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Abstract: In this study, consider Bi-level multiobjective stochastic integer linear
programming (BL-MOILP) problem with chance constraints. Assume that there is
randomness in the right-hand sides of the constraints only and that the random variables are
normal distributed. An interactive algorithm for solving such problem is presented. By using
the chance-constrained programming technique, the problem converted from probalistic into
deterministic bi-level multiobjective integer linear programming (DBL-MOILP) problem.
This problem can be transform into separate multiobjective decision making problems and
solving it by using e-constraint method. Finally, an illustrative numerical example is given
to demonstrate the obtained results.
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INTRODUCTION

Stochastic or probabilistic programming deals with situations where some or all of the parameters
of the optimization problem are described by stochastic (or random or probabilistic) variables rather
than by determimistic quantities (Rao, 1977, Taha, 1976; Sharif and Saad, 2005). The sources of
random variables my be several, depending on the nature and the type of problem. Decision problems
of stochastic or probabilistic optimization arise when certain coefficients of an optimization model are
not fixed or known but are instead, to some extent, stochastic (or random or probabilistic) quantities.
In recent years methods of multiobjective stochastic optimization have become increasingly important
in scientifically based decision making involved in practical problem arising in economic, industry,
health care, transportation, agriculture, military purposes and technology. A bi-level programming
problem is formulate for a problem in which two decision makers (DMs) make decisions successively
(Bard, 1983, 1984; Bard ef ai., 2000; Bialas and Karwan, 1984; Campelo and Scheimberg, 2000,
Calvete and Gale, 1999; Marcotte ef af., 2001 ; Sakawa and Nishizaki, 2001; Shi and Xia, 1997, 2001).
For example, in a decentralized firm, top management, an executive board or headquarters makes a
decision such as a budget of the firm and then each division determines a production plan in the fill
knowledge of the budget. Many researchers have developed various interactive algorithms for solving
multicriteria decision making (MCDM)problem (Sakawa, 1993; Sakawa and Nishizaki, 2001; Shi and
3ia, 1997, 2001, Elshafei, 2006).

This study has proposed an interactive algorithm for solving bi-level multiobjective integer inear
programming problem with random parameters in the right hand side of constraints. Finally an
illustrative numerical example has been given to clarify the solution method.
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PROBLEM FORMULATION

Letx € R™, (i=1,2) be a vector varables indicating the first decision level’s choice and the
second level’s choice,n, 2 1, i=1,2).

Let F: r™ x R® — RM™, (i=1,2) arc the first level objective functions and the second level
objective functions, N, = 2, (1=1,2).

Let the firstlevel decision maker (FLDM) and the Second Level Decision Maker (SLDM) have
N, and N, linear objective functions, respectively.

The Bi-Level multiobjective stochastic integer linear programming problem with random
parameters in the right hand side of the constraints (BL-MSILP) can be stated as follows:

[1st level]
N{(ax F,(x, %) = NEJX £, X, %), ... fiw, (X, X))

[2nd level]
Ng{ax Fy (%, %= M}SX () (X, X5hyos fo, (X, ),

o (x.x) P> ax, =blza,i=12. .m

subject to P

X, =0 and integer, j=1...., 1.

Here (x,, ;) is the vector of integer decision variables. Assuming that the decision variables x; and
a; are deterministic. Furthermore, P means probability and 0 < o< 1 is a specified probability value.
Assume that the random parameters b, (i = 1, 2,..., m) are distributed normally with known means
E {b}and variances var{b,} and independently of each other.

Definition 1

Forany %, (x, € G, ={x, | X, %) € Ghgiven by (FLDM), if the decision-making variable
X, (% € G, = {x| (%, %) € G}) given by (SLDM) is the non-inferior solution of the (SLDM), then
(X, X;) 1s a feasible solution of (BL-MSILP) problem (Shi and Xia,1997).

Definition 2

If (x/,x})is a feasible solution of the (BL- MSILP) problem, no other feasible solution

(%, %)€ G exists, such that £, (x], x)) < £,(x,, %, ) s atleast one j(G=1,2,..., Ny) is strict inequality, then
(x/,x,) is the non-inferior solution of the (BL.-MSIP) problem (Shi and Xia, 1997).

The basic idea in treating (BL-MOSILP) problem is to convert the probabilistic nature of this
problem into a deterministic form. Here, the idea of employing deterministic version will be illustrated
by using the interesting technique of chance-constrained programming (Rao, 1977; Taha, 1976).

The stochastic constraints:

P{y axs<b):a, i=l2..m,
=1

can be restated as:

i=12,....m

P{b‘E{b‘} .2 aﬂJXJ_E{b‘}}zai,
Jvar{b} var(b;}
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b —Efb}
Jvar{b}
The above inequalities can be stated as:

where, is a standard normal variable with zero mean and unit variance

1_P{bj—E{b]} .2 ax - E(b)

Jvarlb}y  (fvar(b} }”‘w i=12..m

o p bi—E(b} 2 3% ~E{b} <l-a, i
Jvarb}  Jvar(b) 1

The above constraints can be expressed as:

¢(M)<¢(k 3i=12...m
Jualpy T T

These inequalities will be satisfied only if:

Zn: X, —E{b;}
Jvar{b;}

skﬂj,i—l,Q,...m

where, k, is the standard normal value such that ¢ (k, ) = 1-e; and ¢(a) represents the cumulative

distribution fimetion of the standard normal distribution evaluated at a. Thus, the stochastic constraint
is equivalent to the deterministic linear constraint,

n

Zaijxj <E {b;} + K fvar(b;}

=l

Thus, (BL-MOSILP) problem can be understood as following deterministic bi-Level
multiobjective integer linear programming (DBL-MILP) problem:

[1st level]
Max Fl (Xl, Xz)
X
[2nd level]
Max Fy (3, x7)
X
subject to

n
o (XI’X2)|Z 2y <E{bj}+ kg fvar{b;),
- =

i=12,...., m, x_izO and integer,j=1 2,....n.
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DEFINITIONS AND THEOREMS (Shi and Xia, 1997)

To obtain the solution of (DBL-MILP) problem solving (FLDM) problem and the (SLMD)
problem each one separately. In this way, we can quantitatively present satisfactoriness and the
preferred solution in view of singular-level multiobjective decision-making problem and introduce
several theorems with the help of the quality of e-constraint method (Rao, 1977; Shi and Xia, 1997)
to provide a theoretical basis for upper-level multiobjective decision-making.

Consider a multiobjective decision making (MODM) problem as follows:

Max (f,(x),..., £, (X))

subject to

hE:01=1,... .0

where, X denotes the decision making variable and £ (x), (i=1,2,....,n) denotes the objective function
of the multiobjective decision making problem.

LetQ={x|hx)> 0,j=1.... q}, &= Min £;(x), ;= Max £ (x). Onu=[a, b] define A; € £ (n),

whose membership funetion pa, (6 (x)) meets (i) and (i1) as below:

«  When the objective value f; (x) approaches or equals the decision maker’s ideal value, wa, (f (X))
approaches or equals 1. Otherwise, 0.
« If f(x) > £ (x*), then
ta, (B2 s E&Li=L...n

Definition 3
If x* is a non-inferior solution, then pa (§ (x*)) is defined as the salisfactoriness of x* to
objective £ (x).

Definition 4
M (x*y=Min pa (§ (x*)) is defined as the satisfactoriness of non-inferior solution x* to all the
objectives.

Definition 5
If x, x* are two non-inferior solution to the objective £ (x), then x* is more preferred
than xif pa (£ &™) > pa (£ &)

Definition 6

With a certain value s, given in advance by the decision maker, if non-inferior solution x* satisfies
WU{x*) = s,, then x* is the preferred solution corresponding to the satisfactoriness s,,.

The membership function ps, (f (X)) is given as below:

b (G0 =1- S ay

1 1

It is decided according to the decision maker’s requirements. Obviously, (I) meets the two
requiremnents (i) and (it) for pa (5 ().
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The g-constraint method (Rao, 1977, Sharif and Saad, 2005) is effective for solving multiobjective
decision making problems. The formulation of P (2} is as follows:

Max fi(x)
subject to
fx)<e,1i=2,..,n
x Q)
Assume
e,=(€y ..., &),
xXe)={xfx e 1=2,... . nxecQ}and
E, = {e,|x(e,) # & (empty sef)}.

Theorem 1

Ife, = (&, &5 ..., g€ E, then the optimal solution to P(e ;) exists and includes a the non-
inferior solution of (MODM) problem.

Corollary

If x! is the only optimal solution to P (&), then %' is the non-inferior solution of (MODM}
problem.

Given satisfactoriness s, if pa, (f (%)) 2 s, then by solving (1), obtain that:

flx)=(bra) na ExN+azba)sta
Letd =(ba)s+a, i=12,.. m,e, 5=, 38

Therefore, we can obtain P (g ,(s)), the & constraint problem including satisfactoriness is as
follows P (g, (s)):

Max f,(x)
subject to
fx)=8,1=23,....n
xeQ
Theorem 2

If P (&, (s)) has no solution or has the optimal solution X and f,( X ) < &, then no non-inferior
solution x* exists, such that p (x*) > s

Theorem 3
Assume s < s, if there is no preferred solution to s, then go to s,.

Theorem 4
Assume X is an optimal solution of P((e , (8)) and f(X)> §,(1=1,2,...n). Letf(X) =g

(i=12,...m and e, =(e, &, ..., &), then X is still an optimal solution of P ().
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« If X is the only optimal solution of P(e ,), the X is non-inferior solution;
+  Ifother optimal solution x’ of P () exists and Le {1, 2...., n} exists, such that f; (x > &, then
X is inferior solution.

AN INTERACTIVE MODELS FOR (DBL-MILP) PROBLEM

To solve the (DBL-MILP) problem,one first gets the preferred or satisfactory solutions that are
acceptable in rank order to the (FLDM) and then give the (FLDM) variables one by one to the
(SLDM) for him or her to seek the solutions by e-constraints method.and to arrive at the solution that
gradually approaches the preferred solution or satisfactory solution to the (FLDM). Finally, the
(FLDM) decides the preferred solution of the (DBL-MILP) problem according to his satisfactoriness.

Solving the (FL.DM) Problem
The first level decision maker (DBL-MILP) problem is as follows:

Max F (x), X3} = Max (K (%, X2)...... B, (53, x2)) (1

X X
subject to
(Xb XZ) £ Gj

To obtain the preferred solution of the (FLDM) problem, transform (1) into the following single
objective problem P/(e, (s)):

Max Fg (%, x7)
X

subject to
flr (Xla XZ)2 611’7 re (1:2: ------ > Nl)-{ S}: (Xb XZ) £ G": (2)
where, s € {1,2,..., N,} can be taken arbitrary. Problem (2) can be written in the following form:

Max Fjg (X1, X3) (3)

X
subject to

(%1, %20 €R™MT2 £ (%1, %3 ) 2 8y 1€ (L2, Ny ) — {8},
n
Gj = Z 2y <E {bj}+ kg Jvarb;}, i=1.2,...m,
=1
SIS Bj,jeJ ;{1,2,...,n},xj20 and integer, j=12,....,1n

where, the constraint v; < x; < B;, j € I < { 1,...n} is an additional constraint on the decision variable
x; and that has been added to the set of constraints of problem (3) for obtaining its optimal integer
solution by the branch-and-bound algorithm (Taha, 1976; Rao, 1977). According to the defimitions and
theorems in section 3, the algorithm steps for solving (3) are as follows:
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The Algorithm for solving (FL.DM)

Step 1: Set the satisfactoriness. Let s =s, at the beginning and let s =s,, s,,..., respectively.

Step 2: Set the e-constraint problem P/(e , (s)), find the solution of this problem by ignoring the integer
condition and use lingo program or any package to solve this problem.

Step 3: If the solution is an integer then go to step 6, otherwise using the branch-and-bound method.
Step 4: If the integer solution has not been reached go to step 5, otherwise go to step 6.

Step 5: If P{e , (s)) problem has no solution or has an optimal solution making f, (X;, X5) <&,,, then
gotostep 1, toadjust s = s, <s. Otherwise, go to step 6.

Step 6: Assurming that (X, X,) anoptimal solution of Pi, (8)), judge by theorem 4 whether or not (X, X,)
is a noninferior solution of (1). If (%;, X,) is a non-inferior solutior, turn to step 7. If (x;, X,) is
inferior solution, there must be a (X, X, ) such that f;; (g{ s gé) > f,; (X)) and at least one >, Repeat
step 6 with %/, x5 .

Step 7: If the decision maker is satisfied with (X, X;), then (X;.X,) isa preferred solution and go
to step 9. Otherwise, go to step 8.

Step 8: Adjust the satisfactoriness. Lets = s, > s and go to step 2.

Step 9: Stop.

Solving the Second Level Decision Making (SLDM) Problem

According to the interactive mechanism of the (DBL-MILP) prablem, the FLDM variables
should be given to the (SLDM), hence, the (SLDM) problem can be written as follows:

F F F
Max By (x7, %) = (fay (37, %33, Toy, (91, %20) 4
%2

subject to
(Xf, X)) € o
This problem will convert into the following single objective function as follows:

Max fs) (Xf, Xq) (5)
X2

subject to
T (x4, %30 2 8pp, £ €41, . Ny 3-{k},
o, xp)e @’
Problem (5) can be written as:

Max fy (Xf, X3) (6)

X2

subject to
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O xg ) RMAL |y (xf, %) 28y , £ € {1 N} = {k},

n

Gh = Zaijxng{bi}+ku1 var{b;}, i=1,...m,

=1

}"jsxj sﬁj,je] L., n},x; =0 and integer.

where, the constraint Yff <X; =B/ jelcil n} is an additional constraint on the decision variable x
and that has been add]ed to the set of constraints of problem (5) for obtaining its optimal integer
solution by the branch-and-bound algorithm and our basic thought on solving (6) is to find the second
level non inferior solution (Xf, x5) that is closest to (FLDM) preferred solution (Xf, ).

Now, we will test whether (Xf, x5) is preferred solution to the FLDM or it may be changed, by

the following test:

.......

F.F F
HFl(Xl X3 - Rx =X52)H2 v
<& .

F
HFl(Xl JX5) ‘

2

So, ( XIF . x3) is a preferred solution to the (FLDM), which means (XIF . x5) is a preferred solution
of (DBL-MILP) problem, where & is a small positive constant given by the (FLDM).

INTERACTIVE ALGORITHM FOR SOLVING (DBL-MILFP) PROBLEM
Step 1
Set q =0, solve the 1stlevel decision-making problem to obtain a set of preferred solutions that

are acceptable to the (FLDM); the(FLDM) puts the solutions in order in the format as follows:
Preferred solution,

+h +h
(Xf‘, Xg), (qu R Xg )
Preferred ranking (satisfactory ranking),
+1 g+l +h _g+h
(Xf‘, Xg) > (Xfl R Xg J R (Xfl , Xg ).

Step 2
Givenx, = Xf to the SLDM, solve the SLDM problem to obtain (Xf, x3).

Step 3

F_F F s
B (x1 . %2 ) -F (% =X2)H
If H 2

F
‘FI(XI ’XSZ)HZ

where, 8 is a fairly small positive mumber given by the (FLDM),then go to step 4. Otherwise, go to
step 5.

<8F

s
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Step 4
If the (FLDM) is satisfied with (xf x5) then (xf, x§) is the preferred solution to (DBL-MSIL)
problem and go to step 6.Otherwise, go to step 5.

Step 5
Set q=q+ 1 and go to step 2.

Step 6
Stop.

NUMERICAL EXAMPLE

Here, we provide a numerical example to clarify the proposed algorithm:
[1st level]

Max F; Max[3x; + 4X4, 2X1+ X5 ],
X X

[2nd level]

Max Fy Max [5x) +2x5, 4% +2%5 ],
X2 X2

subject to
P{2x+x<b} 2099 P {2x+3x,<b,}>090 % >0, % > 0andinteger.

Suppose that b;, b, are normally distributed random parameters with the following means and
vanances, E {b,} =1, E {b,} =3, Var{b,} =9, Var{b,} = 4.
From standard normal tables, we have:

kg, = Ky = 2.33, kg = Ko 1.285.

1
For the first constraint, 2 x,+ %, £ 1 + k4 0 =1+ 3(2.33), 0r 2 x+ x, < 7.99.

For the second constraint, 2 x,+ 3%, < 3+k 5y +4 =3+2(1.285), or 2 x,+ 3%, < 5.57.

The equivalent deterministic multiobjective integer linear programming Problem can now be stated

as:
[1st level]
Max Fl = Max [f11=3X1+4X2, flz = 2X1+ 2X2],
Xy X
[2nd level]
Max Fz = Max [f21=5X1+2X2, fzz = 4X1+2X2],
X2 X2
subject to

2K +xc799 2% +3x, <557, %2 0,x,2 0and integer.
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The (FLDM) solves this problem as follows:

+  Findindividual optimal solution, obtain the solution (2.785, 09, f;, = 8.355 which is not integer
solution, so we use the branch and bound method, the integer solutionis x* = 1, x*, = 1 and
f*,=7.sob,=7anda,, =0
Also obtain the solution (2.785, 0), f*, = 7.59 which is not integer solution, so by using the
branch and bound method, the integer solution is x* =1, x*,=1 and *,,=4=b,;and a,, = 0.
So, (byy, b)) = (7, 4) and (a,,, a,) = (0,0).

«  Using the solution of FLDM problem we formulate the following problem:

Max 3x; +4x5
X

subject to

2 +% 799, 2x+3x,<557,2x+2x 212,
%, 2 0, %, > 0 andinteger.

Where, 8,, = (b;,-a,,) 8, T a,, = 1.2.80 the FLDM solution is (2.785, 0) which is not integer, by the
branch-and-bound method, the integer solutionis «f = x7 =2, x§ = x5 =0ands; =03,8"=0.12
(are given by FLMD).
Secondly, the SLMD solve his problem as:
«  Find the individual optimal solutions obtain:
(b1zs by} = (10, 8), (@, a55) = (0, O)

+  Using the results from FLDM problem, we have

Max 5%y +2x4
X2

subject to

2X+ %< 799, 2% +3%< 557, 4x+2 %2 3.5, %=2,% 2 0, %2 0 and integer.
Where, 8y, = (by-a5,) 5, + 8, = 3.5. Sothe SLDM solution is (', x%) = (2, 0) and s, = 0.35,
6°=0.12.

From the following test, find that (2, 0) is a preferred solution to the FLDM

|Fi(2.0)-F (2.0

~0<0.12
[F.2.0]

S0 (2, 0) is a preferred solution to the (BL-MOSILP) problem.
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