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Abstract: The roles of diffusion and Turing Instability in the formation of spot and stripe
patterns in the Gierer-Meinhardt Activator Inhibitor model are investigated by performing
a Nonlinear Bifurcation Analysis. The diffusion ratio is chosen to be the only bifircation
parameter in the analysis. Two dimensional Hexagonal Lattice is used as the geometrical
argument in the construction of this analysis and the Fortran Programming l.anguage is used
to do the pattern simulations. The bifurcation diagrams are seen to be able to predict the
morphology that is observed for the specific patterns.
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INTRODUCTION

The formation of patterns by Turing instability has been investigated in different models to
explain how these can emerge from a merely uniform environment. The interaction of two biochemical
substances with different diffusion rates having the capacity to generate biological patterns was
introduced by Turing (1952). Some twenty years later, Gierer and Meinhardt found that the two
substances, in fact, opposed the action of each other giving rise to the activator-inhibitor model (Gierer
and Meinhardt, 1972). Which can be used to explain the formation of polar, symmetric and periodic
structures (spots on animals). The study of the system in 2 and 3 dimensions using the topological
degree method (Pinto ef al., 2002) showed that for small diffusion of the activator and large diffusion
of the inhibitor a solution to the system exists in the form of boundary spikes. The spike solutions to
the Gierer-Meinhardt model has in fact been much explored through different approaches Iron (2002),
Kolokolnikov and Ward (2003), Ward et af. (2002) and Ward and Wei (2003). The modeling of spots
and stripes in biology has shown that stripes versus spots is seen to depend on the nonlinear terms
of the reaction diffusion equation (Ermentrout, 1991). In this study we aim at performing a non linear
bifurcation analysis as applied to the Brusselator model by Callahan and Knobloch (1999} that revealed
that stripes and spots can be simulated for specific values of the model parameters, in the Gierer-
Meinhardt model. We concentrate upon identifying the main parameters in the Gierer- Meinhardt
model which will differentiate between a stripe and a spot pattern in two dimensions and show their
effects through a simulation process. This analysis 1s analogous to the work done by Ermentrout
(1991) however with the specificity to the Gierer-Meinhardt model, a unique bifurcation parameter
(the diffusion ratio), which reduces the number of parameters required for differentiating between the
two patterns.

GIERER-MEINHARDT ACTIVATOR-INHIBITOR MODEL

Consider the simple Gierer-Meinhardt model given by:
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where, D, and D, are the diffusion constants for the activator u and the inhibitor v, respectively.
Equation 1 can be nondimensionalised into

2
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For the self-organisation of spatial patterns the zero flux boundary condition is considered. We
further consider the initial conditions as small deviations (du and &v) from the steady state
concentration (u,, v,). The mathematical problem is thus obtained as:

ﬂ=f(u,v)+ Vi,
ot

%:g(u,v)-%—dV% )

with zero flux and initial conditions given by (ﬁ.v)[uJ =0, WX, 0) = uytdu and v(x, 0) = v,+dv,

v

respectively. Our aim is to find the conditions that guarantee the steady state solution (u,, v,) to give
rise to Turing Instability.

In Fig. 1, the positive intersection of the mull clines f{u, v) = 0 and g(u, v) = 0 give rise to the
steady state solution (1, v,), which is evaluated to:

2004
150 4

100

Fig. 1: The positive intersection of the mull clines for the steady state solution (1, v). n=1,£=0.1,
p=0.085and { =065
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where, 1=1, £=10.1, p=0.085, { = 0.65. We now look for a system which is very close to Eq. 4
when (u, v) is near (u,, v,). This is done by approximating the real valued functions f{u, v) and g(u, v)
by their tangents around the equilibrivm point (u,, v,). Using Taylor's expansion and knowing that f{u,,
vo) =0 and g{u,, v;) = 0 yields the two linear functions:

f(u,v):%(uu,vu)(u—uu)+%(uu,vu)(v—vm) (5
g(H,V)=%(HD,VD)(H—HD)+%(HD,VD)(V—VD) (0)
TURING INSTABILITY

Turing instability is known to be of primeval importance in the generation of biological patterns
(Murray, 1994) and in this context we investigate the restriction on the parameters of the Gierer-
Meinhardt model for the generation of 2-Dimensional spot and stripe patterns.

Absence of Diffusion
In the absence of diffusion, Eq. 4 can be linearised into

R R:{“'“ﬂ}, ®)

v-v;

where, A 1s the 2x2 stability matrix of the reaction terms f{u, v) and g(u, v} at (u,, v;). Upon
differentiation and substitution, the stability matrix is found to be

te-p) _ 8¢
| E+p) (g

mig+p)

— £

The linearised system (8) is known to have solutions of the form:
R = exp(At), (%
where, A= -1’ is an eigenvalue of A.
Conditions for Linear Stability
The conditions for linear stability in the absence of diffusion as given by Perko (2000) are given
by:

tr A <0, (10)

1] >0 (11
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which for the Gierer-Meinhardt model yields:

a[aﬁ}Q, £ >0.
E-p

Presence of Diffusion
In the presence of diffusion consider the linear system,

10
%=AR+DV2R, D=[ J (12)

with the trial solution of the form:
R(xt)=2 F &R, (13)
i
Applying the specified zero flux boundary conditions on Eq. 13, the 2-D solution becomes:

R(xt)= ZEM,NEW’NTCOS[@J cos [ﬂ] (14)
M p q

where, 0<x<p, 0<y<q and the coefficients E,,, are determined from the Fourier expansion of the initial
conditions. In biological formulation, it is important to ensure that all the E_, are non-zero, therefore,
the values of m and n are chosen such that all the terms in Eq. 14 contains all possible unstable Fourier
modes (Murray, 1994) since they are responsible for the emergence of spatial patterns.

Condition for Instability
Using Eq. 14, 12 and proper substitutions, the eigenvalues corresponding to the instability
conditions are obtained by solving the characteristic equation:
|?LI-A+D;12| = 0.

The values of A are found by solving:

A A (1+d)-tr A]+F(p?) =0,

F(ug): dp’ -(day, +ay Ju* + Al

(15)
According to Murray (1994), the conditions for instability (real part of the eigenvalues should be
positive) are given by:
da,+a, >0
and

(dan +a,; )2

>|al.
4d

At bifurcation, there is a transition between stability and instability and this occurs when
F(u?y =0, that is, when Re (A) = 0. This further gives,
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2
|A|=(dcall+a22) (16)
4d,

where d, is the critical value of the diffusion ratio calculated from Eq. 16. Furthermore, the critical
wavenumber as stated by Murray {1994) is obtained as:

wop: = (400 2a) a7

C

The conditions for instability in the presence of diffusion can thus be summarized to:

E+p
%{%—P}dg

(- p)(35+ p)+ EE (51 p) _

d=d, = 2
t(e—p)

For the initiation of spatial patterns from Turing Instability, the value of the diffusion ratio d
should be much larger than the critical value d..

BIFURCATION ANALYSIS

Generally, the concept of bifurcation analysis is to approximate the changes that may
subsequently occur in the dynamics of a system of differential equations when one or more parameters
are varied. In the present context, the nonlinear analysis will determine the stability of the two pattern
morphologies - spots and stripes. The bifurcation parameter under consideration is the diffusionratio
d and ¢ is chosen to be the parameter that accounts for the shape of the patterns. We begin the analysis
as proposed by Callahan and Knobloch (1999), by first writing the activator-inhibitor concentration
field® = (1,, 1,)7 in terms of the active Fourier modes as described by Leppanen (2004), that is:

&= C—DUZ [W]exp(iﬁ] xr)+ Wj*exp(-iﬁj xr)]

where, @, gives the direction of the modes , and -y, with amplitudes W, and W*, respectively.
The complete nonlinear bifircation analysis is performed in the following three steps:

+  Derivation of the general form of the amplitude equation.

+  Determination of the parameters of the amplitude equations using the technique of Center
Manifold Reduction.

+  Stability analysis of stripe and spot patterns.

The Amplitude Equation
The two dimensional hexagonal lattice is adopted for which the amplitude equation is given by:
de . 2 2 2 . (1 8)
= W WL W YW, ij| + z(|w,+1 W )J j=123.

where it 1s assumed that saturation occurs at the third order (Leppanen, 2004). The cocfficients in the
amplitude equation can be calculated using Center Manifold Reduction.
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Center Manifold Reduction

Performing a CMR consists of projecting the dynamics of a system of differential equations onto
the center manifold such that the properties of the dynamics remain nearly unchanged. The CMR
limits the nonlinear effects in the Reaction Diffusion system to the center manifold which helps in
approximating the stability of the different morphologies (stripes and spots). We have used the
approach proposed by Callahan and Knobloch (1999) to obtain the coefficients in the amplitude
equation. Due to the complexity of the CMR, the Mathematical software Mathematica® was used to
find the parameters X, Y and Z. The coefficient A, evaluated from the eigenvalue A gives:

§W+W2—2§W%
e
rg oWy

where, d is the value of the diffusion ratio under consideration, d, is its critical value and

W:uizg(%_p)_ g(‘:_p)z .
2(&+p) 2[(§+ PI3E+ pI+ 2428 (5 + P)EJ

Stability Analysis of the Two Dimensional Patterns

We perform a linear analysis to study the stability of the amplitudes. The stationary states of the
amplitude system which are denoted by w, = (W, Wy, wy) are found and the systemis linearised to
obtain the linearised matrix as:

dF;

W (19)

B. =

Bl

[t o )

where, F, represents the right-hand side of the corresponding amplitude equation 7 given by Eq. 18. The
cigenvalues of the Jacobian matrix B is worked out to determine the stability of the different structures
when the parameter d, the diffusion ratio is varied. The parameter { is chosen to be the one responsible
for the shape that the forming patterns will admit. For computer simulations of reaction diffusion
equations, two dimensional hexagonal lattice was chosen to be the appropriate geometrical argument
to be used for the analysis.

For stripes, the eigenvalues of the stability matrix B are given by [, < Ay, W= 7X\/7Za +2,(1-2)
Y d

and =X {ﬂ P (1-2) Since A, > 0, we have u, < 0 and also u, > p,. Therefore, it follows that
Y

the stability of 2D stripes ¢an be determined by the sign of ..
In the case of hexagonally arranged spots, the eigenvalues of the Jacobian matrix are given as
Wo=h,— W (X+3YW) and p) =3, + W (2X-3Y(1+22) W) where W} is given by

Wiin,’X2+4}\.dY(1+ 27) (20)

: 2Y(1+22)

The eigenvalues of the linearised system are plotted against the parameter  to obtain the
bifurcation diagrams which are in turn used to predict the pattern that we might expect to see for
different values of the parameters.
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RESULTS AND DISCUSSION

Traditionally, a parameter from the reaction term in the Reaction Diffusion System is chosen as
the bifurcation parameter when doing the nonlinear bifurcation analysis. In this study, we are using the
diffusion ratio d as the only bifurcation parameter and thus d determines how the amplitudes of
activator concentration will grow over a 2D Hexagonal domain. In the bifircation diagrams that follow
from the analysis, the parameters are able to predict the shape of the patterns that might be formed.
From numerical simulations of the GM model, we obtain patterns in the form of spots and stripes
depending on the value of the parameters being used. All the parameter values have been chosen such
that they satisfy Turing Instability, which is the required condition for pattern initiation.
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Fig. 2: Bifurcation diagrams for stripes (a) and spots (b), (¢). Real part of eigenvalues with respect to
the bifurcation parameter {. n=1,£=10.08, p=0.069 and d =150
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The Nonlinear Bifurcation Analysis identified which range of values of { can favour the formation
of stable spots or stripes given that the other parameters in the GM model are kept constant whilst
satisfving the Diffusion Driven Instability. This results confirms the work of Ermentrout but in
addition brings out the specificity of the diffusion rates and confirms the original of Gierer-Meinhardt,
but with more precision in the diffusion ratio.

In Fig. 2a and 3a, the real part of the eigenvalue corresponding to the stability of stripes is plotted
against the parameter {. Fig. 2b.¢, 3b,c and 4a,b give the stability range of the two eigenvalues for the
formation of spots. Analytically, these two eigenvalues should have a common region of negative real
parts for some values of { so that stable spots can be simulated.

Three different sets of parameters are chosen so that each corresponding set of figures predicts
a different pattern morphology from the other two sets. Thus, Fig. 2 illustrates that either spots or
stripes, are expected to be generated, when we do the numerical simulations for some specific values
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Fig. 3: Bifurcation diagrams for stripes (a) and spots (b), (¢). Real part of eigenvalues with respect to
the bifurcation parameter {. =1,£=0.1,p=0.085and d=120
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Fig. 4. Bifircation diagrams for spots (a), (b). Real part of eigenvalues with respect to the bifurcation
parameter £. =1, £=0.0065, p = 0.006 and d = 400

of ¢ between 0 and 1. In fact, the graphs show clearly that stripes can be obtained for values of £
tending to zero and spots for values tending to one. Both spots and stripes could be stable (region of
bistability) for 0.52 < { <1.00. Therefore, it is difficult to predict what pattern morphology could
possibly emerge (Fig. 3).

Figure 4, on the other hand, gives a region in which neither spots nor stripes would be expected
though the parameters that are being used satisfy Turing Instability.

Figures 5 and 6 are simulation patterns for stripes and spots. The pattern gives the distribution
of activator concentration over the 2D array. The activator concentration is above a threshold level and
represented as a positional information in terms of a symbol in the simulation. The changing
characteristic of the activator concentration over the simulation domain is displayed after several
iterations. The parameter values used in the pattern simulations were chosen from the sets of values
corresponding to Fig. 3 and it was found that the parameter { does differentiate between the two
morphologies. The same values are considered for £=0.1, 1 =1, p =0.085 and d = 120 while the value
for ¢ 15 0.8 for spots and 0.55 for stripes.

The numerical simulations of activator patterns reveal that Turing Instability is a necessary
condition for the generation of chemical patterns but it is not sufficient as far as the Gierer-Meinhardt
Model 1s concerned. This can be confirmed by considering the set of values used in Fig. 4, which is
Turing unstable but cannot generate patterns as predicted by the bifurcation diagrams.
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Fig. 5: Simulation patterns for stripes. (a) 1600 iterations (b) 2400 iterations (c) 3200 iterations (d)
4000 iterations (e) 4800 iterations (f) 5600 iterations (g) 6400 iterations (h) 7200 iterations
(i) 8000 iterations (j) 8800 iterations (k) 9600 iterations. £ =0.1; 1 =1, p = 0.085, d = 120,
=055
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Fig. 6: Simulation patterns for spots. {(a) 1600 iterations (b) 2400 iterations (c) 3200 iterations (d)
4000 iterations (e) 4800 iterations (f) 5600 iterations (g) 6400 iterations (h) 7200 iterations
(I) 8000 iterations (j) 8800 iterations (k) 9600 iterations. £ =0.1; =1, p= 0.085, d = 120;
=08

127



Trends in Applied Sci. Res., 3 (2): 115-128, 2008

REFERENCES

Callahan, T.K. and E. Knobloch, 1999, Pattern Formation in three dimensional reaction-diffusion
systems. Physica D: Nonlinear Phenomena, 132: 339-362.

Ermentrout, B., 1991. Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations
on the square. Proceedings: Math. Phys. Sci., 434: 413-417.

Gierer, A. and H. Meinhardt, 1972. A theory of biological pattern formation. Kybernetic, 12: 30-39.

Iron, D., 2002. The dynamics of multi-spike solutions for the one dimensional Gierer-meinhardt
model. STAM J. Applied Math., 62: 1924-1951.

Kolokolnikov, T. and M.J. Ward' Reduced, 2003. Wave green's functions and their effect on the
dynamics of a spike for the Gierer-meinhardt model. Eur. J. Applied Math., 14: 513-545.
Leppanen, T., 2004. Computational studies of pattern formation. In: Turing Systems, Helsinki
University of Technology Laboratory of Computational Engineering Publications, Finland.

Murray, J.D., 1994. Mathematical Biology. 2nd Edn., Springer- Verlag, Germany.

Perko, L., 2000. Differential Equation and Dynamical Systems. Springer-Verlag, Germany.

Pinto, D.M., P. Felmer and M. Kowalczyk, 2002. Boundary spikes in the Gierer-meinhardt system.
Commun. Pure Applied Anal., 1: 437-456.

Turing, A., 1952. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, Series B,
237: 37-72.

Ward, M.I., D. McInemey, P. Houston, D. Cavaghan and P. Maim, 2002. The dynamics and pinning
of a spike for a reaction-diffusion system. SIAM J. Applied Math., 62: 1297-1328.

Ward, M.J. and J. Wei, 2003. Hopf bifurcations and oscillatory instabilitics of spike solutions for the
one-dimensional gierer-meinhardt model. J. Nonlinear Sei., 13: 209-264.

128



	Trends in Applied Sciences Research.pdf
	Page 1


