edges
of the structures. As it does not depend on sources and boundary conditions, eventually it can measure
energy transmission in the presence of near field effects. As a result, a more complete vibration
propagation field can be figured out.

Conclusions

Using the classical isotropic plate theory for flexural waves, a general model of vibration energy
transfer is formulated. The study considers fimte difference approximation to model spatial derivatives
of force and moment quantities. The study is carried in the frequency domain considering fast Fourier
transform. Simultaneous acquisitions of fifteen cross-spectra of accelerometer signals of the plate are
needed for a particular direction which can be obtained by multi-channel FFT analyser. Different forms
of estimation of cross-spectrum are put forward by one transducer frequency response method so as
to make the measurement free from phase errors.
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