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Abstract: This study addresses the synchronization and adaptive synchromzation problem
of a hyperchaotic dynamical system with unknown system parameter. This technique is
applied to achieve synchronization for hyperchaotic Lii system. Lyapunove direct method
of stability is used to prove the asymptotic stability of solutions for the error dvnamical
system. Numerical simulations results are used to demonstrate the effectiveness of the
proposad control strategy.
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INTRODUCTION

In mathematics and physics, chaos theory describes the behavior of certain nonlinear dynamical
systems that under specific conditions exhibit dynamics that are sensitive to initial conditions
(popularly referred to as the butterfly effect). As a result of this sensitivity, the behavior of chaotic
systems appears to be random, because of an exponential growth of errors in the initial conditions.
This happens even though these systems are deterministic in the sense that their future dynamics are
well defined by their imitial conditions and there are no random ¢lements involved. This behavior is
known as deterministic chaos, or simply chaos.

Chaotic behavior has been observed in the laboratory in a variety of systems including electrical
circuits, lasers, oscillating chemical reactions, fluid dynamics and mechanical and magneto-mechamcal
devices. Observations of chaotic behaviour in nature include the dynamics of satellites in the solar
system, the time evolution of the magnetic field of celestial bodies, population growth in ecology, the
dynamics of the action potentials in neurons and molecular vibrations. Everyday examples of chaotic
systems include weather and climate (Sneyers, 1998). There is some controversy over the existence
of chaotic dynamics in the plate tectonics and in economics (Serletis and Gogas, 1997, 1999, 2000).

In recent years, researches on chaos control and synchronization have attracted increasing
attention due to its potential applications to physics, chemical reactors, control theories, biological
networks, artificial neural networks and secure commumication {Ott er af., 1990; Pyragas, 1992;
Tao er al., 2005, Wang and Tian, 2004).

Chaos synchronization has been observed in various fields. Fujisaka and Yamada (1983) showed
criterion of chaos synchronization using Lyapunov exponents. Since Pecora and Carroll (1990)
proposed a synthesis method for synchronized chaotic systems, many methods have been proposed
and its applications in chaos communication provide very fascinating studies (Pecora and Carroll,
1990).

Synchronization of ¢haos is a phenomenon that may occur when two, or more, chaotic oscillators
are coupled, or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly
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effect, which causes the exponential divergence of the trajectories of two identical chaotic system
started with nearly the same initial conditions, having two chaotic system evolving in synchrony might
appear quite surprising. However, synchronization of coupled or driven chaotic oscillators is a
phenomenon well established experimentally and reasonably understood theoretically.

It has been found that chaos synchronization is quite a rich phenomenon that may present a
variety of forms. When two chaotic oscillators are considered, these include: identical synchronization,
generalized synchronization, phase synchronization, anticipated and lag synchronization and amplitude
envelope synchronization. All these forms of synchronization share the property of asymptotic
stability. This means that once the synchronized state has been reached, the effect of a small
perturbation that destroys synchronization is rapidly damped and synchronization is recovered
again. Mathematically, asymptotic stability is characterized by a positive Lyapunov exponent of the
system composed of the two oscillators, which becomes negative when chaotic synchronization
is achieved.

Hyperchaotic systems have received much attention in recent years, particularly the hyperchaotic
Rossler attractors and its varation, which are obtained by introducing a quadratic term toa
linear system (Rossler, 197%a; Liao and Huang, 1999), or by using piecewise-linear systems
(Matsumat et af., 1986; Tsubone and Saito, 1998). Owing to their strong resistance to dynamics
reconstruction, hyperchaotic systems are more suitable for some special engineering applications such
as chaos-based encryption and secure communication.

Hyperchaotic systems is usually classified as a chaotic system with more than one positive
Lyapunov exponent, indicating that the chaotic dynamics of the system are expanded in more than one
direction giving rise to a more compleXx attractor. In recent years, hyperchaos has been studied with
increasing interests, in the fields of secure communication (Udaltsov ef of., 2003), multimode lasers
(Shahverdiey et al., 2004), nonlinear circuits (Barbara and Silvano, 2002), biological networks
(Neiman et af., 1999), coupled map lattices (Zhan and Yang, 2000) and so on.

Since the discovery of the hyperchaotic Rossler (1979b) system, many hyperchaotic systems
have been developed such as the hyperchaotic MCK circuit (Matsumot ef af., 1986), the hyperchaotic
Chen system (Li ef af., 2005, Yan, 2005), hyperchaotic Lii system (Elabbasy et al., 2006), etc.

First we need to recall some concepts and terms from synchronization theory.

Consider the systems of differential equation:

x = fix) {1
and
¥ = &yx) (2)
where, x € R, v eR®, f, g: R* — R" are assumed to be analvtic function
Let x(t, x,) and y{t, v,) be solutions to (1) and (2), respectively. The solutions x(t, x,) and

y(t, v,) are said that are synchronized if

lim [[x(t, xq) - ¥t yo ) =0
t—eo

SYSTEM DESCRIPTION
In this study we study the synchromzation of the hyperchaotic Lii system (Elabbasy er f., 2000)
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x=aly-x)
y=-xz+tcyt+w (3)
Z=xy-bz
W=Z-IW
where, a, b, ¢ and r are four unknown uncertain parameters. This new system exhibits a chaotic
attractor at the parameter valuesa=15,b=35,¢=10andr=1 (Fig. 1).
The divergence of the flow Eq. 3 is given by:

=£+@+%+@=-a+c-b-r< 0.

V.F
dx dy dz ow

where, F=(F, Fy, 5, Fy)=((y -x), -xz +cy+w, xy-bz, z-1w)

Hence the system is dissipative when: ¢<at+bt+c
The system has three equilibrium points:

2 2

2 2
- - 51 9 - Gz G2
Eg=(0.0.0), E4 ={o1. 01, ==, —), E_.=(03.0,5. =, —=
0 =1(0,0,0), E4 ={0y, 0 . br) (93, 9, o br)
/ 2 / 2
Where’slzw andszzﬂ.
2d 2d
To study the stability of E, the associated Jacobian J; is
-a a 0 0
2 ¢ X 1
JO_
y X -b 0
0 1
The characteristic polynomial of the matrix J; is given by
A+ -+ (A +1)=0 (4

The eigenvalues are A, =-a, A, = ¢, A; =-band A, = -1. Then the equilibrium point E, is stable if

¢ < 0 other with the equilibrium is unstable.
To study the stability of E, the associated Jacobian I, is

[ -a a 0 0
2cbr? +1+y1+4 cbr? +1/ +4cbr?
_Zcbr 1 1+4cbr c _1 1+4cbr
7 2 br? 2r
=
1+1’1+4cbr2 1+1l1+4cbr2 b o
2r 2r
| 0 0 1 i

The characteristic polynomial of the matrix I, is given by
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Fig. 1a: Chaotic attractor of hyperchaotic Li system ata=15,b=5c=10andr=11inx,y, z
subspace
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16.00

2 12.001

8.00+

4.00 T T 1
0.00 10.00 20.00 30.00

Fig. 1b: Time responses for the variable w(t) ot the hyperchaotic Lii system
At et e +oy =0 ®)
where:

cg=r+b-c+a

_atb+ 2670 + (a+bWl+ 4cbr? - 2br3c + 2abr’ + 2ab%r°

€ 2br?
¢ - 3ab + ar + 2ab’r> + (ar + 3ab)y1 + 4cbr? + dach?r?
2br?
¢y = a + daber? +2a\ll + dcbr?
r
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A set of necessary and sufficient conditions for all the roots of Eq. 5 to have negative real parts
is given by the well-known Routh-Hurwitz criterion in the following form

¢ >0, ¢ ey-c3>0, gleaca-¢ 04)-0% =0 and ¢j¢y(cpc3-0)cq)-Cy c% =0

ie.

¢ >0, ¢4=0,¢ccq -c3 =0and ¢ (cpc3-¢ 04)-c§ =0

However, the above values of ¢, ¢, and ¢, guaranteed that ¢,¢,-¢,<0. Hence the equilibrium point

E. is unstable.
To study the stability of E_ the associated Jacobian J_is

[ -a a 0 0
2cbr? +1-yf1 +4cbr? . -yl Hacbr? .
= 2br? r
1- 1 +4cbr? 1-J1+4cbr2 n 0
2r 2r
| 0 0 1 <

The characteristic polynomial of the matrix J is given by
7\.4+017\.3+02?Lz+037\.+04=0 (6
where:
¢g=rt+b-c+a

_at+b+ 2b%1 - (a+bwl +4cbr? - 2brc + 2abr’ + 2ab’r’
- 2

2br
. 3ab +ar + 2ab’1’ - {ar + 3ab1 +4cbr? + dach?r?
2br?
, = a+ daber? -ayl +4cbr?
2r

As above, one can see that E_ is also unstable since ¢,¢,-¢; will be negative.
SYNCHRONIZATION OF HYPERCHAOTIC Lii SYSTEM
We study the synchronization problem of the familiar hyperchaotic Lii system using the method
proposed by Pecora and Carroll (1990) and Carrol and Pecora (1991), where, a stable subsystem of
a chaotic svstem is synchronized with a separate chaotic subsystem under suitable conditions. This
method has been firther extended to cascading chaos synchronization with multiple stable subsystem.

The drive system is:
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X =aly -xp)
V1 = -%121 oy twy
7 = XV -bgy

Wl =Zp -TWy

(7

Here, since the (x,, z,, w,) subsystem is stable for all values of a, band r, in which the conditional
lyapunov exponents are negative. Then we will use vy, to be drive the (x,, ¥,, Z,) subsystem of the

response system:

X = alyy - X2)
2y =Xay1-bzy
Wz :Z2 -I'Wz

and the difference system for:
ey =X;-X, €, =Zy-Z; and e, =W, - W,
then the error dynamical system is given by:

e, =-ae

€y = yjey -be;

b = €7 ~TEy

X

The solution of system Eq. 10 is given by:

e, = exp(-at +a;)

e, =%exp(-at +a;)+a,exp(-bt)

<] =N
W (b-a)r-a)

exp(-at +a;) +—azb exp(-bt)+azexp(-1t)
T-
where, «,, ¢, and o, are constants of integration.

Then

lim e, =0, lime,=0 and lim e, =0
t—ew t—c0 t—ew

and then the response system with y-derive configuration does synchronize.

Numerical Results

(8)

(9

(10}

(1)

(12)

We have verified that when applying the synchronization method of Pecora and Carroll (1990)
of the hyperchactic L system using only y(t) as the drive the stability condition can be satisfied while
a=15,b=35,¢=10andr= 1. By using Fourth-order Runge-Kutta method with time step size 0.001.
The initial states of the drive system are x;(0)=-20, y(0)=35, z;(0)=0and wy(0)=15 and of the
response system are x,(0) =10, z,(0)=5and w,{0)=10. Then e, (0)= 30, e,(0) =5 and e, {0} = -5
are chosen in all simulations. Figure 2a displays the trajectories x; and x,, (b) displays the trajectories
z, and z,, © displays the trajectories w, and w, and (d) shows that the trajectories of e (t), e(t) and

e,(t) of the error system tended to zero.
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30.00-
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10.001
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Fig. 2: Solutions of the drive and response systems with Pecora and Carroll method, (a) signals %, and
X,, (b) signals z, and z, and © signals w, and w,
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Fig. 2d: Behaviour of the trajectories e,, e, and ¢, of the error system tends to zero as t tends to 3
ADAPTIVE IDENTICAL SYNCHRONIZATION

In order to observe the adaptive synchronization behaviour in hyperchaotic Lii system, we have
two identical hyperchaotic Lii systems where the drive system with four state varables denoted by
the subscript 1 drives the response system having identical equations denoted by the subscript 2.
However, the initial condition of the drive system is different from that of the response system,
therefore two hyperchaotic Lil systems are described, respectively, by the following equations:

X =ay; —xp)

Fi=—XZ + i+ W (13)
7 =x1y; — bz

Wy =Z] —1W)

and

Xz =alyz —xp)+1uy(t)
V2= —XpZp+Cyy+ Wy +us(t) (14)
23 = Xgy —bzg ++us(t)

Wz =27 —TWgy +114(t)

We have introduced four control inputs, u,(t), u,(t), u,(t) and u,(t) in Eq. 14, u,{t), u,(t), u,(t) and
u,(t), are to be determmned for the purpose of synchronizing the two identical hyperchaotic Lii systems
with the same but unknown parameters a, b, ¢ and r in spite of the differences in initial conditions.

Remark 1: The hyperchaotic Lil system is dissipative system and has a bounded, zero volume,
globally attracting set. Therefore, the state trajectories x, (1), v,(t), z,(t) and w,(t) are globally bounded
for all t = 0 and continuously differentiable with respect to time. Consequently, there exist three
positive constants s, s,, s, and s, such that:
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71(t) <83 < 0 and |wy (1) =5, <= hold for all t=0.

Pt <5y < 0, [y (] sy < =,

Let us define the state errors between the response system that is to be controlled and the
controlling drive system as:

ex =Xy X, 8y =V2 Y1, €; =232 and e =Wy - W)
Then the error dynamical system can be written as:

ex =aley —ex )+
8y =Cey —X18; —Zp8x + €y + Uy (16)
€y =yqey + Xjey —be, + 13

Gy =€y — Ty + 1y

Then the synchronization problem is now replaced by the equivalent problem of stabilizing the
system Eq. 16 using a suitable choice of the control laws w,(t), u,(t), u,(t) and u,(t). Let us now discuss
the following one case of control input u,(t).

The state variable y, of the drive system is coupled to the second equation of the response
systemn and an external control with the state v, as the feedback variable is also introduced into the
second Eq. in 16. Therefore, the feedback control law is described as:

u2=—Eley,u1=0, uz=0 and uy =0 (17
where, k; is an estimated feedback gain updated according to the following adaptation algorithm
E1=Y B?,, 121(0)=0 (18)
Then the resulting error dynamical system can be expressed by

ey =afey —ex)
€y =Cey —X18; —Zy€y + By —Eley
&y = Yoey + Xp&y —be, +u3 (19

Gy =€, —TEy

1;<1 =ye§ , k(=0
Consider a Lyapunov function as follows:
V=%(e§+e§+e§+e‘2ﬂ,+%(l~<1—k1*)2) (20)
where, kf* is a positive constant which will be defined later. Taking the time derivative of Eq. 20, then

we get:
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. i ] ] 2 = e o
V=eXeX+eyey+ezez+ewew+;(k1—k1 iy

= —aﬁf{ +aeyey + (c—lzl)e§ —E38xBy — K|€,8y + €€y + Y2€4E;,
+Xege, —beg +e,8y —re‘z,v + (i —k;‘*)eé

= —ae% +(c —kT* )eg, —be% —re%v (B Zp)exly + V2Eglyt+ Eyley + €8y

< —ae)zc +(c —kr* )ef, —be% —re‘z,v +H(atsglegey +828y8, + Byl + ezl

= —[ae:,zi + (kT* —c)ei + be% + re%v —(a+83)eg8y —By€y 8, —Eyly — €8y ]

ey,
P T .
g3+a **2 : 1 x|
5 k' —c 0 -5 ‘ey‘
:*Dex‘ ‘ey‘ 2| |BW[| . 1
—72 0 b - le-|
[ew]
0 1 1 T
L 2 2 J
* T
:*DBX‘ |ey‘ fe2| |eW”‘P(d1,d2) [|ex| |ey| le- | ‘BWH
@For K* e LAIB2 g
a 2
(&) For kT*> 4abc +b(s%+az)+ 2s3ab s%c _
4ab—s% 4ab—s% 4ab—s§ 4ab—s%
(iii) For kr* . 4ab(dcr+ ar + 2185 + 1)-;252(53 +2s;br+a)
4(4abr—s5r —2a)
4ac+4s%rc+2as3+az+s%+s% d
- =43

4(dabr — s%r— a)

If we choose k" = max (d;. d,,d3) then the 4x4 matrix y (k") is positive definite.
1" is appropriately chosen such that the 4x4
matrix \P(kr*) in Eq. 21 is positive definite, then v <0 holds. Since V is a positive and

Where, s, and s; are defined in remark 1. If |

decreasing functionand V is negative semidefinite (we choose ak]" o) (275342, gy, It follows
2

that the equilibrium point (e - O.ey =0.e, =00 =01 = k) of the system (19) is uniformly stable,
Le., eg(t) eg(t), ey{t) enit)ely, and k(t)eL,. From Eq. 20 we can easily show that the squares
of e, (1), e,(t), e,(t) and e, (1) are integrable with respect to time t, i.e., et), e,(t), e,(t) and e (D € L,.
Next by Barbalat's Lemma Eq. 16 implies that &, (t), &,{t), &,(t). &y (t)€ L. , which in turn implies
e, (H)—0, e, (t)—0, e, ()—0 and e (t)~0 as t—w. Thus, in the closed-loop system x,(t), —x(t),
vo{t)—v, (D), z,(t)—z,(t) and w,(f)—w,(f) as t—=8. This implies that the two hyperchaotic Lii systems
have been globally asymptotically synchronized under the control law Eq. 17 associated with Eq. 18.

Numerical Experiment

Fourth-order Runge-Kutta method is used to solve differential equations. A time step size 0.001
is employed. The three parameters are chosen asa=15,b=35, ¢=10 and r= 1 in all simulations so
that the hyperchaotic Lii system exhibits a chaotic behaviour if no control is applied. The imtial states
of the dnive system are x,(0) =-20, y,(0)= 5, z,(0) = 0 and w,{0) = 15 and of the response system are
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%,0) = 10, v,(0) = -5, z,(0) = 5 and w,(0) = 10. Then e,{0) = 30, &,(0) = -10, &,(0) = 5 and &,(0) = -5.
In this case, we assume that the drive system and the response system are two identical hyperchaotic
L1 system with different initial conditions. The evolutions of state synchromzation errors and the
history of the estimated feedback gain using the feedback control law (17) associated with the
adaptation algorithm (18). These numerical results demonstrate the systems have been asymptotically
synchronized using the proposed adaptive schemes (Fig. 3).

30.00
20.00+
10.00 4

&
0.00- \,

-10.00 4

-20.00 T T T T 1
0.00 2.00 4.00 6.00 8.00 10.00

i

Fig. 3a: Behaviour of the trajectory e, of the error system tends to zero as t tends to 2 when the
parameter values are a=15,b=5,c=10andr=1

20.00 4

10.00 1

& 0.00 r

-10.00 1

=20.00 1 T T T
0.00 2.00 4.00 6.00 8.00 10.00
t

Fig. 3b: Behaviour of the trajectory ¢, of the error system tends to zero as t tends to 2 when the
parameter values are a=15,b=5,c=10andr=1

139



Trends in Applied Sci. Res., 3 (2): 129-141, 2008
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Fig. 3c: Behaviour of the trajectory ¢, of the error system tends to zero as t tends to 2 when the
parameter valuesare a=15,b=5,¢=10andr=1

0.00 4

-1.00 4

-2.00 4

-3.00 4

-4.00 -I

-5.00 T T T T T
0.00 2.00 4.00 6.00 8.00 10.00
t

Fig. 3d: Behaviour of the trajectory e, of the error system tends to zero as t tends to 8 when the
parameter valuesare a=15,b=5,¢=10andr=1

CONCLUSION

In this study synchronization and adaptive synchronization using uncertain parameters of the
hyperchaotic Ll system is demonstrated. The Pecora and Carroll method has been applied to achieve
the synchronization of the hyperchaotic Lii system. All results are proved by using Lyapunov direct
method. The proposed scheme is efficient in achieving simple synchronization in our example and can
be applied to similar chaotic systems.
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