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Abstract: In this study, we obtained an equation of homothetic motion of hyperbolic sphere
on its tangent plane along the pole curves which are trajectories of instantaneous rotation
centers at the contact points and we gave some remarks for the homothetic motions will be
both sliding and rolling at every moments. In addition, we establish simple relationship
between curvatures of the moving and fixed pole curves.
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INTRODUCTION

It is well known that the angular velocity vector has an important role in kinematic of two rigid
bodies, especially rolling on another from (Nomizu, 1978; Appell, 1919). So mathematicians and
phycisists interpreted rigid body motions in various ways. Nomizu (1978) studied the 1-parameter
motions of unit sphere S? on its tangent space along the pole curves using parallel vector fields at the
contact points and he gave some characterizations about the angular velocity vector of rolling without
sliding in Euclidean case. Hacisalihoglu (1971) has showed some properties of 1-parameter homothetic
motions in Euclidean case too. Tunger et ¢f. (2007) studied Euclidean version of this study. He gave
the sufficient and necessary conditions for 1-parameter homothetic motion of unit sphere $? on its
tangent space along the pole curves.

In this study we define a homothetic motion model for the hyperbolic sphere Hg on the tangent
plane in Lorentzian 3-space and we shall give some results and conditions using any vector fields and
Frenet frames along smooth spacelike pole curves on H% while moving on tangent plane
homothetically.

PRELIMINARIES

In a Lorentzian Manifold, we can find three types of submanifolds: Space-like (or Riemannian),
time-like (Lorentzian) and light-like (degenerate or null), depending on the induced metric in the tangent
vector space. Lorentz surfaces has been examined in mumerous articles and books. Let IR? be endowed
with the pseudoscalar product of X and Y is defined by:

Y =Xy, T35y, - XY, X=00, %, %), Y =¥, V.. ¥3)

{(IRZ, {,)) is called 3-dimensional Lorentzian space denoted by L? or E13 (Walrave, 1995). The
Lorentzian vector product is defined by:
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A vector X in L? is called a space-like, time-like, light-like vector if {X, 3} > 0, (3, X} < 0 or
{3, X} = 0, respectively. For X € L’ the norm of X defined by ||X|| _ ‘(X X)‘ and X is called a unit

vector if || ¥X]| (Walrave, 1995).
. 5 . g . .
Let v 1-1R S be a unit speed regular curve in E3 where I is an open interval. The

curve X(f) is called timelike if (X', X} <0, spacelike if (X', X > 0 and null (lightlike) if (X', X'} =0.
For cach curve X(t) with at least four countinuous derivetives, one can associate three mutually
orthogonal unit vector fields T, N and B which are called the tangent, the principal normal and the
binormal vector fields, respectively. At each point of the curve X(t), the planes Sp {T, N}, Sp {N, B}
and Sp {T, B} are called, respectively as osculating, normal and rectifying planes. For the spacelike
curve X(t) (with a spacelike or timelike principal normal N), the Frenet formulac read

T'=kN, N'= - ek, T + k,B, B =kN (1

where (T, T) = 1,{N, N} = - (B, B) = e (Ilarslan, 2003).

On the other hand, let H% be hyperbolic sphere and X be a plane tangent to hyperbolic sphere Hg
at the point (0, 0, 1) which is given by the equation x; = 1 according to Euclidean coordinate system
{X,, X5, X3} One parameter homothetic motion of HS on O in Lerentzian space of 3-dimensions is can
definite by an affine transformation:

F:Hf— % @
X —>Y=hAX+C

where, A € 80, (3), X and C are 3x1 vectors. The eclements of A, C and h are continuously
differentiable finctions of time-dependent parameter t and the elements of X are coordinates of a point
in the body. Tt is well known that all of the homothetic motions includes both rolling and sliding at
every moments and they are regular motions. By differentiating (2) we obtain:

Y'=hAX + (WA +hA") X+ C' (3)

where, (A + hA" X + C' is sliding velocity of X. We called X is a pole point if sliding velocity of X
is vanish and locus of points of X called pole curve. We take B as hA so equation of the moving pole
curve is X = - (B)7IC". Substitution X with X = - (BY7!C' in (3) we obtain fixed pole curve
Y =- (B)'C'+ C'. Now we examine the matrix B (B)™'C".

B(B) = hA(h"lA_l + h‘lA"l) —hh U + AAT!

S
@

where, ¢ and 8 is sliding part and rolling part of (2). For 8+0, there is a uniquely determined vector
W(t) such that S(U) equal to the cross product W{t)=U for every vector U. The vector W(t) is called
the angular velocity at instant t and the homothetic motion F in (2) called is rolling if W(t) lying in to
¥ and F is spinning if W{t) normal to ¥ at the contact point of H(z, and X at instant t (Nomizu, 1978).
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Homothetic Motion Of H% OnZX
Let us consider the hyperbolic sphere H(Z) and the tangent plane X of Hg atx,={0,0 e Hg )
We shall take the equation of H% according to rectangular coordinate system in Ef such as:

2 2 2 _
X xS -x3 =1

and Xis X, =1. Let e, e, and e, be the unit vectors (1,0,0), (0,1,0) and (0,0, 1), respectively. Suppose
that X(t) is a moving smooth space-like pole curve on Hg starting at x,. We wish to move Hg along
fixed smooth space-like pole curve on X homotheticaly in such a way that at instant t the point X(t)
becomes a point of contact with Y(t) on . From Eq. 2, since F (HS) is tangent to ¥ at the contact
points we have: Bx = he..

Suppose that {b,, b,} and {a,, a,} be orthonormal systems along space-like pol curves (30) = X{t)
and (Y)=Y(t) on H% and 3, respectively. Let by, b, and a,, a, be vector fields along (¥ and (Y) so

that:
b, = hB'a, andb, = hB'a, )

Hence {b,, b,, X} and {a,, a,, e,} will be moving and fixed system for (30 and (Y) on H% and %,

respectively. On the other hand, since the curve (X) is a spherical curve we can write the position
vector of (X} as follows:

X=AN+uB (5
where, the coefficients A and p are differentiable with respect to the parameter t.

Theorem 1
Let (X) be aspace-like curve (with the pseudo arc length parameter t) on H% . Inthis case,

I1+edk=0,A+pk=0p+ Ak, =0, AL -pp'=0and p'A - p'A = € k, are satisfies. Where k, and
k, are curvature and torsion of (X}, respectively.

Theorem can be easly proved by using Eq. 1 and 5 and the equalities {T, T) = 1,
(N.N)=-(B,B)==¢.

For determine the semi-orthogonal matrix A, we must construct the frames {b,. b,, X} and
{a,, a,, e;} along the pole curves (X) and (Y), respectively. During this operations we make use of
Darboux frame along (X) and tangent and normal vector field of (Y) at contact points on Hg
and ¥, respectively. Let T, N and B vector fields be Frenet vectors of (X), so we can find semi-
orthogonal matrices P, Q, R € SO, (3) between the orthonormal systems {T, N, B} and {g,, e,, e;},
{T, XAT, X} and {T. N, B}, {b,. b,, X} and {T, XAT, X}, respectively. Hence, the matrix A, = PT,
QT R"e SO, (3) transforms b, to e,, b, to e, and X to e, Similarly, let, TNandR be Frenet
vectors of (Y). Since the {Y) is planar spacelike curve, binormal vector field of {Y) will be same
direction with timelike vector e,, so we take | = e, and (Y) is spacelike curve with spacelike principal
normal vector field. We can find again semi-orthogonal matrices P,(2.R € SOI(B) between the
orthonormal systems {T,N,eg} and {e,, €, e}, {T, e3AT, 63} and {iﬁ,% }, {a,, a,, e, and
{T,e3AT,eg}. Thus, the matrix A, = PQR e SO, (3) transforms a, to e, a,to e, and &, to e,,
respectively.
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Cosequently, the matrix » — AzAlT transforms b, to a,, b, to a, and X to e,

On the other hand, we denote the skew symmetric matrix in semi-Eudlidean mean dA; ! A and

dt
dAEI A, as W, and W,, respectively, then W, and W, will be follows:
dt
_&_
dt ‘
i 0 0" —epk;, —eikjcos0 (| by
de =| (& —guk;) 0 gikysin® || by (6)
x| —ghk;cos® ik sinb 0 . X
| dt W
,di,
dt 0 o-k 0lq
da = = !
—2L|=|-0+k 0 0l a, (7
dt 0 0 0
des | | -
L dt | W,

where, 0 =8(f)and g = 6“) are angles between b, and T (or b, and XAT Yand a, and T (ora, and
e; A T ), respectively.
Remark 1

The vector fields b, and b, are parallel with the connection of 12 along normal spacelike curve
(X) if and only if & — epk; =0 satisfies. In this case, b, and b, has not any component in tangent

space TH§ {X{t)) .

Remark 2
The vector ficlds b, and b, are parallel with the connection of X along spacelike curve (Y) if and
only if §' —Iy = ¢ satisfies.

. o . . -1 .. .
The skewsyvmmetric matrix {in semi-Euclidean mean) g dA A 1s instantaneous rotation

dt
matrix represents rolling part of the homothetic motion F and S represents a linear transformation
defined as:
S:Tyy T — Sp {es}
We can find the matrix S using A, and A, as:
S=A,(~W, + W )A}

Consequently, the matrix S determines a vector:
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We Sp {a, a, e}

At the contact points P = X(t), we obtain angular velocity vector W as follows:

Wp = el sinf(ay ), +ehk; cosO( a, ), + (g— ki — 6 + euk, )(63 Ip
Since Fis a homothetic motion, H% both rolling and sliding on ¥ and at the contact points W
have to lie on X at every moments. Thus we can give following theorem:
Theorem 2
Fis a rolling motion if and onlyif &' — k; — 0’ + gk, =0

Remark 3
If {b, b,} and {a,, a,} are parallel vector fields along the spacelike curves (¥X) and (Y) then F is
a rolling motion automatically. In this case W will be as follows:

Wp = eAk; sin jsklp.dt (ag)p +eAkjcos jsklpdt (a;)
i i

P

where, T is an interval of IR which is consisting 0.

Remark 4
W will be spacelike vector during the homothetic motions.

Remark 5

Let {b,, b,} and {a,, a,} are any orthonormal (not parallel) vector fields systems along
the spacelike curves (X) and (Y). Thus HZ moves on X homothetically along arbitrary (X)
and (Y) spacelike curves on which satlsﬁes the conditions €' - epk, = 0 and @ | =
respectively.

Remark 6
Let {b,, b,} and {a,, a,} are parallel vector fields systems along the spacelike curves (3) and (Y).
Thus H% moves on X homothetically along spacelike geodesics.

Example
Let:

()[J_ V2

sinht, TSH]ht cosht} tE[O,’.‘T]

2 .2
1s unit speed curve on H% and Y(t)= {%’%’1] is any curve on X. We obtain:
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T—[%cosht,gcosht,sinht}l\]—[£Smht £:smht cosht}
(242
T
kk=Lk,=0,A =1, n=0,g =-1
and
T =L (LLO).N = = (1,-1.0).B=(0,0,1).k = 0,k2 = 0
2 N5
for (X) and (Y) curves. Since ||dy/df]| = h we find 1 = t4f2 and using d_Y: Bd_X we obtain
dt dt
B(t)= é(t) =0 so the motion will be as follows:
1 1 sinht
—(1 ht) —=(-1 ht) —
2( +cosht) 2( +cosht) NG t2/2
Y(t) = t4f2 l(—1+cosht) l(1+cosht) _sinht X{t)+ t2/2
2 2 J2
B sinht B sinht cosht 2
V2 V2
And the matrix S and the vector W will be as follows:
o o0 -1
2
s=| o 0o L andW:(l/xE,fl/\E,O) andW:(l/\E,fl/\E,O)a
Jz
N
V22

respectively and the condition &' — suk; — 8 +ki=0 issatisfies. Thus the motion Y = BX + C s
rolling motion of H(Z) on X.
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