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Abstract: In this study, we obtained an equation of 8¢ homothetic motion on its tangent
plane at the contact points, along pole curves which are trajectories of instantansous rotation
centers at the contact points and we gave some remarks for the homothetic motions will be
both sliding and rolling at every moments. In addition, we establish simple relationship
between curvatures of the moving and fixed pole curves.
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INTRODUCTION

We know that the angular velocity vector has an important role in kinematic of two rigid bodies.
Miiller (1966) examined the 1-parameter singular motions and he give some characterizations for axoid
surfaces. Clifford and McMahon {1961) give a treatment of rolling of one curve or surface upon
another during the rigid body’s motion generated by the most general 1-parameter affine
transformation. Nomizu (1978} studied the 1-parameter motions of unit sphere S* on tangent space
along the pole curves using parallel vector fields at the contact points and he gave some
characterizations about the angular velocity vector of rolling without sliding. Karakas (1982) give a
homothetic motion model for the unit sphere by using the technics of Nomizu (1978) and
Hacisalihoglu (1971) give some properties of 1-parameter homothetic motions. 1-parameter
hemothetic motion in E* is defined as follows:

F:E'—E’
x—>y=Fx)=Bx+C

where AeSO(3)), CelR?, and h is homothetic scale. The elements of A, C and h are continuously
differentiable functions of time-dependent parameter t (Hacisalihoglu, 1971). All of the homothetic
motions includes both rolling and sliding at every moments and they are regular motions
(Hacisalihoglu, 1971).

Preliminaries

In this study we define the homothetic motion of unit sphere §2 on the tangent plane of 8% and
we shall give some results and conditions using any vector fields and Frenet frames along smooth pole
curves on 8?2 and on tangent plane for both rolling and sliding motion. The homothetic motion of
smooth surface S* on its tanget plane in Euclidean space of 3-dimensions is generated by the
transformation

F88—x
x—~y=Fx)=Bx+C, B=hA {1y
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where A is a proper orthogonal 3x3 matrix, ¥ and C are 3x1 vectors. The elements of A, C and h are
continuously differentiable functions of time-dependent parameter t and the elements of X are
coordinates of points of the curve X(t) on unit sphere. By differentiating (1) we have

Y = hAX+ (hA + hAYX+ C (2)

where hAX + (hA + hA X + C is sliding velocity of X and where (.) indicates d/dt. We called X is
a pole point if sliding velocity of X is vanish and locus of points of X called pole curve (Hacisalihoglu,
1971). We take B as hA so equation of the moving pole curve is ¥ =-B™ . Substitution X with
¥ =-p'C in{1) we obtain Fixed Pole Curve v = -.BR'C + C . Now we examine the matrix B ' .

BB =hA(h 'A'+h 'A ")=hh 'L + &A;
¢
where ¢ and S is sliding part and rolling part of (1). For S # 0, there is a uniquely determined vector
w such that S(U ) equal to the cross product w x U for every vector U € IR (Appell, 1919). The
vector wis called the angular velocity at instant t and the homothetic motion F in (1) called is rolling
if wlies in to tangent plane of §* and F is spinning if w normal to tangent plane of S? at the contact
points of $? and its tangent plane at instant t (Nomizu, 1978).

Sliding and Rolling of $* on X

Let us consider the unit sphere S and the tangent plane X of $? at X, = (0,0,1) € 8%, §*. We shall
take a rectangular coordinate system in E* such that 8% is given by x 2+ x2=1land Zisx,=1. Lete,,
e, and e, be the unit vectors (1,0,0), (0, 1, 0) and (0,0,1), respectively. Suppose that (3) =X(t)is a
moving smooth pole curve on 8% and (Y) = Y(t) is a fixed smooth pole curve on X which are starting
at the point x, for t =t,. We wish to roll and slide §° on X along these curves in such a way that, at
instant t the point X(t) becomes a point of contact with Y(t) on ¥. We can define homothetic motion
Sfon X as

F:88 =%
x—~y=Fx)=Bx+C,B=hA 3

since F|S?| is tangent to X at the contact points we have Bx = he,.

Suppose that {b,, b,} and {a,, a,} be orthonormal systems along pol curves (X) and (Y) on &
and X, respectively. Hence {b,, b,, X} and {a,, a,, e} will be moving and fixed system for (3) and (Y),
respectively. In addition, assume that b, a, and b,, a, transform each other as follows.

b,=hB'a, and b,=hB™'a, {4

Remark 1

Let (X) be a curve (with the arc length parameter t) on S and |(t) be angle between the position
vector of (X) and normal vector N of (X). In this case, rj(t) + k,(t) =0 is satisfies. Where k,(t)=01is
satisfies. Where K, (t) is torsion of (X}.

Proof

Let T, N, B vector fields be Frenet vectors of (30). Since all the curves on S? are normal curves we
have

X () =cos P() N () +| sin ¢{t) B () (5)
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with the differentation both side of (5) we obtain

i—i{ =—k cosyT— (' +k sinyN+(y'+k cosyB

thus we obtain the equations

cosy = 7%7(q}'+k3)5inq}: 0 and (y + k Ycosy=0

1

and then ¢ (t) +k, () =10.

We must construct the frames {b,, b,, X} and {a,, a,, ¢;} along the pole curves (X) and (Y),
respectively, to determine the orthogonal matrix A. During this operations we make use of Darboux
frame along (X) and (Y) at contact points on 87 and X, respectively. We can find an orthogonal matrix
Q using (5) then we obtain (6)

T T
XAT |=[Q]| N (6)
X B

Since the orthonormal system of {T, N, B} rotates according to {g,, &,, &;} along the curve (¥X) thus
we can write (7) for P e SO (3),

T e,
N |=[P] e, N
B e

3

Tangent spaces Sp {b,, b,} and Sp {T, XAT} are the same space. Let’s angle between b, and T (b, and
XAT, respectively) be 8. Then we can write (8)

b, T
b, |=|R]| XAT )
X X

where the matrix R is a rotation matrix with the angle 0. Using the Eq. 6-8, we obtain

A =[PIT[QIT[R] ©)

The matrix A, transforms b, to e, b, to e, and X to ,, respectively.
On the other hand, we denote the skew symmetric matrix as ~h »  as W, thus W, will

be follows. dt
0 0 +ksiny  k cosOcosy
W, =|—(0"+k siny) 0 —k sinfBcosy (10)
—k cosfcosy Lk sinBcosy 0
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Teorem 1

b, and b, vector fields are parallel with the connection of S? along normal curve (X) if and only
if 0+ k; sinyr=0.
Proof

Let D be Levi Civita connection and S be shape operator of S From (6} and (8) we can write b,
as follows.

b,=cos 0 T +sin0 Yy N-sin 0 cos f B

Using Gauss equations

Dib, = Db, + {S(T).b,}X

we obtain
D:b, =—40"+ k, sin y}sin@T + {k, cos y+ 1} cos yeos 8 N + {k, cosy+ 1} sin yeos 6B

It is easly to see that 571)1 =0. Bsz = 0 can be easly proved by using the technics of teorem 1.
On the other hand, let us jiﬁ ,Ee} . k: and k. be orthonormal frame, curvature and tosion along

the pole curve (Y), respectively: Since & is normal to X and (Y) is a planar curve, we can take § = e,
Thus the system of {ie Aie } will be Darboux frame along the curve (Y). We can write (11)

(1)

S
S
|
Il
1
fe)
| I
Wz S

where 5 = 1. Since {iﬁa ‘33} rotates according to the system {‘31 e e }= forPe SO(3) we have

?T22 T

T e
=[P (12)
g 63
Let the angle between a, and a, and T (a, and ezAf respectively) be 8. We can write (13)
a, T
a |= [E} ezA"l_" (13)
e

where the matrix R is a rotation matrix with the angle ¢ . Thus we obtain
A=[p][ef[r] o
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by using Eq. (11), (12) and (13). The matrix A, transforms a, to e,, a, to e, and e, to e,, respectively.
We denote the skew symmetric matrix

T
2

A, as W, thus W, will be as follow.

dt
0 O+k O
W= -(0+k] 0 0 (15)
0 0 0
Theorem 2

a, and a, vector ficlds are parallel with the connection of X along normal curve (Y) if and only
feg+k=0>»
Proof

Since the shape operator of 2 is S; =0, Levi Civita connection of ¥ and Riemann connection of
E? are same connections. Using (11) and (13) we can write

a, = cosBT —sinfN
and since D.a, =0,

Da - da,
! dt

= *(g+E1)Sinéf*(g+ E)coséﬁ

we obtain § +k, =0. D. =0 can be easly proved by using the technics of teorem 2.

Therefore, we can find the matrix A byusing (9 and(l14yas A = A AT so that A transforms
b, () a,(1), b,(1) to a,(t) and X toe,, respectively. Since the curve (X)is a pc;le lcurve, all of the points
of the (X) satisfies BX+ =0 . In this case Y =/BX . Since the curve (X) is unit speed than

%: AT. Thus the homothetic scalehis h = HYH

The skew symmetric matrix g — da AT is instantaneous rotation matrix and 8 represents a linear

dt
transformation as 8: Tyy X—+S8p{e;}. We can find the matrix 8 wusing (10) and (15) as
S=A, (—W} + W )Az . Cosequently the matrix S determines a vector W e Sp{a,, o, ¢;}. We find the

vector field W as follows.

W =k cosysinBa, +k cosycosBa, — (@Jr k-8 - k sin\p)ez (16)

Remark 2

Ifb,, b, and a,, a, are parallel vector fields along (%) and (Y), respectively and h=1 then we
obtain all of the results as describe earlier in (Nomizu, 1978). In this case, W vector field will be as
follows.

W=k cosqjsir{jkl sinq}dt] a, + k cos q}cos[jkl sin \pdt]a2
Itis obvious that W lies in the tangent space of S? at contact points of (3 and {Y).
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Remark 3
If b, b, and a,, a, are parallel vector fields along (X) and (Y), respectively, then the
transformation F is a homothetic motion.

Remark 4

The sphere S? slides and rolls on its tangent plane along geodesics.

The vector field we have defined b,(t), b,(f)) and a,(t) a,(t), for the motion F, need not to be
parallel along (X) and (Y), respectively. In this case, we can give remark 5 as a main remark of this
study.

Remark 5

Let {b,. b,} and {a,. a,} are orthonormal vector ficls systems along the curves (X) and (Y),
respectively. Thus F is a homotetic motion if and only if

8 +k—8 -k siny=0
is satisfied.

Example 1
Let X(t) = (sin t, 0, cos t), t €[0, 7] is unit speed curve on % and Y(t)

Il
TN
v |
|
—
N~

is any curve on . We obtain

T=(cost0,-sint), N=(-sint,0,-cost), B=(0,1,0), k,=1, k,=0, y=mn

T go ! = = - — 7w ||dY
T=-—=(110), N=—=(1,-1,0), B=(0,0,1), k =0, kn =0, y=—, |~ |=h=142
(0] M= 1-10), B=(0.01) v ]

. . ay dx L= . .
for (X) and {Y) curves, respectively. Since =2 _ p =™ , we obtain ¢ (t) = § = 5 so the motion will
be as follows. dt dt

[ cost 1 sint |
NN o
cost 1 sint
Yit)=tf2 — “Ex+| g/2 |47
(t) NN VA (t) /J_
sint 0 cost 1-t42

And the matrix S and the vector W will be as follows.

1
0 0 —JE
S=| 0 0 L and W —(1,1,0}6313{6,6}
JE N 2 ,\/E 12 2
B
V2 2 |
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respectively. We put the values §r = 7, k;=1,k, =0, k=0, k =0, and 6(t)=6=m in (16) We
obtain We Sp{a,, a,, e,} as follows

W=(0,1,0)

Since W e Sp{a,, a,} = Sp{e,.e;} = ¥ and the condition we gave in remark 5 satisfied, then the motion
(17) is a homothetic motion. In add)itio]n, moving and fixed pol curves of the motion (17)1s
X(t) = (sint,O,cost) and Y(t) = (%,E,lj

, respectively. Thus S both sliding and rolling on its tangent plane X along the curves (30) and (Y)
according to {17) (Fig. 1).

Fig. 1: Homothetic motion
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