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Abstract: A simple yet novel method for construction of rational delta function using the
reverse Cantor set and its application to quantum mechanics is presented. This study is
primarily concerned with introduction or derivation of some simple rational delta function
that represents the orthonormality condition of the computed eigenfunctions — both in the
physical space as well as the Fourier space — which will serve as the basis functions for the
wave function, P, the solution to the Shrodinger wave equation subjected to prescribed
boundary conditions. The rational delta function, &, (x), based on a hitherto unavailable
reverse Cantor set derived in this study, reduces to the Dirac é-function and Kronecker &-
function in the limiting cases of n — o« and n — 0, respectively and thus bridges the gap
between the two situations that arise in quantum mechanics, namely bound states with
discrete eigenvalues and scattering case with continuous spectrum of eigenvalues. Most
important, this novel rational delta function, &,(x), permits the resulting computed wave
function to be expressed in the form of Discrete Fourier Transform (DFT) in the Fourier
domain and recover the sampled wave function in the physical domain by employing the
inverse discrete Fourier transform (IDFT). The example problem of a barrier inside a well
studied here sheds new light on the nature of interaction of two or more potentials and will
serve as a prelude to more complex many body interaction problems.

Key words: Shrodinger equation, Pseudo-spectral methods, Wave function, Reverse Cantor
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Discrete Wavelet Transform (DWT)

INTRODUCTION

Recent interests in nano-scale phenomena in diverse engineering fields, such as materials science,
computer engineering, bicengineering, etc., have attracted increased attention to quantum mechanical
studies by engineers. The modern quantum mechanics, first formulated simultaneously by Erwin
Schrodinger and Werner Heisenberg around 19235, 1s a powerful theory that governs the propagation
of electron waves (Schiff, 1968). Since both theories are analogous, only Schrddinger's theory will be
considerad in this study. Schrédinger's wave mechanics, which is based on linear operator theory and
the corresponding eigenvalues and eigenfunctions, is quite general, governing the laws of wave motion
which particles of any microscopic system must obey. Solution of the Schrédinger equation provides
all the dynamical information on the physical system at the subatomic level. The basic postulates of
quantum mechanics are reviewed in the Appendix in the interest of completeness of this investigation.

One basic idea pertaining to the wave function, |, which is a solution to the Schrédinger
equation, is that unless 1 is normalized, computed values of important physical quantities, such as
energy and momentum probability functions and expectation values would be meamingless.
Furthermore, the wave function, 1, can be expanded in terms of an orthonormal set of eigenfunctions,
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which are orthonormalized with respect to one of the two forms of delta functions. If the wave
finction is localized as in the case of an infinite potential well, the computed eigenvalues are discrete
and the eigenfunctions are orthonormalized with respect to Kronecker delta function. If, on the
contrary, the wave function has a finite magmtude at great distances, such as those pertaining to the
scattering case, the spectrum of eigenvalues is continuous and the corresponding eigenfinctions are
orthonormalized with respect to Dirac delta function. The relevant mathematical details are reviewed
in Section A.3, Appendix.

Although the wave motions of most systems involving microscopic particles, such as electrons,
can be accurately modeled using the Schrédinger equation, the number of exact solutions are extremely
limited. In problems pertaining to bound states, in which a particle is restrained by the external forces
(potential energy) to a relatively localized region of space, giving rise to discrete eigenvalues, the exact
or analytical solutions are limited by the relatively few potential energy functions and boundary
conditions (i.e.,, the conditions that are a priori prescribed at the boundaries of the localized region) .
Same is true for collision problems (i.c., collision of a particle with a force field), where the encrgy
cigenvalues are continuously distributed. In this situation, the energy is specified in advance and the
behavior of the wave function at great distances is found in terms of it. The asymptotic behavior of
the solution is then related to the amount of scattering of the particle by the force field. These exact
solutions are available in standard textbooks, such as Schiff (1968).

For most interesting practical problems, although the afore-mentioned exact solutions provide
some clues to the approximate solutions, physicists and chemists must resort to some numerical
methods, such as those based on the variational principle (Ritz method), stationary perturbation
method, Feynman diagram method, WKB approximation, stationary collision theory, Born
approximation, cikonal approximation, Hartree-Fock method, etc. (Schiff, 1968; Mattuck, 1992;
Szabo and Ostlund, 1996). The most conventional approach has been based on obtaining stationary
solutions subjected to prescribed boundary conditions (Asker, 1981). Time dependent solutions have
been computed by expansion of the initial state in stationary solutions (Leasure ef af., 1981). This
stationary approach has produced efficient algorithms, that include the variational methods for bound
states, close coupling methods (Wolken, 1973; Lill and Khouri, 1984) and R matrix methods for
scattering states. In contrast, the direct time dependent approach such as the time dependent
variational method due to Lee and Heller (1982) has the advantage of unifying the bound and scattering
problems.

As has been discussed by Hoffman ez af. (1998), for the Schrédinger equation with relatively
simple boundary conditions, various spectral and pseudo-spectral methods (Feit and Fleck, 1983,
Kosloff and Kosloff, 1983; Sharafeddin and Zhang, 1993; Wyatt, 1995) use standard basis functions,
constructed from well-known polynomials such as Jacobi, Laguerre, Legendre, Hermite, Chebyshev
and so on. These methods are highly accurate and can be implemented with a relatively small number
of basis filnctions. The basic idea behind the method is to use the properties of the discrete Fourier
transform to approximate spatial derivatives, while time derivatives have been approximated by
differencing (Kosloff and Kosloff, 1983). The method maps the true Hilbert space of the problem to
a discrete one. This mapping conserves the Hermitian quality and the commutation relations of the
operators which are associated with actual observables (Kosloff and Kosloff, 1983).

With the advent of computers fast computational tools, such as the Fast Fourier Transform
(FFT) method, the sinc method (Stenger, 1993) and the discrete wavelet transform method
(Daubechies, 1992) have revolutiomzed fields of science and engineering in such diverse areas as radio
astronomy, seismology, medical imaging, spectroscopy, compact disk technology, etc. All these fast
computational methods are based on Discrete Fourier Transform (DFT) techniques. However, to the
author's knowledge, the afore-mentioned quantum mechanics hiterature has not established a rigorous
set theoretic basis for mathematical modeling via spectral and pseudo-spectral methods. The primary
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objective of the present study is to bridge this long-standing gap. The fundamental step to solving this
problem s concerned with (i) introduction or derivation of some simple rational delta sequences leading
to corresponding delta functions in the limit and (i) investigation of the fundamental set theoretic basis
for formulation of these rational delta sequences. In what follows, formulation of a new type of rational
delta function based representation theory for orthonormalization of the computed eigenfunctions both
in the physical space as well as in the Fourier space, which will serve as the basis functions for the
wave function, , the solution to the Schrédinger wave equation subjected to prescribed boundary
conditions, for particles in between bound states and scattering, will be presented. The specific goal
of'this investigation is to introduce a new rational delta function based on a hitherto unavailable reverse
Cantor set derived in this study and to express the resulting computed wave function in the form of
Discrete Fourier Transform (DFT) in the Fourier domain and recover the sampled wave function in
the physical domain by employing the inverse Discrete Fourier Transform (IDFT). The transition to
faster techniques, such as the Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT),
is relatively straightforward.

Reverse Cantor Set Based Delta Function

The Cantor Set, first formulated by George Cantor in 1883, is an important concept in the field
of fractals. The Cantor set can be physically visualized as the removal of smaller and smaller segments
from aline of some prescribed length (say umt length). The construction of the Cantor middle-thirds
set proceeds by first taking a line segment of length 1, subdividing it into three segments and discarding
the middle segment (middle third). This results in increasing the total number of line segments to two
and decreasing the total length by 1/3 {(to 2/3) at the end of each iteration. This process is continued
recursively for the remaining line segments during second, third and subsequent iterations. In each
subsequent step, the middle third of each segment is disposed of, thus creating twice as many segments
as were previously present. In this operation, when carried to a limit of the number of iterations
approaching infinity, the total length of the line segments clearly approach zero (a set of measure zero).
In the mathematical language, these line segments then reduce to a fractal set of points on the line with
a fractal dimension (a noninteger dimension) of In 2/In 3, which is between 0 and 1 (Moon, 1992;
Devany, 1989). A fractal is a set which is self similar under magnification. The Cantor middle-thirds
set can easily be extended to middle-fifths or middle 1/integers or 1/reals sets.

Concept of the Reverse Cantor Set

What if, per chance, one constructs a set in the same way the Cantor set is constructed, but
reverses the operations so that one-third of each subsequent line segment is removed from the ends of
each line segment rather than the middle? In other words, during each iteration, each line segment is
subdivided into three segments, out of which the two end segments are deleted. If this process is
continued until the mumber of iterations approaches infinity, the length of the middle-third segment
approaches zero as it does in the normal Cantor set situation. Just like the Cantor set, the reverse
Cantor set can be extended to middle-fifths or middle 1/integers or for that matter, 1/reals sets.

The Reverse Cantor Set behaves quite differenly from the normal Cantor set. Instead of reducing
to a fractal set of points of measure zero of noninteger dimension of In 2/In 3 (Cantor set), the line
segment reduces to a point of infinite density resulting in a generalized function (e.g., delta function)
for the density and thus allowing it to be used in quantum mechanics rather than in fractals.

Construction of a Rational Delta Function Using the Reverse Cantor Set

The Reverse Cantor set density yields a sequence of delta (&) functions, called §-sequences,
which are defined on a set of rational numbers (e.g., fraction p/q where p and q are integers) and no
irrational or imaginary numbers. Thus, the process of starting from a unit interval [-1/2, 1/2], removing
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Fig. 1: A graphical representation of the reverse Cantor set based delta function (sequence)
Bx) vs. x

the two end-thirds in subsequent operations or iterations (n) and taking the limit as n — =, yields a
rational-type d-function, lim,. ., &, (x). Furthermore, denoting the interval [-(1/2)3™, (1/2)3™] to be L,
8,(x) is defined as follows:

S, x)=3"forx e L (x), (1a)
S, &) =0forx e I (x). (1b)

The reverse Cantor set density sequence discussed above can be graphed as shown in Fig. 1. The
x coordinates represent the length of the subsequent line segments in the set, while the &, (x) coordinate
or y coordinate physically represents the density of each line segment. For example, let us assume
that the mass of the initial segment of length 1 is 1 g. If we assume a specific unit for the mass of the
segment, we might as well assume that the length is also measured in the same unit, such as
centimeters. Thus, the density of the initial line segmentis 1 g em™!. Now, let us perform the reverse
Cantor operations, removing one-third of this line segment from each end. We will, however, keep the
mass constant at 1 ¢,

This results in the density of the line fragment (3 g em™) to be higher than that of the previous
segment by a factor of 3. If we keep the mass of each subsequent line section constant at 1 g while
decreasing its length, we obtain a graph as shown in Fig. 1, with the length of the line segment
becoming very small as the density becomes very high. Graphieally, this is represented by the spike
protruding upwards from the middle of the x axis (x =0).

This graph, although it presently models a simple length-density system, looks very similar to
the graph of a standard rational delta function (Fig. 5.7.3 of Stenger, 1993). Although the method used
by Stenger (1993) involves relatively complicated sine-like generalized functions, his end result is very
similar to the reverse Cantor set density, as is apparent from the similarities of the two graphs. It is
interesting to compare the reverse Cantor set density with its Cantor set counterpart. The Cantor set
density funection is called the devil's stairease (Moon, 1989).
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Before proceeding any further, a brief discussion of the rational delta function and of delta
functions in general is in order. A delta function is a representation of the orthonormality of the
cigenfunctions, which comprise the possible solutions to the wave equation in a particular situation.
For example, the Dirac delta function can be graphically represented by a single line stemming from
the origin (x = 0) of the x-axis and approaching infinity. The physical representation of this type of
delta function is a solution which is unbounded (hence the height of the graph approaches infinity) and
an array of possible wave function eigensolutions which theoretically span the entire real (mumber) line.
This is represented by the width of the graph (which approaches zero), thus showing that the possible
eigenvalues in this situation are continuous, with solutions having little spacing between each other.
Therefore, the Dirac delta function is a representation of the orthonormality of eigenfunctions in the
scattering case, or the case in which the wave function does not decay to zero within a finite region
(A3, Appendix, for a more detailed mathematical explanation).

The Dirac delta function is obviously a limiting case for representing orthonormality of
cigenfunctions in quantum mechanics. The other extreme situation occurs in the case of a localized
wave function where the corresponding eigenvalues are discrete. This situation can be physically
represented, e.g., by a particle confined in an infinite well with reflective walls. The particle has no
chance of crossing the barriers that surround it. The orthonormality of eigenfunctions representing the
solution of the Schrédinger equation in this case, involves the Kronecker delta function. The graph of
this function is a line of unit length (support) that attains a umt height within the domain of definition,
I,(x) and zero outside. The meaning for the graph is that possible eigensolutions in this case must have
integers as indices and the particle wave does not extend beyond a finite region (A3, Appendix, for
a more detailed explanation of the Kronecker delta function).

Mathematically speaking, the Dirac & function is a distribution. The corresponding & sequence
is defined on a set of real numbers. The orthonormality condition is, therefore, a Fourier transform —
an integral representation. In contrast, the Kronecker & is a binary, 0 or 1 and is defined on set of
integers. The orthonormality condition is, therefore, a Fourier series — a summation representation.
The rational & sequence is defined on a set of rational numbers, which are in between the above two.
The orthonormality condition will be shown to be in the form of discrete Fourier transform — a
pseudo-integral representation (on rationals).

While the supports of & finctions in the two extreme cases (i.e., Kronecker and Dirac) are either
the unit interval or zero, their reverse Cantor set counterparts are all fractions and thus bridge the gap
between these two extremes. This phenomenon leads to the possibility that the reverse Cantor set is
a candidate for representing the orthonormality of eigenfunctions for more complicated situations
where the wave functions of two or more particles interact. Upon hypothesizing that this is indeed
the case, we must find a numerical method that will allow us to use the reverse Cantor set to obtain
solutions to quantum mechamnical problems, namely those that cannot be solved using exact or closed
form techniques.

Comparison of the graph of the reverse Cantor set density (Fig. 1) with the graphs representing
the rational delta function, Kronecker delta function and Dirac delta function, gives substantial evidence
supporting the proposition that the reverse Cantor set density is indeed some kind of delta function,
or more precisely, a delta sequence. In what follows, a formal proof of a theorem to that effect is
provided:

Theorem 1

Let p and ¢ be arbitrary nonzero integers and p>q. Define the interval [(x) to be [-(g/p)¥2,
(q/p)*/2], where n is an integer. Then &,(x) defined as

o0, =(p/qrforxe I (x). (2a)
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8,(x)=0forxel (%), (2b)
is a delta sequence.

Proof
This proof follows the approach given in Keener (1995). Consider a test function, $(x), which
1s continuous near x = 0.

o o GO

lim ——— | Bn(x)¢(x)dx=hmT>[BJ m} 0(x)dx=9(0) 3)
- RGUIE

by virtue of the mean value theorem. It may also be noted that rational numbers are dense in the real

line. Therefore, taking the limit is not a problem.

The stark similarities between the graph of the Reverse Cantor set density and the graph of the
rational delta function have already been discussed above. Yet, how is the reverse Cantor set density
similar to the seemingly contradictory Kronecker delta function and the Dirac delta function? The
answer to this question is relatively simple. When the iteration number, n, approaches infinity, 8,(x)
(height) also approaches infinity while its support, I,(x), approaches zero (Fig. 1). Therefore, the
height of the line approaches &(x), the height of the graph denoting the Dirac & function (in which case
the base is zero while the height is infinity) in the limit n — . Similarly, ifn =20, §,(x) = 1 with the
unit interval as its support, which, when appropriately adjusted with integer subscripts, will vield the
Kronecker & function. In addition to the afore-cited formal proof, the reduction of the reverse Cantor
set density based delta function, &,(x), to the two limiting cases of quantum mechanics when limits of
the reverse Cantor based delta function are takern, as well as visual similarities between the reverse
Cantor function and the rational delta function, give convincing evidence that the reverse Cantor set
density is indzed a rational delta finction.

The reverse Cantor set & sequence is shown in this study to be a representation of the
orthonormality of eigenfunctions of the Schrédinger wave equation for the wave functions of particles
which have a probability of appearing far outside the barriers of a well, but not all the way to infinity.
When the particle is mostly confined within the well and seldom appears outside, n is small and the
reverse Cantor based & function closely resembles the Kronecker 6 function. On the other hand, since
a particle invariably appears outside a barrier and its wave function decays to zero very slowly in the
scattering case, the reverse Cantor set density with a large n-value can be used as a representation of
the orthonormality of the corresponding eigenfunctions. Now let us consider a situation where a well
and a barrier are placed close to each other. The particle appears inside and outside the well with
relatively same order of frequency and the corresponding wave function decays moderately fast upon
transcending the barrier because of the presence of the well. In this case, the orthonormality of
eigenfunctions comprising the wave function can best be represented using the reverse Cantor set
density, 8, (x), with an intermediate value of n. It is interesting to mention here that this concept of
a well placed next to a barrier was used by George Gamow in 1928 to explain the enormous variation
in the mean life for ¢ decay of radioactive nuclei (Tipler, 1998). Gamow represented the radioactive
nucleus by a potential well containing an e particle. Qutside the nucleus, the nuclear or strong force
is negligible and the potential is described by Coulomb's law.

A New Method for Normalization of the Energy and Momentum Figenfunctions Based on
Reverse Cantor Set Delta Function

Let the wave fumction, W(T) , which is solution to the Schrédinger equation, be expanded in the
reverse Cantor set based rational delta function, &, as follows:
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Wi = [ wf) §F-7) &7, “)

Ratn

where I denotes a pseudo-integral on rationals and & (#) is the three-dimensional analog of &,(x)

Ral.n
defined in Eq. (1).
Let the momentum ¢igenfunction whose continuous analog given in the form

u () =u,(F)=C exp(iki), (5

satisfy the orthonormality relations both in the position as well as momentum (propagator) space with
respect to the reverse Cantor set-based rational delta function, §,,

[ @ v @ Pr=-8 @ -1y o

Rat.n

[ wi® u @ dir=8k-k'). 6]

Ratn

Substitution of Eq. (6) into Eq. (4) vields

= [ Wi | ) e @ Sk dT= | A, w6 dk (®)

Rat,n Rat,n Ratn

where the Fourier transform, A,, because of Eq. (7) is given by

A= [ w @) wr) ¢ ©)
Rat,n

As is discussed in the Appendix, Eq. (7) and (6) would, if the Dirac & function is used in the
normalization, give rise to orthonormality conditions, given by Eq. (A.16) and (A.18). However, since
the orthonormality relations, given by Eq. (6) and (7) employ the reverse Cantor set based rational
delta function, &,. Eq. (8) and (9) must be modified as follows. Identifying I, (x)=A.n=0,1, 2, ...
the sampling interval on the x-axis (one-dimensional case), we can express the wave function , given

by Eq. (9) in the form of discrete Fourier transform as given below:

Ak _ j u:(f') lp(f') d3f1= j lp(f) e2mﬁ FAna) dzf, (10)
Ratn Rat.n
where
k- 279 /A, ), Y

with n being the total number of sampling points and + = Z*, the set of integers in three dimensions.
It then immediately follows (Press ef af, 1992) that the Fourier transform, A,, of the wave
function, W(I) | can be approximated to its discrete form as follows:

a-1 .
A= [ WE) @ PEa (A Yy, ¢ 2 (A Y AL 12

Ratn j=0
In one-dimensional case, this reduces to
n-1

A =a, Sy e o, Al (13)

0
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Al in Eq. (12) or (13) represents discrete Fourier transform, while A, is the continuous
Fourier transform when viewed as samples of a  continuous function sampled at an
interval of Al.

The inverse discrete Fourier transform, which recovers the sampled, w, = (7)) from discrete
Fourier transform, A | is, in the one-dimensional case, given by

W, =l DZ_I:AE g Inivifa (14)
n 3

The Fast Fourier Transform (FFT) is an algorithm that computes in O(N log,N) operations as
compared to the DFT's O(N?). The Discrete Wavelet Transform (DWT) is a more recently developed
fast computational tool that linearly operates on a data vector, the length of which is an integral power
of 2 and transforms it into a numerically different vector without altering the length. Like the FFT, the
DWT is invertible and orthogonal, its inverse transform, when viewed as a large matrix, being the
transpose of the transform. Both the FFT and DWT can, therefore, be viewed as rotations in function
space, from the input space to a new domain. In the case of FFT, the rotated domain has basis
functions in the form of standard sines and cosines, while in the wavelet domain the basis functions
are somewhat novel, with names like mother functions and wavelets. The details of the FFT and DWT
algorithms are available in Press ef al. (1992) and will not be repeated here.

An Example Problem from Solid State Physics

In order to test the applicability of the present novel technique, the following problem from solid
state physics/materials science is considered. Let us consider some real situation; e.g., conduction of
clectricity through a commercial quality copper wire of finite length, which is nothing but motion of
free {outer) electrons inside the metal wire. The metal wire of finite length is idealized as an infinite
(one-dimensional) square well, partly because this is one of the easiest problems to solve using the
time-independent Schrédinger equation (also known as problem of a particle in the box) and in part,
because this potential is a relatively good approximation of the motion of a free electron inside a metal.
For this problem the potential energy is of the form (Tipler, 1998):

V(x)=10, Lax<L (15a)
V(X) = oo, x<-Lorx>L (15b)

It may, however, be noted that the commercial quality copper wire usually contains a variety of
impurities or contaminants, most notably oxides of the metal, which are insulators and serve as
barriers. This is modeled here as one-dimensional square potential barrier of thickness a. For the barrier,
the potential energy, V,, is of the form (Schiff, 1968):

V,(x)=0, x<0andx>a {loa)
Vy(x)=V,, 0<x<a (16b)

where V18 positive and a << L. The barrier inside the infinmite square well model is shown in Fig. 2.

Although the infinite square potential well and square potential barrier problems have simple
closed-form solutions available in text-books, the combined barrier inside the well problem will not
admit such simple text-book solutions because of the interaction of the two potentials. It may be noted
that the stand-alone square well problem has discrete eigenvalues and the corresponding eigenfunctions
are orthonormalized with respect to the Kronecker & function, while the free-standing square potential
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Fig. 2. A schematic representation of a barrier located inside a potential well

barrier problem admits a continuous spectrum of eigenvalues with the corresponding eigenfinctions
being orthonormalized with respect to the Dirac & function. In the former case, the computed wave
functions are localized within the box (well), while the latter (scattering) wave function is extended all
the way to infinity. However, since in the present barrier inside the box (well) problem, the wave
finction is permitted neither to extend all the way to infinity, nor to be localized in length scale of the
order of barrier thickness, a (<< L), the computed eigenfunctions cannot be orthonormalized with
respect to either the Dirac or Kronecker & functions. Consequently, these eigenfunctions need to be
orthonormalized with respect to the present reverse Cantor set based rational & function. Therefore,
the energy eigenvalues for the particle inside the well cannot, in general, be expressed in the form

222 2
E =R o qas (a7

and the correct solution must be of the form of discrete Fourier transform, as given by Eq. (13)
and (14).

A: e—Zm\lJ/n, (18&)

Ak ~ A Zu, e21qu/n =An A;, (lgb)

where u, is the time independent wave function. A, with k being the momentum eigenvalue need to be
mumerically evaluated by using the DFT (or FFT, DWT, etc.) technmque and must satisfy the various
boundary conditions of the problem. This scheme is currently being implemented and numerical results
will be reported in future.

It may be noted, however, for a << l < L, Eq. (17) is a reasonable approximation. The
corresponding momentum eigenvalue is given by K = nv/2L, v=1, 2, 3, ..., which can be correlated to
the incident particle wave function solution for the barrier problem. The next step involves solving the
barrier boundary value problem in the usual manner (Schiff, 1968), which will, of course, be in
significant error. However, the fact that the present method reduces to the standard text-book
solutions, when the well and the barrier are uncoupled, testifies to the validity and effectiveness of the
present method.

CONCLUSIONS

A simple yet novel method for construction of rational delta function using the reverse Cantor
set and its application to quantum mechanics is presented. This study is primarily concerned with
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formulation of new rational delta finction based representation theory for orthonormalization of the
computed eigenfunctions — both in the physical space as well as in the Fourier space — which will
serve as the basis functions for the wave function, r, the solution to the Schrédinger wave equation
subjected to prescribed boundary conditions. The fundamental set theoretic basis for formulation of
a rational delta finction, vielding a Reverse Cantor set density sequence, 8,(x), is hitherto unavailable
in the literature. This reduces to the Dirac &-function and Kronecker &-fimetion in the limiting cases
of n — « and n — 0, respectively and thus bridges the gap between the two situations that arise in
quantum mechanics, namely bound states with discrete eigenvalues and scattering case with contimious
spectrum of eigenvalues.

Most important, this novel rational delta function, &, (X). permits the resulting computed wave
finction to be expressed in the form of Discrete Fourier Transform (DFT) in the Fourier domain and
recover the sampled wave function in the physical domain by employing the Inverse Discrete Fourier
Transform (IDFT). The example problem of a barrier inside a well studied here sheds new light on the
nature of inferaction of two or more potentials and will serve as a prelude to more complex many body
interaction problems. The relatively straightforward transition to faster techniques, such as the Fast
Fourier Transform (FFT) and Discrete Wavelet Transform (DWT), is currently being implemented and
will be reported in the near fitture.

APPENDIX: RELEVANT BACKGROUND
INFORMATION ON QUANTUM MECHANICS

A.1. Basic Interpretive Postulates for Wave Functions
The Schrédinger equation which deseribes the motion of a particle is written as follows (Schiff,
1968):

ool P v i Al
atlp(r,t) [ zmv +V(r,t)} Wi, 1), A

r
where W(I.t) represents the wave function, which describes the motion of a particle; m and
represent the mass and position vector of a particle, respectively; t denotes the time; V(T. t) is the
time dependent potential energy; i—+/—1, while ¥ is the Laplacian operator and h =h/(2m), where
h is the Planck constant.

There are three fundamental physical postulates from which a complete interpretation of the
wave function, W(I,t)  can be derived. The first postulate states that each dynamic variable
(observable), such as energy or momentum, that relates to the motion of a particle can be represented
by a linear operator. Some important differential operators of interest are energy and momentum
operators given by

E eihg, B> —inV. (A.2)

The second postulate states that one or another of the eigenvalues of the operator is the only
possible result of a precise measurement of the dynamic variable represented by the operator. The
third postulate is that the number of measurements that result in the eigenvalue is proportional to the
square of the magnitude of the coefficient of the eigenfunction expansion of the wave function, 1.

It may be noted that if the potential energy does not depend on time, the wave function can be
separated into a time part and space part as follows:

10
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WiE, U= (D) (A.3)
The above postulates are usefill for description of the total energy and momentum of a particle.

EIGENSOLUTION TO TIME INDEPENDENT SCHRODINGER EQUATION
— ENERGY AND MOMENTUM EIGENFUNCTIONS

Energy Figenfunction
The encrgy eigenvalue equation is written as (Schiff, 1968)

{—iv@ + V(f)} u, (F)=E u, (), (A4)
2m

where E denotes the total energy eigenvalue, u, (T) is the corresponding eigenfunction; V(T, t)is the
time independent potential energy. As is discussed in standard text-books, the energy eigenfunctions,
u, (T) , can be divided into two classes — (1) the localized eigenfunctions that are associated with
discrete eigenvalues and (ii) eigenfunctions that are extended to infinity, the corresponding eigenvalues
being continuous.

The set of eigenfunctions, u, (T}, each of which is normalized and orthogonal to one another is
called an orthonormal set of functions or basis functions in the sense that an arbitrary wave function
can be expanded in terms of them:

W) =Y A, u, (). (A.5)

The closure property of the erthonormal set of functions, u, (7)), is given as follows:
Sup () u, (T)=0, =7, (A.6a)
E
_|' Sy () ug(F) dr'=1, (A.6D)
E

if the volume of integration includes the point T =T . The superscript * denotes the complex
conjugate.

Momentum Eigenfunction
The eigenfunctions of the linear momentum operator -ihV provide a very useful example of the
conceptual framework of this study. The momentum eigenfunctions are solutions of three eigenvalue
equations
-ih Vu () =P u (D) AT

which are of the form
u (H=u,(F)=C exp(iki), (A8

where k=p/# is called the propagation vector. The corresponding eigenvalues are p=ak . In Eq.
(A.8), C is a normalization constant. The momentum eigenvalue is related to the energy eigenvalue
discussed above through the relationship,

WE
2m
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Standard Methods for Normalization of the Energy and Momentum Figenfunctions
The two standard methods for normalization of momentum eigenfunctions are (i) box
normalization and (ii) Dirac Delta normalization.

Box Normalization

Both the energy and momentum eigenfunctions can be normalized by restricting their domain
to an arbitrarily large but finite box of volume 1.7 centered at the origin. The eigenfunctions are
subjected to periodic boundary conditions at the walls of the box. It is obvious that u, (T), as defined
by Eq. (A.8), is normalized if C = L**. The spacing of the propagating vectors and the corresponding
energy eigenvalues can be made as small as desired by making the box dimension arbitrarily large. The
limit I — « can be taken at the end, which corresponds to the case of continuous spectrum of
cigenvalues. It can be easily shown that the box normalized momentum eigenfunction given by the
relation

u, (F)=1"" exp(iki), (A.9)

satisfy the orthonormality condition

[ui® v, @ dr=35,. (A10)
whereis 5 , the Kronecker delta.

Dirac Delta Normalization

Both the energy and momentum eigenfunctions can easily be normalized using the Dirac delta
function, when they are contimuous without having to resort to the introduction of a box with periodic
boundary conditions. Dirac & function is defined as follows:

B(X)=0ifx=0; [80x) dx=1. (A1)

An equivalent definition is given as follows (Keener, 1995):

[£ex) 8x) dx =£(0) (A12)

where the integration includes the point x = 0. It then follows that the closure property of the energy
cigenfunctions, given by Eq. (A.6) above, reduces to the following orthonormality relation:

S up(F) v (F)=F(F-7) (A.13)
E
Another representation of the Dirac & function is given as follows:

sin{gx) (A1)
X

S(X) = ]img%m -
b

This representation of the Dirac & function is used to derive orthonormality integral for momentum
eigenfunctions without having to impose box normalization. This results in a momentum eigenfunction
of the form of Eq. (A.8) over the entire (infinite) space with all real vectors k=5/# (Schiff, 1968):

u, (F)= (8" exp(ik ) (A.15)

Orthonormality relation can now be easily obtained as follows:

12



Trends in Applied Sci. Res., 2 (1): 1-14, 2007

[ur o, (Bdr =87k -k (A.16)

It is a well-known fact that the box normalization when taken to the limit L — < reduces to its Dirac
& function based counterpart in a typical problem. ¢

oo, (), (T)—— 8 (F-T) (A17)

Furthermore, the closure relation shows that the momentum eigenfunctions are orthonormal with
respect to integration over the position vector (Eq. A.16, A.17) as well as with respect to
summmation or integration over the eigenvalue k=7p/# (as shown below):

[y, Dk =8 G -1). (A.18)
An arbitrary cqgfifipous function yi( T ) can be expressed in terms of the Dirac & function as follows:
w(T) = [y F-T)dr (A.19)

It then follows that in the periodic case (box with periodic boundary conditions giving discrete
eigenvalues), can be expanded in Fourier series with either the momentum or energy
eigenfunctions as basis functions. Although the mathematical expressions given below pertain to
momentum cigenfunctions, similar results follow for the case of energy eigenfunctions.

W) = [ W)Y u (B, (BT =3 Au, (6, (A.20)
k k
where the Fourier coefficients, A,, are given by
A, = Jui @) dr. (A21)

Similarly, for the aperiodic case (continuous spectrum of eigenvalues), the wave function Y(r) can be
expanded in Fourier integral (transform) as follows:

w) = [ [ul (u, (Odkd'r = [ A,u, ©dk, (A22)
where A, is given by Eq. (A.21).
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