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Abstract: In this study, the adaptive synchronization method of coupled system is applied
to achieve synchronization for hyperchaotic Lii system and coupled van der Pol oscillators.
This method can avoid estimating the value of coupling coefficient. Lyapunove direct
method of stability is used to prove the asymptotic stability of solutions for the error
dynamical system. Numerical simulations results are used to demonstrate the effectiveness
of the proposed control strategy.
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INTRODUCTION

Deterministic chaos has been thoroughly investigated in the last three decades since it was found
that many realworld physical systems could behave chaotically (Strogatz, 1994; Femat and Alvarez-
Ramirez, 1997). It has been found that chaos may be useful in many fields (Hwang ef af., 1996,
Femat et af., 2001). However, it has also appearzsd that on another hand, chaos may be undesirable in
some cases where regular oscillations are needed, like metal cutting processes (Wiercigroch and
Krivtsov, 2001), power electronics (Chen ef &l., 1999) and so on.

In recent years, researches on chaos control and synchromization have attracted increasing
attention due to its potential applications to physics, chemical reactors, control theories, biological
networks, artificial neural networks and secure communication {(Chen and Dong, 1998, Pyragas, 1992;
Tao ef af., 2005; Wang and Tian, 2004).

In 1989, Hubler published the first article on chaos control. Ott ef af. (1990), developed the OGY
method (Ott ef af., 1990). In the same year, Pecora and Carroll (1990) and Corral and Perca (1991)
proposed the idea of chaos synchronization. In the past ten years, many techniques for chaos control
and synchronization have been developed, such as feedback method, adaptive technique, time delay
feedback approach. backstepping method and so on.

Hyperchaotic systems is usually classified as a chaotic system with more than one positive
Lyapunov exponent, indicating that the chaotic dynamics of the system are expanded in more than one
direction giving rise to a more complex attractor. In recent years, hyperchaos has been studied with
increasing interests, in the fields of secure communication (Udaltsov ef af., 2003), multimode lasers
(Shahverdiev er af., 2004), nonlinear circuits {(Barbara and Silvano, 2002), biological networks
(Neiman et @f., 1999), coupled map lattices (Zhan ef /., 2000) and so on.

SYSTEM DESCRIPTION
In this paper we study the synchronization of the hyperchaotic Lii system (Elabbasy ef af., 20006)

and synchromzation between the hyperchaotic Li system and coupled van der Pol oscillators
(Fotsin and Woafo, 2005).
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Hyperchaotic Lii System
The hyperchaotic Lu system is described by the following system of differential equations:

x=a(y-x)
Yy=—XZ+Cy+WwW (1)
zZ=xy—bz

W=Z—-1W

where a, b, ¢ and r are four unknown uncertain parameters. This new system exhibits a chaotic
attractor at the parameter valuesa=15,b=5,c=10and r=1 (Fig. 1a and b).

The divergence of the flow (1) is given by

V4F:@+E+%+@=—a+c—b—r<0.
ox Oy 0z ow

where F=(F,F,, F, F)=(a(y—-x), —xz+cy+w, xy—-bz, z-rw)

Hence the system is dissipative when: c<atb+c

Fig. 1a: Shows the chaotic attractor of hyperchaotic Lii systemata=15,b=5,c=10andr=1 in
X, Y, Z subspace

w(t)

Fig. 1b: Show the chaotic attractor of hyperchaotic Liisystemata=15,b=5,c=10andr=11iny,
z, w subspace
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The system has three equilibrium points:

' o o o
E, =(0,0,0%, E_=(g,, 0'1,?1, El)’ E_=(o,, 0, f,b—;)
where 1++f1+ 4ber? 11+ 4ber?
g=———— and o, =————
2d 24
To study the stability of E, the associated Jacobian I, is
-a a 0 0
-z ¢ -x 1
I, =
y X -b 0
0 0 1 -
The characteristic polynomial of the matrix I, is given by
o) (A=) (A +D)A+1)=0 )]

The eigenvalues are A, =-a, A, = ¢, A; =-b and 4, = -r. Then the equilibrium point E, is stable if
¢<0 otherwith the equlibrium is unstable.
To study the stability of E, the associated Jacobian j. is

[ -a a 0 0]
2¢br? + 1+ 4f1+4cbr? . L+4fl+4cbr
; 2br 2r
' 1+ (fl+4cbr? 1+ fl+4cbr? b 0
2r 2r
| 0 0 1 |

The characteristic polynomial of the matrix j, is given by

Afre v A veh 4, =0 (3)

where
¢, =r+b-c+a

o a+b+ 20 + (a+ b)y1+4chr® — 2bric + 2abr’® + 2ab’r

2 2br2
oo 3ab+ ar+ 2ab’r® + (ar + 3abl1+ 4cbr’ + dach’r?
i 2br?
o _at daber® + a1+ 4cbr?
Y=
2r

A set of necessary and sufficient conditions for all the roots of Eq. 3 to have negative real parts
is given by the well-known Routh-Hurwitz criterion in the following form

2 2
¢, >0, ¢ ¢c,—¢c, >0, ¢(c,c,—cc,)—¢; »0and ¢c,(c,c;—c c,)—c,c; >0
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ie.

2
¢>0, ¢=0,¢c¢, —¢ >0and ¢ (¢, ¢,—¢c,)—¢; =0

However, the above values of ¢,, ¢, and ¢, guaranteed that ¢,c, -¢;<0. Hence the equilibrium point
E. is unstable.
To study the stability of E_ the associated Jacobian ] 1s

-a a 0 0
2 2 _ 2 _ 2
cbri+1 Jl+4cbr c 71 ,f1+4cbr
i 2br? 2r
- 1—:J1+4c:br2 1—:J1+4cbr2 b 0
2r 2r
L 0 0 1 - |

The characteristic polynomial of the matrix J_is given by

AtreAt e Al ek b, =0 (4

where

¢, =r+b-c+a

o a+b+2b'r" —(a+ bWl+4chr® — 2br'c + 2abr® + 2ab’r’

: 2br?
3ab+ ar+ 2ab’r’ — (ar + 3abW 1+ dcbr’ + 4ach’r’
c, = .
2br
e 3t 4aber? — ay1+ 4cbr?
=
2r

As above, one can see that E_ 1s also unstable since ¢,c,-¢; will be negative.

The Coupled Van Der Pol Oscillators

The circuit diagram of the chaotic coupled van der Pol oscillators (Fotsin and Woafo, 2005) is
shown in Fig. 2. The nonlinear resistance (NR) part is characterized by a third-order voltagecurrent (iV)
characteristic of the form 1(V) = aV+bV, (a<0, b>0). An electronic circuit for such a resistance can be
found in (Fotsin and Woafo, 2005).

It can easily be shown (Fotsin and Woafo, 2005) that the dynamics of the circuit of Fig. 2 is
described by the following set of coupled second-order differential equations:

"\Jq+i[1+%vf]\m L \f1+i"\?2:0

C2 a L2C2 C2 (5)
Vﬁi\}g +LVE—LVI=0

L L.C L.C

1 11 11
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+“— —>
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L,
+
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R G v, NR

v,T‘l'Cl
o

Fig. 2: Show the circuit diagram of the coupled van der Pol oscillators

where the over dot denotes the differentiation with respect to the time t. Setting

-3b L R
t=1L,C,; X :V“/ia 1§ =-a ’FE;SE L VG
2 1

(6)
G LGy P
C, ¥ a L C a
The system of Eq. 5 can be rewritten in the following form:
X -g(-%x)% +X +oX, =0 )

. . 2 _
X, +ef,+0 X,—Ax, =0

where the overdot now indicates the differentiation with respect to s (that we rename as t in the
new scale without loss of generality). Obviously the system of Eq. 7 represent a van der Pol oscillator
(x,) coupled to the linear oscillator (x,).

Ifin addition we set X, =x, and %, = x, , the system of Eq. 7 can now take the following general
form:

X =X,

X, =% (1_X12 )%y — X, +o(g, X, + leXz -hx) (8)
X=X,

B, =8, X, — X, + A X,

With the selection of parameters £, =3.872, g, = 0.000645, A =9.12, & = 0.457 and w? = 5 the
system shows a chaotic behavior characterized by a maximal Lyapunov exponent 4., = 0.062 which
confirms occurrence of chaotic oscillations. This system exhibits a chaotic attractor at the
parameter values, £, = 3.872, £, =0.000645, A =9.12, ¢ = 0.457 and w’ = 5 (Fig. 3a and b).

It is easily shown that system (8) has only one equilibrium at the origin (0, 0, 0, 0) where the
Jacobian matrix of system (8) is

0 1 0 0
28 %%, -1-ak g oo osg

- 0 0o o0 1
A 0 —of -g
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Fig. 3a: Show the chaotic attractor of coupled van der Pol oscillators at €, =3.872, g, =0.000645,
2=9.12,0=0457 and w? =5 inx,y, z subspace

Fig. 3b: Show the chaotic attractor of coupled van der Pol oscillators at g, =3.872, €, = 0.000645,
2=9.12,a=0457 and »?* =S5 inx, y, w subspace

The characteristic polynomial of the matrix J is given by
0'+(g, —&,)0 "+ (1+w —¢ &, +a )07 +(g, —£0,)0 +o =0

For the parameters provided above, the first condition of the Routh Hurwitz determinant
(which is &,-g,) 1s negative. Hence the origin is an unstable equilibrium.

ADAPTIVE SYNCHRONIZATION BETWEEN
TWO COUPLED HYPERCHAOTIC LU SYSTEM

In order to observe the adaptive synchronization behaviour in hyperchaotic Lii system, we have
two hyperchaotic Lii systems where the drive system with four state variables denoted by the
subscript 1 drives the response system having identical equations denoted by the subscript 2.
However, the initial condition of the drive system is different from that of the response system,
therefore two hyperchaotic Lu systems are described, respectively, by the following equations:

x, =aly, —x,)
Vi =-xz +cy, +w, +d(y,-y,) ©
z, =%y, bz, +d,(z, - 7))

W, =Z —IW,
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and
Xy =aly; —X;)
Vi =—XZ + 0y, + W, + 4y (Y, - ) (10)
2, =xy,-bz,+d,(z, -2,
W, =L 1w,
Remark 1

The hyperchaotic Lii system is dissipative system and has a bounded, zero volume, globally
attracting set. Therefore, the state trajectories x,(t), y,(t), z,(t) and w,(t) are globally bounded for all
tz0 and continuously differentiable with respect to time. Consequently, there exist three positive
constants s, s,, s, and s, such that |x, (t)] <5, <, |y, (t)<s, <, |z (t)]<s, < and |w (t)|<s, < hold
for all t=0.

Let us define the state errors between the response system that is to be controlled and the
controlling drive system as

€, =X, X, &8, =Y, "V, 6,=2;, -2 ande, =w,—Ww,

Then the error dynamical system c¢an be written as:

e, =ale,—e,)
e, =(c—2d)e, —xe —Z +e, (an
&, = V,€, +xley—(b+ 2d,)e,

e, =¢e,—Te,
suppose that
d, =kl andd,=k.e suchthatk,, k, >0 (12)

If e (t)—0,e,(ty =0 e (t)>0ande, (t)—0 ast -« the coupling synchronization of the
drive system and response system is achieved

Theorem 1
System (9) and (10) will synchronize for any initial values of (x,(0), y,(0), z,(0), w,(0)),
(x,(0), y;(0), z,(0), w,(0)), (d,{0), d,{0)) That is e, (t) >0, e,(t) >0, e, () >0 and e () > 0 ast — <o,

Proof
Consider a Lyapunov function as follows

1 2 " 2 "
Vi ey ey d d) = (v e relve 4= (4 = dY 4 e (4 - ) (13)

where d', and d', are positive constants which will be defined later. Taking the time derivative
of Eq. 13, then we get
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- ] . . ] 2 "o 2 "y 3
V=e@ +el +ee +eé, +Z(dl —d)d, + +E(d2 —d,;)d,

=—ae} +aee, +(c—2d,jel —zee, —Xee, +ee, + Y80

+xee, —(b+2d,)el +ee, —1el +2(d, —d))el +2(d, —d;)el
=—ael +(c— ZdI)ei —(b+2d))el —el + (a-z,)e.e +y.ee +ee, +ee,
<—ae; + (c—2d))e, — (b+2d;)el — 16l +{a+s; e, +5,68 +ee, +eE,

=—ael +(2d/ - cyel + (b+2d;)el +rel —(a+s,)e.e —see —ee, —ee. |

B S S | &
=—[ex |ey| C: ‘ewu 2 2 |ey|
Sy praa 1|l
: 2 {e.]
0 _% _% :
—~Tleal | leol fenT e 0 ] o el fe]

If

« a+2s8 +4dc+sl

3 3

d>—
8

. . « dabc+bs? + 2s,ab+ a’b— s
(4ab—s2)d, +(8ad, —4ac—2s,a—a’ —sH)d, > AL ;321 Tanone

dabr—sir—a dact —1(s, +ay -a

. . w a(b—c) als, —s8,)+8,8,
d -d +4ard d, =abcr+ +
EEEE - T T g ; :
. bz, —ay —sjc) a'+8 48
4 16

hold then the 4x4 matrix ¥(d",, d’,) is positive definite.

Where s, and s, are defined in remark 1. If d*, and d°, are appropriately chosen such that the 4x4
matrix ¥(d',, d',) in Eq. 14 is positive definite, then V <0 holds. Since V is a positive and decreasing
function and ¥ is negative semidefinite. It follows that the equilibrium point e, =0.e, =0.e, =0,
e, =0,d =d andd, =d, of the system (12) is uniformly stable, i.e., e (t). e (t). e(t), e, (t)eL_ and
d,(t), d,(t)=L,, . From Eq. 14 we can easily show that the squares of e, (1), e (1), e,(t) ande,(t) are
integrable with respect to time t, i.e., e, (), e (1), &,(t), e, (1L, Next by Barbalal's Lemma Eq. 12
implies that e, (t), &,(t). &,(t), &,(t)e L, whichin turn implies e, (t) =0, e (t) =0, e (t) —0 and e (1)
—0ast— Thus, in the closed-loop system x,(t)—x (1) v, ()= v, (1), 2,(t)—z,(t), w,(1)
—w,(t)ast >». This implies that the two hyperchaotic Lii systems have been globally
asymptotically synchromzed.

Numerical Results

By using the mathematical package Maple we solve the Eq. 9, 10 and 12. The four
parameters are chosenas a=15,b=35, ¢= 10 andr =1 in all simulations so that the hyperchaotic Lii
system exhibits a chaotic behaviour if no control is applied. The initial states of the drive system are
%,(0)=-20, y,(0)=5, z,(0)=0and w,(0)=15 and of the response system are x,(0)=10, y,(0)=-5,
z,(0)=5and w,(0)=10 . Then e, (0)=30, ¢, (0)=-10, e (0)=5and e, (0)=-5 . From the Fig. 1 it can
be seen that the solutions x(t), y(t), z(t) and w(t) arec bounded and satisfy the inequalities:
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30
251
204
o 151

104

o

0 2 4 6 8 10
t

Fig. 4a: Shows the behaviour of the trajectory ¢, of the error system tends to zero as t tends to 2
when the parameter values area=15,b=5,¢c=10andr=1

-

04

-2

_4.

-6

Fig. 4b: Shows the behaviour of the trajectory e; of the error system tends to zero as t tends to 2
when the parameter values area=15,b=5,¢c=10andr=1

Fig. 4¢: Shows the behaviour of the trajectory e, of the error system tends to zero as t tends to 2 when
the parameter values arca=15,b=5,¢c=10andr=1
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14

-2

34

41

0 2 4 6 8 10
t
Fig. 4d; Shows the behaviour of the trajectory e, of the error system tends to zero as ttends to 8
when the parameter values area=15,b=5,¢c=10andr=1

20 <x<20,-15<y<15,-20<z<20 and -20 < w < 20

Figure 4a-d shows that the trajectories of e, (1), e, (1), e (t)and e, (t) of the error system tended
to zero for k, =84 and k,=1.

ADAPTIVE SYNCHRONIZATION BETWEEN HYPERCHAOTIC
LU SYSTEMS AND COUPLED VAN DER POL OSCILLATORS

In order to observe the adaptive synchronization behaviour in coupled van der Pol oscillators, we
have the hyperchaotic Lii system is the drive system with four state variables denoted by the subscript
1 drives coupled van der Pol oscillators (response system) denoted by the subscript 2. Therefore
hyperchaotic Lil system is described by the following Equations:

X =aly, - %)
¥o=—XZ +cy, +w, +d (v, —v,) (15)
Z :X1Y17bzl

W =2, —IW, +d2(W2 7W1)

and coupled van der Pol oscillators is described by the following Equations:

X =Y+
YZ =5 (I_Xi)yz —X; +0L(82W2 +(x)12Z2 _)"XZ)+dl(YI _y2)+u2 (16)

Z, =W, + 1,

- 2
W, =—8,W,—®ZzZ, +AX,+d,(w —w,)+1,

We have introduced four control inputs, u, u,, u, andu, in Eq. 16, u,,u,, u, andu, are to be
determined for the purpose of synchronizing the hyperchaotic Lii systems with the coupled van der
Pol oscillators.

Let us define the state errors between the response system that is to be controlled and the
controlling drive system as:

o7
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€, =X, X, & =Y, ¥, &,=2;,-Z and e, = w, — W,
Then the error dynamical system can be written as

€, =¥, tax —ay, + 1

eyzgl(lfxi)hfxz+OL(82W2+Q]1222*sz)fzdleerX@l*C%*Wl*uz

(17
e, =W, — Xy +bz +u,
g, =g W, —fZ, + L x, —2de, —7, +TW, +1,
suppose that
d, =kl andd, =k,e suchthatk, k, >0 (18)

Then the synchronization problem is now replaced by the equivalent problem of stabilizing the
system (17) using a suitable choice of the control laws v, u,, u, and u, .
Consider a Lyapunov function as follows:

1 2 " 2 "
Vi ey ey d d) = (v e relve 4= (4 = dY 4 e (4 - ) (19)

where d’ and d; are positive constants which will be defined later. Taking the time derivative
of Eq. 19, then we get

- ] . . i 2 w3 2 s
V=gt +ee +e6 +e.8, +k—l(d1 —d)d, ++k—2(d2 —d,d,

=e,(y, +ax, —ay, +u)+e (w, - Xy +bz +1u,)
+ey(€l (I_Xé)% —X +0L(82W2 +m‘222 _7"X2)_2d1ey+xlz1 —Cy, —W, +112)

ve, (~&,W, &7, + A X, —2de, —z + 1w, + 1)+ 2(d, —d;)ef,+2(d2 —d;e

There are many possible choices for the controller functions. We choose

U =4ay, -y, —ax;

2 2
U; =X; + 8 X3¥, —CL(EZWZ Wz, _)'Xz)_x1z1 + W, +(C_%)y1

(20)
u, =Xy, - W, - bz,
u,=g,w, +(1+a)z, -k x, —1W,
under with this choice the error dynamical system is
e, = -ae
e, =—(2d, —c-g)e, 1)
¢ =—he

z z

&, =—(2d,+g +1)e, +0,

Therefore
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V=—ael —(2d —c—¢ )ei—bei—(2d2+r+ g, Jel ree,

2
x
2
%

ae; + (2d, —c—g el +bel + (2d; +r+g Jel, —ee,]

a 4] 0 0
0 Q,d; —Cc—¥ 0 0 €,
B |: ex ‘ey‘ ez ‘ew [| 0 1] b _l |e}" (22)
2 e,
0 0 *% 2d,+ 1+, le. |
[kl ] el v led o b T

If g C+281 and d >$_ ”282 then the 4x4 matrix Pd;, d;) is positive definite.

If d and d; are appropriately chosen such that the 44 matrix ¥(d;, d;) in Eq. 22 is positive
definite, then v < 0 holds. Since Vis a positive and decreasing function and v is negative semidefinite
(we chose d> L;:‘and &> 1 % ). It follows that the equilibrium point (e, =0.e,=0.e, =0,
e, =0,d =d'andd, =d}) of the system (21) is uniformly stable, i.e., e,(t), e, (t). e (t). e (t)eL
and d,(t), d,{t)e L . From Eq. 19 we can easily show that the squares of e, (t). e (1), e,(t) ande, (1)
are integrable with respect to timet,ie., e (1), e (), e ()}, e, (t)e L,  Next by Barbalat's Lemma
Eq.21 implies that &, (t), & (t). &.(t). & (1)L, which in turn implies e, (t)—0,e,{t) >0, e (t) >0
and e, (t) > 0ast > . Thus, in the closed-loop system x,(t)— x,(t), y,{t) =¥, (), z,{t) >z (1),
w,(t) > w (t)ast > This implies that the hyperchaotic Lii systems and coupled van der Pol
oscillators have been globally asymptotically synchromzed under the control law (20) associated
with (18).

Numerical Experiment

By using the mathematical package Maple we solve the Eq. 15, 16 and 17. The four parameters
are chosenas a=15,b=25, ¢ =10 and r = 1 in all simulations so that the hyperchaotic Lii system
exhibits a chaotic behaviour if no control is applied The four parameters are chosen as
g =3.872, & = 0000645, A=9.12, 0.=0457 and ' = Sinall simulations so that the coupled van der

20+

154

0 0.5 1 1.5 2 2.5 3
t

Fig. 5a: Shows the behaviour of the trajectory e, of the error system tends to zeroasttends
to 2 when the parameter values area=15,b=5,¢=10,r=1, g =3.872, g, =0.000645,
=912, 0=0457 and o’ =5
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101

Fig. 5b: Shows the behaviour of the trajectory e, of the error system tends to zero as t tends
to 2 when the parameter values are a = 15, b=35,¢=10,1=1, g =3.872, g, = 0.000645,
=912, 0=0457 and o =5

34

2.54

0 0.5 1 1.5 2 25 3

Fig. 5¢: Shows the behaviour of the trajectory e, of the error system tends to zero asttends to
2 when the parameter values are a= 15, b=5,¢= 10,1 =1, g =3.872, g, =0.000645,
A=9.12, 00=0457 and® =5

H

24

4

Fig. 5d: Shows the behaviour of the trajectory e, of the ermror system tends to zero as t tends
to 8 when the parameter values are a=15,b =35, ¢ =10, 1= 1, g =3.872, g, =0.000645,
A=9.12, 0=0457 and o’ =5
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Pol oscillators exhibits a chaotic behaviowr if no control is applied. The initial states of the drive
systemn are x, (0)=-20, y,(0)=5, 2,{0)=0and w,(0)=15 and ofthe response system are x,(0)=10,
¥,(0)=-5, z,(0)=5and w,(0)=10. Then e, (0)=30, e (0)=-10, e,(0)=5and e_(0) =5 . Inthis case,
we assume that the drive system is hyperchaotic L system and the response system is coupled
van der Pol oscillators are different imitial conditions. Figure 5a-d shows that the trajectories of
e (t), e (t). e{t)ande, (t) of the error system tended to zero for k =10 and k,=1. These numerical
results demonstratz the systems have been asymptotically synchronized using the proposed
adaptive schemes.

CONCLUSIONS

In this study the adaptive synchromzation problem of hyperchaotic Lil system and an electronic
circuit consisting of a van der Pol oscillator coupled to a linear oscillator have been investigated. All
results are proved by using Lyapunov direct method. The proposed scheme is efficient in achieving
simple synchronization in our example and can be applied to similar chaotic systems.
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