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Abstract: Reactivity Insertion Accident (RIA)is one of the main factors of the design basis
accidents in nuelear reactor design. In this study a neural model of Tehran Research Reactor
(TRR) is developed for analysis of RIA. The model has been built using the Multi-Layer
Neural Network (MNN) to simulate the TRR Input-Cutput behavior. The MNN has been
trained using the Levenberg-Marquardt 1earning algorithm. Parameters of the learning process
have been optimized, to improve the efficiency and accuracy of the training process. This
neural model was trained by standard code results and experimental data of TRR in various
transients. The model was used for developing a neural simulator. The resultant simulator
is reliable and could be able to accelerate the prediction of the reactor exhibit and it enables
to determine the safety margins and criteria in RIA. The results of the simulations are in
good agreement with experimental and theoretical outcomes and show that the TRR could
maintain in the design basis criteria during RIA.
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Introduction

The nuclear reactor simulators are being recognized for the training and safety analysis purposes,
in response to the concerns of the TMI and Chernobyl accidents about the human factor. The reactor
simulation is generally done by using large Safety Analysis System codes. The SAS codes use a lot of
computer central processing time, which makes them incapable of real time prediction of reactor
behavior in RIA (Mirza, 1997).

Recently, many attempts have been presented to show the efficiency of the neural network for
modeling dynamics of non-linear systems (Parlos er af., 1992). The simplicity and the robustness of
neural model help in constructing and developing of simulators for several dynamic of linear or even
non-linear systems.

The neural simulator which is designed by neural network can substitute the original system. This
simulator follows the system response with the minimum error within the constraint of learning rule.
This method is a safe and easy way to study the different characteristics and behaviors of the system
under study without disturbing the system due to testing procedures. The advantages of using neural
simulator for simulating reactor behavior are:

+  High-speed calculation of neural simulator with respect to SAS codes.

«  No need for precision mathematical and physical calculation.

«  Fast prediction of reactor dynamic behavior in accident such as RTA.

+  Ability to provide estimation of the system response in the case of missing measurements
(Adali, 1997).
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Therefore, neural simulator is ideal for analysis of the evolution of a complicated system in which
robust, fault tolerant and real-time mode operation is essential. By using this simulator, we can analyze
various scenarios in nuclear reactor operation such as slow and fast reactivity insertion
transients and generate training and test data sets, which obviously cannot easily be obtained
in a real nuclear reactor.

Materials and Methods

The existing TRR is a SMW pool-type research reactor with MTR type fuel elements of Low
Enriched Uranium (L.EU) with 20% enrichment Uranium fuel in the form of U,0; Al. TRR has been
active since 1968 and its filel assembly has been replaced from HEU to LEU in the late 1980s. Detailed
explanation of TRR core and its relevant irradiation facilities is described elsewhere (AEQIL, 1989).
The core is built upon an Aluminum grid plate, on which there are 9x6 = 54 holes to accommodate
either 18 standard fuel elements with five control fuel elements and other tools such as irradiation
boxes. The basic tasks of TRR control system are safe startup, neutron flux controlling and protection
TRR against elements malfunctions. For measurement and control of neutron flux, TRR control system
is comprised of one Fission Chamber (FC), one Compensated lonization Chamber (CIC) and two
Uncompensated Tonization Chamber (UTIC). TRR control system could be able to scram the reactor
in tow conditions, first, while neutron flux or reactor power becomes more than legal value (high flux)
and second in the case of the neutron flux increasing ratio reaches to more than legal value
(short period).

In this study a neural model of a nonlinear, complex dynamic system is designed and developed
for simulation of RIA at TRR. This model includes MNN with feedback loop and time delay of input
and output. This mode] was trained by standard code results and experimental data of TRR in various
transients. Presented Newral network can predict the system behavior in slow and fast reactivity
insertion aceidents.

TRR Model Identification

Reactor core dynamic equations are classified as non-linear with variant coefficients, which are
function of the core working conditions (power level, coolant and filel temperatures) (Hamilton and
Duderstadt, 1976). Predicting reactor behavior (neutron flux, thermal power), needs solving these
equations simultancously which in turn, requires a large amount of time and memory on digital
computers. One way to improve accuracy and speed of the reactor behavior predicting is to use a

| Experiment |< ....................

!

Select
model structure B I

Not accepted

Validate
model
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Fig. 1. System identification procedure
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neural network. The ability of neural network to approximate large classes of nonlinear functions
makes them prime candidates for use in dynamic model for presentation of nonlinear plants. The
procedurs which must be executed when attempting to identify a dynamical system consists of four
basic steps including experiment, model structure selection, model training andmodel validation (Fig. 1).

Experiment

In this step it is possible to use experimental data from various operation regimes as well as
deterministic tools. In our case we used practical data, which is collected during reactor operations in
normal operation condition. Also we used the PARET code to simulate some important transients,
which is needed for our study. The main parameters are power, reactivity, fuel and clad temperatures.

Model Structure Selection

Model structure selection is an important step in the overall identification cycle because it forces
some inherent limitations on the accuracy of the identified model and it also dictates the nature of the
training algorithm to be used (Parlos et al., 1992).

Considering the number of neural topologies and training algorithms available, the choice of an
appropriate pair (architecture, learning) depends on the purpose. The critical issues in the choice of
the network architecture are the number and type of neurons and the location of the feedback loops.

Generally, the reactor dynamics have been modeled using the point reactor equations with
contains thermal and hydrodynamic reactivity feedback consideration. The point reactor assumption
is valid for small cores such as TRR. In the point kinetics equations, the time behavior of the reactor
power, P and number of precursors, C, is described by the following equations (Hamilton and
Duderstadt, 1976):

dP(t) _ p(t)—PB :
T )P(t)@m,(t)
dC() By o

—dt ,Xp(t) }hjc‘(t), i=12,..,N

In present study, simulation of transients was carried out using a recurrent input-output model
of TRR dynamic identification in various operation conditions. This model can be described by the
following nonlinear difference equation (Narendra and Parthasarathy, 1990).

y ) =g {y, k), ... Y, (k1) u k), u (k-m+1) )

Where [u (k), y,(k)] represents the input-output pair of the plant at time k and m<n.

In this model, the output of the plant at time k+1 depends both on its passed n values
y(k-I) 1 =0, ..., n-1) as well as the passed m values of the input u (k-j) (j=0..... m-1}.

Based on the point kinetic model, the dynamic state variables of a muclear reactor in short-term
are reactivity and power. Therefore suggested structure for predicting reactor behavior based on MNN
model, should include these state parameters. The proposed model structure for TRR is given in
Fig. 2. The inputs are reactivity, power, fuel and clad temperature at time k and it’s passed values. The
number of time delay of input-output pairs of the simulations determines 4 and 5 respectively. Using
the above values of delay time numbers of inputs and outputs, the input layer neurons is 19 and
according to Kolmogorove theorem (Kolmogorov, 1957), the number of hidden layer neurons
is 2n,+1 =39,

The objective of this study is to design a neural simulator for predicting reactor behavior in both
normal operation and RIA conditions. To achieve the desired objectives, neural model must be learnsd
reactor dynamics for these conditions. To have this ability, the reactor operation conditions are
categorized in three groups and we used three parallel neural models with a similar structure as shown
in Fig. 3. In this structure, the first model was used for identification of TRR core dynamics in normal
condition, the second model was used for identification of TRR core dynamics during slow reactivity
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Fig. 2: Neural model structure for TRR model building
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Fig. 4. TSK membership funtion

insertion transients and the third one was used for identification of TRR core dynamics during fast
reactivity insertion transients. The range of reactivity insertion rate for these three groups of ANN is
as follows:

+  Normal operation Condition Model (NCM): 0<Reactivity rate<0.052%/sec

. Slow Reactivity insertion Model (SRM): 0.052%/sec<Reactivity rate<0.09%/sec

«  Fast Reactivity insertion Model (FRM): 0.09%/sec<Reactivity rate<1.58/sec

The proposed model must respond suitably in all operating powers, so a kind of gain-scheduling
is necessary. To this end, we will Train several neural models in different powers (namely 1, 25, 50,
75 and 100% of nominal power) and use Takagi-Sugeno-Kang (TSK) fuzzy system for covering the
other power values. The rule of this fuzzy system is:

Rule I. if power is P, Then: out = NN, (x, Power)
[=1,25,50,75and 100

As Fig. 4 shows, TSK membership function have been chosen in such a way that in each working
point, the simulator output is a combination of two models output. Using the above model, TRR
identification is equivalent to determination of MNN weights.

Model Training

Despite the great potential of neural networks to predict the system behavior, a successful
practical application of this model is limited to several drawbacks. One of them is the computational
efficiency of the Training stage, which depends on the initial weights and the other is the information
content of what is learned, which depends on the data set.

The objective of the training process is to minimize errors and spesdup the learning process by
adjusting the neural network parameters. This could be done based on a given set of input-output pairs.

590



Trends in Applied Sci. Res., 1 (6): 586-396, 2006

Table 1: Values of used parameters in leaming data scaling

Fast reactivity insertion Slow reactivity insertion Normal condition Description Parameter name
30 12 6 Max Power PRmax (MW)
4.5 2 0.2 Max Reactivity Rohmax (§)

-10 -10 -0.2 Min Reactivity Rohmin ($)

400 350 300 Max FuelTemp FTmax (°C)
300 200 150 Max CladTemp CTmax (°C)

In fact, the training should ideally occur exclusively parallel to the learmning neural networks at a high
speed from any initial set of weights. In order to achieve useful neural model for TRR, it is necessary
to have efficient online training algorithms.

In this study training data was supplied in three categories including normal, slow and fast
reactivity conditions in the base of sampling time interval. According to the relation between sampling
time interval and mimimum period of system (Ljung, 1987), the sampling time interval was determined
for above-mentioned three categories of 1sec, 0.01 and 0.001sec, respectively. Then leamning data were
scaled between-1 and+1 using five relations as follows:

Power — (PR max/ 2)
(PR max/2)

Rohex = (2/(Rohmax— Rohmin)) *Rohex

Power =

Roh =(2/{(Rohmax— Rohmin))*Roh
FuelTemp— (FTmax/2)

FuelTemp =
(FT max/ 2)
CladTemp = CladTemp— (CT max/ 2)
(CTmax/2)

Where Power is the reactor thermal power in MW, Rohex is external reactivity in ($), Rohis core
reactivity in (§), FuelTemp is fuel temperature in (°C) and CladTemp is clad temperature in (°C).
Table 1 gives the values of constant parameters.

For training the TRR model, the output of the plant was used as a feedback into the identification
model, which named series-parallel method. Since no feedback loop exists in series-parallel learming
method, the static learning algorithm such as Levenberg-Marqudart was used to train the neural model.
This algorithm reduces the computational overhead substantially (Narendra and Parthasarathy, 1990).
To speed up the network’s training process and to improve the precision, the learning process
parameters have been optimized.

Model Validation

When a network has been trained, the next step according the procedure is to evaluate it. Neural
network models are data driven and therefore resist analytical or theoretical validation. These models
are constructed by training using a data set, i.2., the model alters from a random state to a trained state
and must be empirically verified. The most common method of validation is to investigate the residuals
(predication errors) by cross-validation on a test set. In this work we perform a number of such tests
including autocorrelation function of the residuals and cross-correlation function between model input
and residuals. For performing these tests, the data is divided into two sets; one set to construct the
model (train the neural network) and the other set to validate the model (test the neural network).
Autocorrelation function of output error for model validation is an approximation to white noise
autocorrelation function (Billings ef af., 1992).

Three transient (NCM, SRM, FRM) cases were studied. As it is observed from Fig. 5, the
autocorrelation function of power prediction error is an approximation to white noise autocorrelation
function and the cross-correlation function between reactivity and power prediction error almost stay
within their standard deviations.
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Autocorrelation coefficients for power prediction error

Fig. 5: TRR model validation
Results and Discussion

For normal reactor operating conditions, it is expected that the rate of heat generation in the fuel
will be the same as the rate of removal of heat by the coolant. Any imbalance in this state is likely
creating a perturbation, which may lead to an accident. Transients induced by reactivity insertions put
the reactor in a super critical state; include a sudden power rise to levels beyond the cooling capabilities
of the reactor. The transient behavior depends on the design features of the reactor, the rate and
magnitude of the reactivity inserted and the operating condition before the initiation of the excursion.

To analyze the results of the designed and developed TRR simulator by neural model various
modes of RIA were investigated. The accidents considered are:

+  Start-up accident.

+  Drop of fuel element accident.

+  Beam tube flooding.

«  Movement of core towards thermal column.
«  Removal of an in-pile experiment.

In this simulation, the protection and safety circuits each one assumed to fail except the
overpower trip at 120% nominal power. A delay time of 25 ms has been considered between
attainment of trip level and start of shutdown reactivity insertion (-10$/0.5 sec).

Simulated scenarios by neural simulator and PARET code has been discussed in the following.
The comparisons between PARET code and neural simulator results (Table 2) are in good agreement.
The results of the various transients investigated are plotted in Fig. 6 for peak powers and peak clad
temperatures as function of reactivity insertion.

Startup Accident

In this accident, all of the control rods are withdrawn at maximum movement rate due to eircuit
malfunction during startup of the reactor. The startup transients were initiated by ramp insertions of
0.0484k/k/s starting with the reactor critical at an initial power of 1W. The predicted peak power of
6.85MW in 15.8 sec agrees favorably with the PARET code result of 6.42MW (Fig. 6a).
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Table 2: Time histories of power level and fuel and clad temperature in various RIA

Drop of Beam tube Movement towards  Removal of in-pile
Startup fuel element flooding thermal column Experiments
2 7
Accident PARET Neural PARET Neural PARET Neural PARET Neural PARET Neural
Parameter code simulator _code simulator code simulator _code simulator code simul ator
Trip Time (ms) 15860 15690 685 676 4310 4280 3285 3310 110 115
Peak Power (MW) 6.42 6.85 21.89 20.53 6.32 6.61 6.45 6.9 1625 16.9
Max Fuel Temp (°C) 90.8 92.6 103.8 1053 91.8 93.2 92.8 94.5 96.5 98.5
Max Clad Temp (°C) 88.4 91.15 99.6 102.1 89.5 91.7 90.1 92.4 94.7 96.1
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Fig. 6a: Time histories of power and clad temperature in startup accident

Drop of Fuel Element Accident

A fresh fiiel element is dropped on the core due to an operator error during fuel loading. This
accident has been analyzed for an initial power of 1 W. The results of the study indicated
the peak power was 2053 MW in 676 ms and the corresponding peak clad temperature is
about 102.1°C (Fig. 6b). This predicted peak power is also in agreement with the PARET code result
of 21.89 MW.
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Fig. 6¢: Time histories of power and clad temperature in beam tube flooding accident

Beam Tube Flooding

TRR has six radial beam tubes. When not in use, these beam tubes are plugged with shielding
blocks and filled with water. When an experiment is to setup, water is drained and plugs are removed.
The transition from the air filled to water filled state adds a positive reactivity into the core. This
transient has been studied for an initial power of 1 W. The peak power of 6.61 MW is predicted which
is almost the same as the PARET code results of 6.32 MW and the cormresponding peak clad
temperature of 91.7°C (Fig. 6¢).

Movement of Towards Thermal Column

‘When the reactor core is moved from a position in which it is completely surrounded by water
into the stall operating position, a portion of its water reflector is replaced by graphite thermal column.
This adds a positive reactivity into the core. This transient has been analyzed for an initial power of
1 W.In this case, the peak power is about 6.9 MW and peek clad temperature is about 92.4°C.
Fig. 6dillustrates the comparison between the calculations using the PARET code and neural simulator
results for this transient.
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Fig. 6d: Time histories of power and clad temperature in movement of core against thermal column
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Fig. 6e: Time histories of power and clad temperature in removal of in pile accident

Removal of In-pile Experiment

The experiments which are placed inside the reactor represent a potential means of imparting a
sudden increase of the core to this transient shows the peak power predicted about 16.9 MW and peak
temperature at fuel centerline and clad surface are 98.5 and 96.1°C, respectively (Fig. 6¢).

Conclusions

The developed of neural network model is studied and analysis of the dynamic behavior of TRR
in normal operation, slow and fast reactivity insertion accidents is achieved. For this purpose, the TRR
simulator has been designed and developed with neural model. The advantages of TRR core modeling
by neural network is:

«  Providing speed-ups in system prediction by using dedicated hardware, which provides faster

than real-time prediction power.
+  Ability estimates of the system response in the absence of measurements.
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«  Ability to start prediction from arbitrary initial condition due to its access to all dynamics state
variables at the network input.
. Fast and accurate estimation of core safety margins.

This study shows that by employing the nzural model, the severe operational transient in TRR
can be predicted in real time. Also, the results of RTA simulation were compared with analytical routine
methods such as PARET and are in good agreements. In the worst case, the peak-clad temperature is
about 102.1°C in fiel element drop accident, which is far below the clad melting point. It is concluded
that TRR can operate at full power without any potential hazard of reactivity-induced accident.
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