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Abstract: In this study we present a solution algorithm for solving multiobjective cutting
stock problem in the aluminum industry under firzziness, which in its general form, is an
integer nonlinear problem. It is considered that the scrap is a fuzzy parameter and the
concept of e-level set together with the definition of the fuzzy scrap and its membership
function are introduced. A practical problem example of the method implementation for the
solution algorithm is proposed.
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INTRODUCTION

The problem of one-dimensional stock cutting occurs in many industrial processes and it has
attracted an increasing attention of researchers from all over the world (Bishoff and Wawsher, 1995,
Ezzat, 2003; Ferreira ez af., 1990; Goulimis, 1990; Gradisar ef a/., 1997; Gradisar and Trkman, 2005;
Haessler and Vonderembse, 1979; Hughes, 1989; Stadtler, 1990; Sweeney and Paternoster, 1992,
Weng and Hung, 2003; Weng er /.. 2003 and 2004). Most standard problems related to one-
dimensional stock cutting are known to be NP-complete. However, in many cases the problems can
be modeled by means of mathematical programming and a solution can be found by using approximate
methods and heuristics.

In this study, a company producing high grade aluminum has orders for various kinds of
cylindrical logs of the metal which is used for extrusion purposes. The kinds of logs differ from each
other in dimension (diameter and length) and in the (small) amounts of alloying materials added to the
aluminum to give specific properties to the finished product according to customer's requirements.

A continuous flow of molten aluminum, produced from the smelter at the rate of S tons per day,
passes to holding furnaces where high quality scrap from previous runs and/or alloying materials may
be added before the metal is cast into long cylindrical rods by a direct casting process. This involves
releasing the molten metal into a number of circular moulds, of the same diameter, lying on a casting
table and surrounded by a water-cooled jacket. As the molten aluminum cools, it solidifies around the
side of each mould. The base of the table is lowered, allowing more metal to enter, until a certain depth
is reached and the rods produced have the required length.

This simultaneous casting of several rods is termed a drop and the depth of casting, the drop
length.

The butt ends of the rods are removed and the remainder swan into logs. Each rod is cut into logs
of the same length in order to minimize the frequency of setting the saw. Rods cast surplus to
requirements for sawing and logs cut surplus to orders, may enter inventory or, together with the butt
ends, be treated as scrap to be recycled at additional cost.
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Given customers orders for one month, the problem is to find the most efficient pattern of casting
and sawing that meets the demand.

PROBLEM STATEMENT
For aluminum cast into rods of a given diameter, let
L, = Castlengths of the aluminum rods

I. = Lengths of the aluminum logs on order
Monthly demand for logs of length /.

jw
Il

When a rod of length L, is cut into logs of order length /, let

n; = No. oflogs obtained
I Length left over (fuzzy scrap).

Clearly

where [ | denotes integer part and

Further, let

M = No. of rods produced per drop {fixed)

% = No. of drops to length L, (drop variables)

z; = No. of rods of length L, cut info logs of length /, (sawing variables).
The following constraints apply:

(i) The No. of rods of length L, that are swan cannot exceed the number produced, hence

7y SMx; Wi,
J

(i) To meet demand,

nz, =D 7,

="

(1i1) Restrictions on the casting lengths

L <L<L__ ¥,

min — 1 — T m

where L, and L, are the minimum and maximum casting lengths,
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(iv) Non-negativity

x, 20, and integer i,
z; >0 and integer Wi, j.

The company is interested in maximizing the ‘recovery’ of the amount of aluminum that is cast,
that 1s maximizing the recovery function R defined by

ZJDJ
R— Amount sold

 Amount cast Mx,L, '

1

The numerator 2D, is a constant k (say), hence maximizing R is equivalent to minimizing the
]

denominator  MxL,.

The problem is now formulated as follows:
Find nonnegative integers x;, z; and positive real numbers L, 50 as to solve:

P, : minmmize C= MxL,
subject to
Z <Mx, Wi,

]

L, .
—z,2D, ¥,
i elj
L.=L <L__ Wi,

This is a mixed-integer optimization problem having a quadratic objective function subject to
constraints, some linear and some quadratic, the latter involving integer parts.

A SIMPLIFTED PROBLEM

The quadratic terms and the appearance of integer parts of decision variables can be avoided if the
drop length L; is not a decision variable.

To this end, we introduce a heuristic to fix the possible values for L, by considering the concept
of a 'zero scrap drop' ZSD that is, a drop which yields no scrap when all the rods are cut into a given
order length. Initially, we will consider only one ZSD drop length for cach order length.

Let L, = length of a ZSD drop thatis cut into logs /. Then L, = ¢/, with ¢, an infeger such that
Loa = 0 < L. Clearly M, is the number of logs of length / obtained from a ZSD drop.

The heuristic referred to above is to meet as much of the demand for logs as possible by ZSD's.

Let w; = No. of ZSD drops cut into logs of length /. Then

WMo, <D, <(w,+1Mo, Vi

We call 4, = Dy-wMg,, the demand for logs not met by ZSD drops, the reduced demand for logs
of length ;. We note that:
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0<d, Mo,

and

i

] é4¢

The simplified problem is concerned with maximizing the recovery when further drops of length
L;-restricted to the set of ZSD drop lengths-are used to meet the reduced demand. The decision
variables x,, z; from now onrefer to non ZSD drops with

% =The No. of additional drops of length L.,
z; = The No. of rods of length L; from non ZSD drops cut into lengths /

and

1] =
e

The recovery from the additional drop is maximized when ¢=  Mx,L, is minimized. Hence the

i

simplified problem is written as:

P, minimize ¢'=  xL,
subject to
7, <Mx, i,
i
nz, >d ¥,

where:

Ll

n,—=—*
h

In practice, the set of ZSD drop lengths are specified at the outset. This means that the number
x, of additional drops, of length L, is not a decision variable. Hence there is no objective function for
problem P, since C' will be a constant whose value is known once the ZSD drop lengths are known.
The recovery R will also be known once the ZSD drop lengths are specified and hence it cannot be
used to differentiate between feasible solutions to the constraints of problem P,.
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To differentiate between them, another objective function, or set of objectives, is required.
Suitable objectives to be minimized are:

(1) The value of the aluminum that goes inventory after sawing,
(i) The value of the aluminum that goes to be recycled,
(iii) Some combination of (i) and (ii).

In view of what has been said, write the constraints of problem P, in the form:

n.z, —pj=dJ j=12,...m,

i

where the right-hand side quantities s, = Mx, are now constants and p, is the number of logs of length
I; produced in excess of the demand for those logs.

Ifk; is a measure of the value of a log of length /; that goes to inventory and &; is a measure of the
value of a butt end of fuzzy length 7; that goes to be recycled, two new possible objectives to be

minimized are kp, and &z, - These may either be included separately in a multiobjective or
1 Bl

combined into a simple objective.
In the carlier case, a multiobjective mixed-integer nonlinear programming cutting stock problem
having t-objective functions and with fuzzy scrap 1, can be formulated as follows:

(FMCS): minimize  C=(C,(z,p).C,(z.p).... C.{z.7)),
subject to
7, =%,
1
n,z,—p;=d;

1
i

i {L2..n}, j {L2..m}
X,,Z, =0, nonnegative infegers.

i ey

where each objective function in problem (FMCS) has the form:

CEp= ozt kp;

= 1+
1 1

. . The number of rods of length L, available to meet the reduced demand d, for logs of length £,
z; © The number of rods L, swan into logs of length £,

¢, : The value of the fuzzy scrap aluminum %, when a rod of length L, is swan into logs of length /,
B The over production of logs of length /,

k; : The inventory value of alog of length /,

n : The number of different ZSD drop lengths,

m : The number of different lengths of logs in demand.
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FUZZY CONCEPTS

Fuzzy set theory has been developed for solving problems in which descriptions of activities and
observations are imprecise, vague and uncertain. The term fuzzy refers to the situation in which there
are no well-defined boundaries of the set of activities or observations to which the descriptions apply.

A fuzzy setis a class of objects with membership grades. A membership function, which assigns
to each object a grade of membership, is associated with each fuzzy set. Usually the membership
grades are in [0,1]. When the grade of membership for an object in a set is one, this object is absolutely
in that set; when the grade of membership is zero, the object is absolutely not in that set. Borderline
cases are assigned numbers between zero and one.

Some techniques for solving fuzzy multiobjective programming problems should be reviewed
(Cadenas and Verdegay, 2000; Chen and Fu, 2005; Li and Yu, 2000; Liang, 1999; Mohan and Nguyen,
1998; Ram and Vlach, 2002).

In the following, it is assumed that T, : the lengths left from cutting rods of length L; into logs /,
are fuzzy scrap and those parameters are characterized by fuzzy numbers.

Now, some necessary definitions from the fuzzy set theory are introduced and the reader is
referred to (Dubois and Prade, 1980; Sakawa and Yano, 1989).

A fuzzy number is defined differently by many authors and the most frequently used definition
is the following one.

Definition 1: (Dubois and Prade, 1980)
A real fuzzy mumber T, is a convex contimious fzzy subset of the real line R whose membership
finction, denoted by p . {r;) and is defined as:
i

(N My, (r;) a continuous mapping from R to the closed interval [0, 1],

(2) H?}J (];J):O VI‘U (7 =q1]=
(3) Mz, (1) 1s strietly increasing on [q,, 4, ],

4 pe (=1 ¥y (9,951
(5) My, (1) is strictly decreasing on [q., q. ],

(&) },l;)j(ru):() V1, [qe.+ ]
Definition 2: (Sakawa and Yano, 1989)

The e-level set of the fuzzy numbers §; is defined as the ordinary set L, §; ) for which the degree
of their membership function exceeds the level ¢e[0, 1]:

Lm((f;J):{r1J eR: pfg(rq)z o, i=12,..0;j=12,..,m}.
It is clear that the level sets have the following consequence:
o, <, if only if L))o L_(r).

Now, for a certain degree ¢e[0,1] the (FMCS) problem can be converted into a non-fuzzy
e-multiobjective mixed-integer nonlinear cutting stock programming problem, denoted by
(e-MMINLCS) and can be written as follows:

(ot —MMINLCSY: minimize C=(C,(z,p).C,{z,p)....C,(Z.P)).

subject to
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1 2y 7pj:dj’
i

i (L2..n} , j {L2..m),

X,,Z, =0, nonnegative infegers.

i ey
5 el (E)
where

Clz.py= c¢z,+ kp

pE]
b 1

In problem (e-MMINLCS) above it should be noted that the parameters ¢;, the measure of the

value of a butt end of length r;;, are treated as decision variables rather than constants.
Problem {a-MMINLCS) can be rewritten in the following equivalent form:

(oo —MMINLCS): minimize C=(C,(z,p),C,(z.p).....C,(Z, D).
subject to
Z, =%,
J
n; 2, —P; :dj’

i {,2,...n}, j {12,..,m}
X, 2y >0, nonnegative integers.

u <r <U

§—="4—= "4

where

Clz.py= c¢z,+ kp

pE]
b 1

provided that u,, Uy are lower and upper bounds on the variables r,, respectively.

The solution concept of problem (FMCS) can be stated, via the definition of problem
(e-MMINLCS), in the following manner:

Definition 3: (Sakawa and Yano, 1989)
A point (z*;, p*)) is said to be an e-Pareto optimal solution to problem (x-MMINLCS), if and
only if there does not exist another (z,, p;), 5; €L, (%) such that:
Ci(z,p,)<C(z;p;) Wt

with strictly inequality holding for at least one t, where the corresponding values of parameters r*; €
L., ) are called e-level optimal parameters.
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To find an e-Pareto optimal solution to problem (¢-MMINLCS), a weighted objective function
is minimized by multiplying each objective function in problem (e¢-MMINLCS) by a weight, then
adding them together (Chankong and Haimes, 1983). This leads to find a solution of the following
problem P(A):

P(%): minimize » A, C\(z.p),

t

subjet to

2z,=s,

]

Z 0y 2 —p;= dJ’

ie{l,2,...n} , je{l2,...,m},
X2 =0, nonnegative integers.

u <r.<U.,

5 oy =My
such that #,20, ¥t and > & =1
1

It should be noted from (Sakawa and Yano, 1989) that (z*,, p*) is an a-Pareto optimal solution
to problem (e-MMINLCS) or problem P(A) with the corresponding «-level optimal parameters
r*; € L, (§; ) if there exists A*3>0 such that (2%, p*,) solves P(A*) and either one of the following
conditions holds:

1) A% -0forallt,
(i) (2%, p*) is the unique minimizer of problem P{A*).

Obviously, problem P(A) above is a mixed-integer nonlinear programming problem with single-
objective function and can be solved using LINGO software along with the branch-and-bound method
(Taha, 1975).

In the following, an algorithm is described in finite steps to solve multiobjective mixed-integer
nonlinear programming cutting stock problem (FMCS) with fuzzy scrap 1, .

This proposed solution algorithm of the problem of concern can be summarnzed as follows:

SOLUTION ALGORITHM

Step 0
Start with a degree x = a* =0

Step 1
Determine the points (q,, g, s, g,) for the fuzzy parameters i, in problem (FMCS) with the
corresponding membership function p . {r,) satisfying assumptions (1)-(6) in Definition 1.
i

Step 2
Convert problem (FMCS) into the non-fuzzy version of problem {e-MMINLCS).

Step 3

Use the nonnegative weighted sum approach (Chankong and Haines, 1983) to formulate problem
P(A) at certain %, 20, ¥t and > A, =1

381



Trends in Applied Sci. Res., 2 {5): 365-373, 2007

Step 4
Find the o-optimal solution of the problem P{A*) using the LINGO software along with the
branch-and-bound method (Taha, 1975).

Step 5
Set & = (a* + step) € [0, 1] and go to step 1.

Step 6
Repeat again the above procedure until the interval [0, 1] is fillly exhausted. Then, stop.

PRACTICAL PROBLEM EXAMPLE

Suppose a factory has an order (dj = 400 pieces), where the rods are of the length (L, = 5 m) for
i=1 andswan into logs of length (f, = 50 ¢m, [, = 55 e¢m, ;= 70 cm).
where n; =L/ thenn,, = 10, n,, =9, n,;; = 7. Also, the inventory values are given as k, = 500,
k, = 600. The number of rods produced from one drop is (M = 20 rods). There is an additional drop
determined by (x, = 30) for i = 1. It is assumed that the constraint of the over production is
500<P;<600.

In order to minimize the scarp and the inventory, the following multiobjective mixed-integer
nonlinear cutting stock problem can be formulated as:

minimize  C=(C,{z,p), C4(Z.p).C4(ZP)),

subject to

7=,

]
ZHU T dJ’
ie{l,2,...n} , je{l2,...,m},
X,,Z. 20, nonnegative integers.

where

G (Z>p)=fi1 Zy +k1 P
C,z.py=8,2, +k, p;.
C,(z.p)=i,2; +k; ps.

We assume that the membership function of the fuzzy parameters has the following trapezoidal
form:

0, L <q,,
L—q,
1-(—)"  q,<g<q,
9 —9;
He ()= 1, q; <1;<q;,
L—d,
1I-(——" q, <R,
9Qs—4q;
0, L2,
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Also, it is assumed that the fuzzy scraps §, are given by the following fizzy numbers shown
below:

Fuzzy No.
Fuzzy scraps q Q@ 17 Q4
i 5 10 15 20
i, 10 20 30 35
i 2 5 7 10

For a certain degree o = o™ = 0.36 (say), it is easy to find:
6<r, <19, 12<p, <34  26<1,<94
Therefore, the non-fuzzy multiobjective cutting stock problem can be written in the following form:

minimize  C=(1, 2, + K P12y +K; Py 25+ k5 Py ).
subject to

Zy,+ 2y + 25 <600,
2z, +15z, <300,
20z, »>200,

10z, +z,, =100,

(102, —p)+(®2;; —p; )+ (72,3 —p;)=400,

6<g, <19,
12<1, {34,
26<15,<94.

Using the weighting method (Chankong and Haimes, 1983) by choosing A, =%, =4, =1/3, then
the cutting stock problem with a single-objective function will take the following simple form:
minimize C=1/3(x,z,, +500p,)+1/3(5,2,,+550p,)+1/3(132;; +600p;),
subject to

Eyy 2yt 23 = 600,
2z, +15z,, <300,

207,, 200,
10z, +2,, 100,

(102117p1)+(9zu 7p2)+(7zu 7p3):400=
6<r, <19,

12<1, {34,
26<15,<94.
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500<p, <600,
500<p, <600,
500<p, <600.

The above mixed-integer nonlinear programming problem can be solved using the LINGO software
along with the branch-and-bound method (Taha, 1975) to obtain the following «-Pareto mixed-integer
optimal solution:

5, =14, 5, =28 5, =74,

Z, =9, z, =10, z,, = 246,
p, =502, p, =300, p,=>500,
with

C=2760755

It should be noted that a systematic variation of the degree ¢<[0,1] will yield another ¢-Pareto
optimal solution and the effectiveness of various values of ¢-levels will be studied and reported later.

CONCLSIONS

In this study a solution algorithm for solving multiobjective cutting stock problem in the
aluminum industry under fuzzy environment has been proposed. It has been considered that the scrap
is the fuzzy parameter. The concept of a-level set together with the defimtion of this fuzzy parameter
and its membership function have been introduced. A practical problem example of the method
implementation for the solution algorithm has been presented.

In our opinion, many aspects and general questions remain to be studied and explored in the area
of multiobjective cutting stock problem in the aluminum industry. There are, however, several unsolved
problems should be discussed in the future. Some of these problems are:

«  An algorithm is required for treating multiobjective cutting stock problem in the aluminum
industry with fuzzy parameters in the resources (the right-hand side of the constraints).

«  Analgorithm is needed for dealing with multiobjective cutting stock problem in the aluminum
industry with fuzzy parameters in the objective functions and in the resources.

«  Itis required to continue research in the area of large-scale multiobjective cutting stock problem
in the aluminum industry under fuzzy environment.

+ A parametric study on multiobjective cutting stock problem in the aluminum industry should be
carried out for different values of ¢-level sets of the fuzzy parameters.
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