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Abstract: A numerical model for the analysis of laminated composite rectangular plates is
proposed. Buckling analysis is presented for moderately thick symmetrically laminated
composite plates with various boundary conditions. The formulations are based on the
First-order Shear Deformation Theory (FSDT). The method of Discrete Singular
Convolution (DSC) is employed for numerical solution. In the proposed approach, the
derivatives in both the governing equations and the boundary conditions are discretized by
the method of DSC. The results obtained by DSC method were compared with those
obtained by the other numerical and analytical methods. A comparison of the results of the
title problem with those of earlier studies indicates excellent agreement.
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INTRODUCTION

Laminated composite plates are widely used in the mechanical, civil, aero-space and chemical
engineering. For this reason, the free vibration and buckling analyses of laminated plates have been
studied by many researchers. A very detailed mathematical treatment is given in the book by Reddy
(1997), Whitney (1987) and Qatu (2004). A variety of numerical and approximate methods are
available today for vibration and buckling analysis of laminated plates. Among the approximate and
numerical approaches used for laminated plates are the Ritz, Galerkin and Levy methods, the finite
clements, differential quadrature and finite strip methods. The primary objective of this study is to give
a numerical solution of buckling analysis of symmetrically laminated composite plates by the method
of DSC. To the authors® knowledge, it is the first ime the DSC method has been successfully applied
to symmetrically laminate composite plate problems for the analysis of buckling. The procedure is
based on the application of the discrete singular convolution method in conjunction with the First-order
Shear Deformation Theory (FSDT).

FUNDAMENTAL EQUATIONS

Based on the first-order shear deformation theory, the governing equations for symmetric
laminates under transverse loads are given (Reddy, 1997).
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Where N,, N, and N, are the in-plane applied forces. Also, mass inertias are given as (Liew ef al.,
2004).
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I,= j pdz, I, = j pz'dz. (2.3)

0 2z
~hiz ~-hiz

Where p and h denote the density and total thickness of the plate, respectively. The bending moments
and shear forces are given as (Liew and Huang, 2003)
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Where A, and D, are the stretching and bending stiffness, k is the shear correction factor taken as 5/6.
Also, the x-y coordinate plane is located on the mid-plane of the laminate.

DISCRETE SINGULAR CONVOLUTION (DSC)

Here, the method of discrete singular convolution is briefly presented. Details of the DSC method
are not given; interested readers may refer to the studies of Wei (2001a). It is known that, accurate and
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efficient numerical approaches for differential equations are of greatimportance in engineering sciences.
The method of Discrete Singular Convolutions (DSC) has emerged as a new approach for numerical
solutions of differential equations. This new method has a potential approach for computer realization
as a wavelet collocation scheme. For brevity, consider a distribution, T and n{t) as an element of the
space of the test function. A singular convolution can be defined, in the context of distribution theory,
by Wei (2001b).

oD
F(ih=(T*m)t)= | T{t—xmx)dx (©)

—00

where T(t-x) is a singular kernel. The DSC algorithm can be realized by using many approximation
kernels. However, it was shown (Wei, 2001a, b, ¢) that for many problems, the use of the Regularized
Shannon kemel (RSK) is very efficient. The RSK is given by Wei (2001c)

8, 7% (WAYX %)

_sinf(m/ A)x — x,)] exp{_ (x-x,)° }_G -0 7

26° ’

where A = 7/(N-1) is the grid spacing and N is the number of grid points. The parameter o determines
the width of the Gaussian envelope and often varies in association with the grid spacing, i.e., o =rth.
In the DSC method, the function (%) and its derivatives with respect to the x coordinate at a grid point
% are approximated by a linear sum of discrete values f (%) in a narrow bandwidth [x-x,. xtx,, |. For
numerical computations, this can be expressed as:

n it
d f(X)|Hi = f®xr S 5 (x - x)f(x,):(1=0,1,2,....) (8)
dx" R '

where superscript n denotes the nth-order derivative with respect to x. The %, is a set of discrete
sampling points centred around the point x, 0 is a regularization parameter, A is the grid spacing and
2M+1 is the computational bandwidth, which is usually smaller than the size of the computational
domain. It is also known that, it provides exact results when sampling points are extended to an infinite
series given by

fix)= > fi(x,) = sinf(n/A)x-xJ] e B, (9)
i (m/AYx—x,)
The higher order derivative terms (ng)s(x —x,) e given as below:
(n) _od ., (10}
8o (x— X“)_(E) [dys(x—x]

where, the differentiation can be carried out analytically. The discretized forms of Eq. 5 can then be
expressed as:
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When the regularized Shannon’s delta (RSD) kernel is used, the detailed expressions for, 8](;‘) (X can
g

be easily obtained. Detailed formulations for these differentiation coefficients can be found in
references (Wei, 2001¢; Civalek, 2006a). The detailed expressions for 6& (x) and Bﬁ (x)and canbe
easily obtained as (for x=x,):
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At x = x,, these derivatives can be written as

8%, (0)=0 (13a)

PR P
50 o L2Ge 1w (13)
Hee 3 ¢ o' 3A7

IMPOSING OF BOUNDARY CONDITIONS
Two types of boundary conditions for an arbitrary edges, i.e., simply supported (S) and
clamped (C) are taken into consideration. Following, the related formulations and their DSC form
are given in detail.
«  Simply supported edge (S)
S8l w=0,M=0M,=0 (1da)

2
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SS2: w=0,M,=0,8,=0. (14b)
Clamped edge (C)
w=0,8,=0,8,=0. (15)
where n and s denote the normal and tangential directions of the plate, respectively, M, and M,
represent the normal bending and twisting moment; 8, and 8, are rotations about the tangential and

normal coordinates at the edge. The force resultants and the rotations on the edge are given as follows
(Liu et al., 2002):

M, =niM, +2n,n M _ +niM {16a)
M, =@} -n)M_+nn (M -M), (16b)
0,=n.9, +n.0,. (16¢)

0, =100, 1,0, (16d)

Here n, and n, are the direction cosines of a unit normal vector at the boundary. Using the force
resultants and the rotations, the equations of boundary conditions becomes,

. SS1
w=10 (17a)
M, :ni |:D11 X, + [)12%Jr Dy {&UX + awy}:|
+2n H{Dm o D26%+ Dﬁ{a% i H (17b)
ox oy dy | ox
+n{D12 o, JrDzzawarDzﬁ[aLpX + a%ﬂ—o
4 ox ay dy Ox
M, = (ni 7n2) Dy, %Jr Dy Yy + Dﬁﬁ[awx i awyj:|
y ox o ox
+ 1,0, D12%+ D22%+ Dzﬁ[&px + W, } (17¢)
| ox oy oy ox
Cip, M v, +Dm(6‘”x +6%ﬂ—0
e &y ax
. 332
w=10 (18a)
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o oy
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ox
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n =y oy ay | ox
+2n,n, {Dm%+ D, a;;y + Dy, (5611;}( + 6;::H (18b)
+ H{Dlzaaq;“r Dy, E;\I;Ur Dzﬁ(awx +(Zq:’ﬂ =0
0,=ny -—ny =0 (18¢)
«  Clamped
w=0 (19a)
0, =0y, -0y (19b)

0, = ny, —n,y, = 0 (19¢)

In the method of DSC, Wei et al. (2002) proposed a practical method in applying the simply
supported and clamped boundary conditions. Recently, a new approach called the iteratively
matched boundary method in applying boundary conditions in the DSC method was also proposed

by Zhao et af. (2005) and applied to free boundary condition of beams. Following the same procedure
proposed by Wei er al. (2002), consider a umform grid having following form:

0=X, <X, <..<X, =1 (20a)
0=Y,< ¥ <.<Y, =1 (20b)

Consider a column vector W given as:

W= (W, o W, W, W 7 (21)

0,02
with (N, + 1)(N, + 1) entries W,;= W (X,Y)); 4 = 0,1,...N. j = 0.1,..Ny. Let us define the

(N.+ 1)(N, + 1) differentiation matrices D7({r=23Y;n=12,..), with their elements given by
Wel et af. (2002)

[DP], =88 (% —x) (22a)

D], =885y, ~v) (22b)

i, o,

where BSJA (r —1), (r=x,y) isaDSCkermnel of delta type. For regularized Shannons delta kernel, the
differentiation in Eq. 26 can be given by:

[D}({n)]i:] = SS)A(xi Xj)—{(dijn SU:A(XX]):| (23a)

H=3%;
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[DY]; =802y~ v = Hddj 8,4y — yj)l (23b)
y

y=¥

In this stage, we consider the following relation between the inner nodes and outer nodes on the left
boundary:

W) W(X,)= W(Xa[iaix-l}[wm) WX, 24)

i=0
After rearrangement, ones obtain:
W(X_)=aW(X )+ (1-a ) )W(X,) (25

where, parameter «;, (i = 1,2,....M) are to be determined by the boundary conditions. Thus, the first
order derivative of Won the left boundary are approximated by:

W(X,) = {62_1 (X, -X,)- i 1-8,)80, (X, - X )}mxu)

(26)
J
+ D7 (1-2,)8Y, (X, - X))W(X)
1=0
Similarly, the first order derivative of f on the right boundary (at X, ,) are approximated by:
W(XN—1+1 )= W(XN—I) =g [W(XN—I—i )= W(XN-1)]= @n
or
I
WXy - W)= W(XN-I-l){ZaIXq J[W(XJ— WX, (28)
v
Consequently, we obtain the following relation:
WXy ) = WX 0+ WX -] (29)
Hence, the first order derivative of f on the right boundary is given by :
1 . 1
WXy )= Bg,)a (X -Xy)- Z (1-a, )Sé,ja (X - XJ) WX,
10 (30

£ 30— a)8Y, (X, ~ X WK

j=0

Only the governing Eq. 1c is used for buckling, that is:
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;{kj-\% {(Py + 2‘;’} + kA ((Px + Z‘:{V]}
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According to the DSC method, the governing equations Eq. 1¢ can be discretized into the following
form for buckling:

[Z 50 (eAx )y + Z B (kA + 2 Z B o (KAX) W Z B KAy W, }

[ > s mkAx)ug; + Z B LAX YW, }+kA44[ Z SkAY W + 2 Sy Ay W, }

k=M =M

+N, Z 5 HKAX)W + 2N, Z 5(1<Ax)wa Z SYL(KAYIW,, N, Z AT L (kAY)W, =

k=—

(32)

Similarly, DSC form of the related boundary conditions can also be given. Discretized form of SS2
boundary conditions, for example, are given by:

w, =0 (33a)

nz{ HS“L(X -X,)- Z(l a,)80), (X, - X)Jw(XHZ(l a)ﬁ“?A(XlXj)w(Xi)}
+D,, (5“1\(3( Y, - 2(1 a,)8%, (Y, - Y)}w(Y )+Z(1 a8 (Y, - Y)w(Y)}

+D,, (6“) (Y -Y,)- 2(1 a,)8%, (Y, - Y)Jw(X )+Z(1 a8, (Y, - Y)w(X)}

k=0

+D4 [5(1)A(X Xg)- Z(l 8,)8,, (X, — X)JW(Y )+Z(l 2,80, (X, - X W(Y)

1=0

}

+2nxn{ HB“A(X -3~ P10 )80 K - X)Jw(XHZa 8,080, (%, = X JwiX, )}

1=0 j=0

+Dy HSE&(Y - Yu)*ZK:(lfai)Bm (Y, - Y, )JW(Y )+Z(l 2,80, (Y, - Y, )W(Y)}
k=0

k=0

+Dﬁ{[ SO (Y, - Y- 2(1 8% (Y, - Y)]w(x >+2(1 a, )8, (Y,—Yk)umxl)}

k=0

+ Dy HBS,)A(X, - X) - ZJ: (1-a,)80, (X, — XJ)J W(Yn)+zj: (1-2,)80, (X, — Xw(Y,)

j=0

}
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+n; {Dlz Hég’)ﬂ (X, - X))~ ZJ:(I —a)80, (X, - X, )} WX, )+ij(1 —a, 8%, (X, - X (X, )}

i=0

+D

22
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k=0

(33b)

+Dy {SS,JA(Y: -Y)- ZK: {1- 31)62,)3 (Y, -7V, )]W(Xn )""i(l - ai)Bg,)A(Yi =Y, )W(Xl)}
+D,, {

}_0

.y —noy, =0 (33c)

50,0 —X,)- 21— a6 (X, - X )} WY+ (12,988, (5 - X w(Y,)

j=0

Consequently, we solve the remaining eigenvalue problems given below to obtain the non-dimensional
buckling load, such as,

GX = ABX (34)
where X is the displacement vector defined as follows:
X + [le IIJU]T (35)

In Eq. 33, G and B are the matrices derived from the governing equations and the boundary conditions.
In the above eigenvalue equations, A is the non-dimensional buckling load.

NUMERICAL EXAMPLES

In numerical solutions of laminate are assumed to be of the same thickness and density. Linearly
elastic composite material behavior is taken into consideration. Tn all the tables, S denotes simply
supported while C means clamped. The notation, for example, SCSC denotes a plate having simply
supported with edges y=0 and v =b and having clamped with edges x =0 and x = a. Following values
for material parameters are used for numerical analysis.

Gy, =Gy, = 0.6E,; Gyy = 0.5E,; v, = 025, E/E, = 40

Several examples are solved and results are presented in Table 1-5. For comparison purpose,
uniaxially buckling loads of a SSSS laminated (0°/90°/90°/0°) square plate is obtained by the DSC
method using the 15 grid points. The results in Table 1 are compared respectively to the analytical

Table 1: Comparisons of uniaxially buckling loads of a S888 laminated (0°/90°/90°/0°) square plate (ah =10;

A =N;a¥E;h%)
Sources
HOSDT FOSDT
E/E; Noor (1975) Khdeir and Librescu (1988) Khdeir and Librescu (1988) Present study
20 15.0191 15.418 15.351 15.348
30 19.3040 19.813 19.757 19.756
40 22.8807 23.489 23.453 23.452
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Table 2: Non-dimensional biaxial buckling loads of laminated (0°90°0°) square plate (ah =10; A = N.a¥E:h% N, =N,
for different boundary conditions
Boundary conditions

E/E, SS88 SSCS CSCS

20 7.497 9.062 10.758
30 9.043 10.470 12,177
40 10.241 11.632 13.286

Table 3: Non-dimensional biaxial buckling loads of laminated (0°/90°/0°) square plate (A = Na¥Eh% N,= N} for
different thickness ratio

Boundary conditions

ah SS888 SSCS CSC8
2 1.429 1.434 1.458
5 5.495 5.879 6.112
9.968 11.516 13.004
15 12,187 15.451 19.595

Table 4: Non-dimensional biaxial buckling loads of laminated (0°/20°/0°) square plate (a'h = 10; EJ/E, = 40;
A =N, a/E;h%, N, = N,) for different aspect ratio
Boundary conditions

bfa SS88 SSCS CSCS
1 10.241 11.632 13.286
21.198 22.020 23.455

— & — Khdeir and Librescu (1988)

- —%— DSC(r=32)
18 - —aA— DSC (r=2.62)
—8— DSC(r=1.12)
10 T T t t 1
™7 99 12¥12  14x14  18x18 2020
No, of grid points

Fig. 1: Convergence of the buckling load of SSSS laminated (0°/90°/90°/0%) square plate (a/h =10;
E/E, =40; A =N,a¥E,h;

solutions based on First-order Shear Deformation Theory (FOSDT) and higher-order shear deformation
theory by Khdeir and Librescu (1988), the three-dimensional linear elasticity solutions of Noor (1975).
Compared with the data given by Khdeir and Librescu (1988), it is shown that the present results are
in close agreement.

Convergence of the buckling load of S8S8 laminated (0°0/90°/90°/0%) square plate is depicted in
Fig. 1 with the different parameter r and different value of grid numbers are shown. For this purpose,
the results given by Khdeir and Librescu (1988) for E,/E, = 40 is used listed in Table 1. Tt is shown
in this figure that the reasonable accurate results are obtained for N> 14. Also, from Fig. 1, we can see
that the optimal convergence could be achieved with the value of between 2.4< 1< 3.2, It was also
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Table 5: Non-dimensional biaxial buckling loads of laminated (0°/90°/90°/0°) square plate (i = N,a%/E;h%; N, =N,) for
different value of material and geormetric parameters

E/E
ah 3 10 20 40
100 5.7603 11.4788 19.6670 35.9554
80 5.7543 11.4615 19.5861 35.7820
50 5.7411 11.4206 19.4884 353573
10 5.4117 9.9485 15.3482 23.4524
5 4.5561 7.1659 9.4323 12.0981

shown (Civalek, 2006b; Wei, 2001b; Lim ef /., 2005) that the parameter r is gives more accurate
results for the interval 2.2 <r <3 in applied mechanics. Thus, during the study we set the parameter
ras2.62and N = 16.

Non-dimensional biaxial buckling loads of laminated (0°/90°/0) square plate for various values
of orthotropy of individual layers E,/E, and different boundary conditions are presented in Table 2.
With increase of ratio E /E,, the buckling loads increases relatively. Non-dimensional biaxial buckling
loads of laminated (0°/90°/0°) square plate are listed in Table 3. Four different thickness-side ratio h/a
are used. Also, results are presented for different boundary conditions. Non-dimensional biaxial
buckling loads of laminated (0°/90°/020) square plate are presented in Table 4 and Table 5 for different
geometric and orthotropic properties. From the results obtained it can be possible to say that the DSC
method can be used for solving vibration and buckling problems of laminated plates.

CONCLUSIONS

Buckling loads of laminated composite plates are obtained using the discrete singular convolution
method. The first-order shear deformation theory (FSDT) is used in the study with the governing
differential equations transformed into a standard eigenvalue problem by the diserete singular
convolution formulation. The results are obtained for different geometric and material parameters for
various combinations of simply supported and clamped boundary conditions. The accuracy of the
proposed method is confirmed with the available numerical and analytical solutions. It is concluded
that the DSC method provides accurate solutions.
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