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Abstract: In this study, we will investigate and compare the performance of some
forecasting methods for time series with both trend and seasonal patterns. The forecasting
performance has been compared with six models and these include: Auto Regressive
Integrated Moving Average (ARIMA), Smoothing Spline Model (SSM), Regression Spline
Model (RSM), Additive Regression Model (ARM), Multi-Laver Perceptron (MLP) and
Radial Basis Function (RBF) network models. The SSM, RSM and ARM are called as
non-parametric regression models, whereas MLP and RBF are known as artificial neural
network models. For these models, we conducted a comparison based on actual data sets,
the number of tourist coming to Turkey. The empirical results obtained have shown that
MLP performed better than other models. In addition, the SSM can be considered as an
alternative to MLP.

Key words: Time series, neural networks, non-parametric regression, smoothing spline,
regression spline, additive regression model

INTRODUCTION

The ARIMA models is also called as Box-Jenkins models, are the most general class of models
for forecasting a time series (Box and Jenkins, 1976). A restrictive aspect of these models is that, they
have linear structured models. The relationship between the variables is never linear in real life in
general for most problems (Granger and Terasvirta, 1993) and using linear models is not efficient for
such problems.

Artificial Neural Networks (ANN) are a class of flexible nonlinear models that can discover
patterns adaptively from the data. Theoretically, it has been shown that given an appropriate number
of nonlinear processing units, ANN can learn from experience and estimate any complex functional
relationship with high accuracy. Recenfly, numerous successfill applications have established their role
time series forecasting problems such as prediction of electric demand, prediction of breast cancer
survivability, future evolution of electricity markets, modeling rainfall-runoff process (Abraham and
Nath, 2001; Delen et al., 2005, Gareta ef al., 2006; Srinivasuluand Jain, 2006). One of the main reasons
that ANN models can produce more effective results in classification, sample recognition and
forecasting problems than linear models. The ANN also does not require any knowledge nor prior
information about systems of interest. Therefore, using of the ANN models affecting the nonlinear
structure in data may be helpful (Zhang ef af., 2001).

Latterly, non-parametric regression methods have become a very useful tool for non-linear data
such as time series (Ferreira et af., 2000). However, these approaches do not perform well when trend
and seasonality is present. To overcome this problem, we considered two alternatives methods
proposed in study. In both approaches the trend is specified as non-parametric, but the seasonal
component specification is different. First, we take into account a partial inear model where the
parametric part is a dummy-variable specification for the seasonality. Secondly, we consider the
seasonal component to be a smooth function of time and, the model falls within the class of additive
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models. The non-parametric regression models are discussed in detail by Hastie and Tibshirani (1999),
Wahba (1990}, Hardle (1991), Green and Silverman (1994) and Hardle ez af. (2004).

There are some forecasting technmiques used to forecast data time series including trend and
seasonality. We considered the ones which is more flexible than linear models. One of these techniques
is non-parametric regression models analyzed by Ferreira ef @/. (2000). The other techmique is ANN
models used for time series forecasting. The purpose of this study is to compare some forecasting
models and to examine the issue whether a more complex model work more effectively in forecasting
a trend and seasonal time series.

MATERIALS AND METHODS

The monthly arrival data of tourist coming to Turkey has been used for model estimation and
evaluation. The artificial neural networks and non-parametric regression called as semi-parametric and
additive regression models are discussed follows, respectively.

ARTIFICIAL NEURAL NETWORK (ANN) APPROACH

Multi-Layer Perceptrons (MLPs)

The MLP models used in this study are the standard three-layer MLP called as the feed-forward
neural networks models with only one output node and with nodes in adjacent layers fully connected.
The activation function for hidden nodes is the logistic function f(x) = 1/{1+exp(-x)) and for the
output node, the linzar function. Bias (or intercept) terms are used in both hidden and output layers.
MLP model can be expressed by:

[bDJrZWkah[ZWIJXIerhJJ (1

where, v, represents the kth output value, {w“ denote the weights for the connections between the
ith input and jth hidden units, { } denotes the weights for the connections between the jth hidden
and kth output units, b} denote the bias for jth hidden unit, by denote the bias for kth output unit,
() is activation ﬁmctlon applied to the hidden units and f,(.) is the activation function applied to the
output units.

Back-Propagation (BP) is the widespread approximation for training of the multi-layer feed-
forward neural networks based on Widrow-Hoff training rule (Bishop, 1995; Haykin, 1999). The main
idea here is to adjust the weights and the biases that minimize the sum of square error by propagation
the error back at each step, namely:

S:i[yk _S/k]

k=l

over the first of time series, called the training set in neural networks. To minimize the sum of square
error, different BP algorithms are constructed by applying different mumeric optimization algorithms
among gradient and Newton methods class. Conjugate Gradient (CG) algorithms provided by the
Statistica Neural Network (SNN) is also employed in training of MLP networks. Another algorithm
of CG algorithms is Scaled Conjugate Gradients (SCG) algorithm (Moller, 1993). The basic idea
of SCG is to combine the model trust region approach with the CG approach (Bishop, 1995,
Nocedal and Wright, 1999).
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Radial Basis Function Networks (RBF)

The RBF is composed of three layers: an input layer, a hidden layer and an output layer. The
hidden layer of an RBF is non-linear, whereas the output layer is linear. In the RBF, one hidden layer
with required mumber of units is enough in order to model a function. The activations of hidden (radial}
units are defined depending on the distance of the input vector and the center vector. Typically, the
radial layer has exponential activation functions and the output layer a linear activation function.
Appropriate v output vector for the x input vector is calculated as follows for n input, m output and
p radial units for the RBF:

yk(x):zplwqujj(x), k=12,..,m 2)

where, w,;, j = 1, 2,..,p are the appropriate weights for kth output unit, ¢,(x), j = 1, 2,..,p, is the basis
function of jth radial unit, w,,, k=1, 2,...,m are the appropriate deviations for kth output unit, ¢, is
an extra basis function with activation value fixed at ¢, = 1. Usually, more attention paid for the
following Gaussian basis function:

¢](x):cxp(—Hx—ujﬂz/Zcrj), i=L2..p (3)

where, 1 = (1, W .. W,) vector is center for ¢,(x) and o, is deviation (or width) parameters of that
function. The basis function of the unit is defined using those two parameters. Equation 2 can be
written in matrix notation as:

y & =W (4

where, W = (w;) and ¢ = (¢;). As can be seen from Eq. 2, the linear activation function is used in the
RBF for output layer. Education is made in three stages in the RBF. In the first stage, by unsupervised
education, radial basis function centers (in other words ) are optimized vsing all {x®},i=1, 1,...N,
education data. Centers can be assigned by a mumber of algorithms: Sub-sampling, K-means, Kohonen
training, or Learned Vector Quantization. In the second stage o;, j = 1, 2,...,p, parameters can be
assigned by algorithms explicit, isotropic and K-nearest neighbor. In the third stage of education, the
basis functions that are obtained for adjusting the appropriate weights for output units are taken as
fixed and deviation parameters are added to linear sum. Optirmum weights are obtained by minimization
of the sum of square errors:

Bw=L > T 6 1] )

i=1 k=1

In Eq. 14, tf is the target value for output unit k when the network is presented with input
vector x¥,1=1, 2,...\N. Since, the equality in Eq. 4 is the quadratic function of the weights, optimum
weights can be found as the solution of the lincar equations system. The output layver is usually
optimized using the pseudo-inverse technique.

The MLP with a defined architecture, is given by the appropriate weights and the biases of the
units, but in the RBF, it is given by the center and the deviation of the radial units and by the weights
and biases of the output units. As the point is given by n coordinates in n dimensional space, the
number of the coordinates are equal to the linear input units n. Hence, in SNN software, the
coordinates of the center radial unit are taken as weights and the deviation of the radial unit is taken
as bias. As aresult, radial weights denotes the center point, radial bias denotes the deviation.
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THE ANN APPROACH TO TIME SERIES MODELING

The feed-forward ANN method is usually used for time series modeling and forecasting
(Zhang et af., 1998). For one hidden layer network architecture n:p:1 (n, number of inputs, p, mumber
of hidden units and 1, number of outputs), inputs are the observed values of nth previous time points
and outputs (targets) are (n+1)th observed value. When the network square error fimetion is examined,
it can be seen that ANN are a nonlinear functions of previous observations (v,_, ¥, ......Y,.,) to future
observations vy, (Zhang, 2003):

Yt:f(Yt—PYO.—E ----- YO.—mW) + g

where, (Viis Yoz ¥ denote input values, y, denotes target (or output) value, w denote the weights
of the network, &, denote the vector of network error at time point t. The predicted % is calculated as
follows:

Yi :f(Yt—h Yiezoeees Yt—mw)

If N number of v, ¥,,...,¥y observations are used for a time series and 1-step forward forecast
is made, the mumber of training samples are N-n. {v,, ¥;.....¥,) 1s taken as first input training sample
and v, ., is accepted as the target. The second training pattern will contain v,, vs,...,¥,., as inputs and
V., a8 the second target output. Finally, (Vi Viemos-- Y- @and v, will be the last inputs pattern
and target correspondingly. In training procedure, with the help of different BP algorithms, the
parameters (weights and biases) of the network is obtained by getting closer to the mimimum value of
Sum of Square Error (SSE):

N
SSE= Z (thyt)z

t=n+l
THE NON-PARAMETRIC APPROACH IN TIMES SERTES PREDICTION
The following basic model form has been considered as:
vty =s(t )+ z(t)+et,) i=L...n (6)
where, t’s are spaced in [a, b], s(t;) denotes the scasonal component, z(t) represents the trend and e(t)
indicates the terms of error with zero mean and common variance o . The model 6 can be also written
as:
y,=8+z +¢,1=12,...n {7
It is assumed that the following model structure for the trend:

z, =fit)+e, i=12,..n (®

where, f1s a smooth function in [a, b] and €i’s are assumed to be with zero mean and common variance
o, whichis different from ¢;’s.

The main idea is to estimate the functions f and s. The function fis estimated as a smooth
function, but the estimation of the function s is different due to seasonality (Ferriera ef af., 2000).
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Therefore, it is considered two alternative models for the estimation of the s. Firstly, it is treated a
sermi-parametric model where parametric component is dummy variable for the seasonality. Secondly,

it is discussed the seasonal component to be a smooth function of time and use a non-parametric
method.

Semi-Parametric Regression Model
It is assumed that the seasonality is built as follows:

r-1
s =s()=3 p,Dp+v, i=1...n ©)
k=1

where, 1 is the number of annual observations {r = 12) and v;’s are assumed to be with zero mean and
common variance o, and different from the errors in Eq. 7 and & D}'s are dummy variable that
denotes the seasonal effects and P’s are parametric coefficients. Dummy variables are denoted by
D, =D, -D, (where, D, = 1if i observation correspond to the kth month of year and Dy = 0
otherwise) for cancels the seasonal effects when a year is completed (Ferriera et al., 2000). By
substitution Eq. 9 and 8 in Eq. 7, itis obtained as:

r=1
¥ =Y By + )+, (10)
k=1

where, 1’s are the sum of the random errors with zero means and constant variance T . .

Model 10 is called as a semi-parametric model due to consist of a parametric linear component
and only a non-parametric component. The main purpose is to estimate the parameter vector [ and
function f at sample points t,,...,t,. For this aim, two estimation methods, called as smoothing spline
and regression spline, have been considered.

Estimation with Smoothing Spline Method (SSM)

Estimation of the parameters of interest in Eq. 10 can be performed using smoothing spline.
Mentioned here the vector parameter b and the values of function f at sample points t,,....t, are
estimated by mimimizing the penalized residual sum of squares:

PSS (B 1) =34y, - d'B-T1)¥ + xj' (£ du (11)

where, f e CH[0, 1] and d; is the ith row of the matrix D. When the § = 0, resulting estimator has the
form f = (f‘(tl),___,f"(tn)) =8,v, where, 8, a known positive-definite (symmetric) smoother matrix that
depends on A and the knots t,,....t, (Wahba, 1990; Eubank, 1999).

For a pre-specified value of A the corresponding estimators for f based on Eq. 10 can be obtained
as follows (Wahba, 1990). Given a smoother matrix S,, depending on a smoothing parameter A,
construct D= (I-5,)D. Then, by using penalized least squares, mentioned here estimator are given
by:

B-(D'D) Dy (12)
-5, (y-Dp) (13)

Evaluate some criterion function (such as cross validation, generalized cross validation) and iterate
changing A until it is minimized.
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Estimation with Regression Spline Method (RSM)

Smoothing spline become less practical when sample size n is large, because it uses n knots.
Regression spline is a more general approach to spline fitting. Smoothing spline require many
parameters to be estimated, typically at least as many parameter as observations. A regression spline
is a piecewise polynomial function whose highest order nonzero derivative takes jumps at fixed knots.
Usually, regression splines are smoothed by deleting nonessential knots. When the knots are selected,
regression spline can be fitted by ordinary least squares. For further discussion on selection of knots,
see study of Ruppert and Carrol (2000).

fit;) in equality (Eq. 10) is approximated by:

K
) =F(t 1) =7 + 1t ot 75 Dby (1) %, =10 (14
k=1

where, pz1 is an integer {order of the regression spline and usually chosen a priori), bl,...,b, are
independently and identically distributed (ii.d) with N@©, ), (f), = t if t=0 and 0 otherwise and
¥,<...,k, are fixed knots (min(t) < x,,....,< k< max(t)).

Using vector and matrix notation model 10 can be expressed as:

y=Dp+Zb+n (15
Where:
.. .0 -110 1t .. .
o1 . . .0-101 . . . 1" .
D=
00..:1—100...1.t.1‘°...t.f,
and
A L i
7=
(tnf.Kl)i S (tnf.KK)i

where, b = (b,,...,.b,)T is the vector of coefficients and 1 = (1,,...,m,)" is a vector of the random error.
Predicted value of ¥ in Eq. 10is given by

. . - N - T
F=Yor 7 ¥ P BD B, Dy + (Zl,...,ZK)(bl,...,bK) (16)

Regression spline estimators
[[3: (?nﬁp---ﬁp, Bron By )T, Fo (E,“___,f,k)j of (B, f) are defined as the minirmizer of:

PSS £ = 3 fy, — dp B} A b2 (17
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where, A>0 is a smoothing parameter such asin Eq. 11. As A—<, the regression spline converges to
a pth degree polynomial fit. As A—0}, the regression spline converges to the Ordinary Least Squares
(OLR) fitted spline. For a pre-specified value of A the corresponding estimators for (5 and f based on
Eq. 15 can be obtained as follows (Ruppert et al., 2003):

p=(0"E"D) DTy 1)

where, 3 - 27767 + diag(®)), i=12,...,n.

f=b,..b,) = 52" (y-Df) (19)

The smoothing parameter A and the number of knots K must be selected in implementing the
regression spline. However, A plays a more essential role. See for a detailed discussion of the knot
selection (Ruppert, 2002). The solution can be obtained in S-Plus.

Additive Regression Model (ARM)

The semi-parametric model has been used for estimation of the parameters in Eq. 10. However,
there are situations in which a dummy variable specification does not capture all fluctuations because
of existing any seasonal effect. Therefore, here, a more general case for seasonal component has been
considered as follows:

s, =glt)+v,i=L..n 20)

where, g € C*[a, b], v/'s denote the terms of random error with zero mean and common variance ©,’ .
By substitution of the Eq. 8 and 20 in Eq. 7, v, is obtained as:

v, =gt)+ft)+u,i=L...n @1

where, u's are the terms of random error with zero mean and constant variance &. =0+ 0. + o,
The model presented in Eq. 21 has a fully non-parametric model because parametric component
is missing. These models are called as additive non-parametric regression models. In order to estimate
the model in Eq. 21, the criterion Eq. 11 and 21 can be generalized in an obvious way. Estimator of the
model 21 is based on minimum of the penalized residual sum of squares (Hastie and Tibsirhamni, 1999):

1 1

PSS(L )= §y, — (L) — g1l + 2, J(E Y du+ &, [ (g"tw Y d (22)

o o
where, the first term in Eq. 22 denotes the Residual Sum of the Squares (RSS) penalizing the lack of
fit, the second term multiplicand by A, denotes the roughness penalty for the f and the third term
multiplicand by A, denotes the roughness penalty for g Firstly, Eq. 22 can be written as:

PSS(f.g)=(y-f-g) (y-f-gi+AfTKf+2 g Kg (23)

where, K;is a penalty matrix for f and K, is a penalty matrix for g. Then, by differentiating according
to fand g and afterwards, by setting to zero, the estimators of f and g are defined as:
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f=+2K) " (y-2)=5, (y-8) (24)
g=(1+ 2K ) (y-)=8, (y-f) (25)

MEASURING MODEL PERFORMANCE METHODS

In order to evaluate the predictions of a model with observations, the following statistical
performance measures, which include the Mean Square Error (MSE), the Root Mean Square Error
(RMSE), the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) have
been used (Carey and Rob, 2002). Forecast evaluation measurements are defined as following:

1 N 1 .
MSE :;Z(y;yt)z, RMSE= [~ > (v, - 9.).

t=1 nig

MAE= LSy 9. ma mapE= L3t ¥m 3 000
ney n

= |y

where, v, is represent the observed values, ¥, is indicate the forecasted values and Mean is the
arithmetic mean value.

A perfect model would have MSE or RMSE, MAE and MAPE = 0.00. Of course, because of the
influence of random errors, there is no such thing as a perfect model in time series modeling.

EXPERIMENTAL EVALUATIONS

Here, a real data sets occurred in Turkey is discussed as experimental. Appropriate
non-parametric regression and ANN models were chosen by doing experiments to forecast and these
models are also compared with each other. To conduct these experiments, SNN, S-Plus and R-
Programs are used.

Data Set

The real data set is from Turkish Statistical Institute (TUIK) analyzed by Aslanargun ef al.
(2007). The data can be found in www.tuik.gov.tr and represent the number of monthly tourist coming
to Turkey between Jamuary 1984 and December 2003. The data set is divided into two parts for the
use in traimng and forecasting. In the first part, 216 monthly data are taken into account for the period
of the Jammary 1984-December 2001 period. These data are used in training to construct the models.
In the second part, with the help of the models constructed in the first part, the performances of those
models are calculated using the 24 monthly data for the January 2002-December 2003 period.

Selection of the Appropriate ANN Models

The 216 monthly data were used in training of the network. An evaluation of the modal was made
depending on the forecasts of the 24 monthly data. The best model have been selected by scores
obtained from MSE, RMSE, MAE and MAPE. As the initial weight and bias values of the network
were random, experiments with 150 replications were made for the same network structure and the
models giving the best forecasts were determined. Because of the monthly tourist arrival data included
seasonality, the number of input units was determined as 12. During these experiments, various neural
network algorithms with single layer, with one or two hidden layers, MLP and the RBF models were
applied on the data set. As the initial 12 data were lost because of the seasonality, 204 from the
216 data were used to adjust the weights. In the training stage of the network, data were divided into
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two parts: 132 of the 204 data were used for training and 72 data were used for validation. This
division was used to restrict memorization of the network and provided for better forecasts
(Bishop, 1995; Haykin, 1999).

Among the ANN models, the MLP (12:3:1) model have indicated the best performance. The CG
algorithm indicated the best performance on the 51th epoch. A hyperbolic tangent function is applied
in the hidden unit and the linear activation function is applied in the output unit. The weights and
biases of the MLP (12:3:1) model are shownin Table 1.

Constructing the Appropriate Non-Parametric Models

The 216 monthly data set including January 1984-December 200 period were used in training the
models called as semi-parametric and additive regression model. For estimation of these models, we
need to select smoothing parameter A. In general, the A can be selected by using automatic selection
methods such as Cross Validation (CV), Generalized Cross Validation (GCV). In practice, it is
reasonable to select the A by specifying degrees of freedom (df = trace (S,)) for the non-parametric
components (Hastie and Tibshirami, 1999). Therefore, the df is used to select the smoothing parameter
A in smoothing spline. On the other hand, both the smoothing parameter A and the number of knots
K must be selected in implementing the regression spline. The solution is obtained by S-Plus and R

Table 1: The weights and biases of the MLP (12:3:1)

21 22 23 3.1
Thresh 0.685052 0.651214 0.544668 -0.57875
1.1 -0.069968 0.085128 0.186845
1.2 0.021359 0.019630 0.072838
1.3 -0.026189 0.054980 0.029329
14 -0.016201 0.035831 -0.004167
1.5 0.000860 0.009109 0.006610
1.6 0.008219 0.032057 0.026170
1.7 0.089622 -0.009947 -0.052460
1.8 0.073210 0.027442 0.113376
1.9 0.093421 -0.030547 -0.012583
1.10 0.037213 -0.002316 -0.010518
1.11 -0.013186 0.011851 0.093191
1.12 -0.166940 0.139571 0.238188
21 -1.30809
2.2 1.47106
2.3 0.93885

The row and column header numeric terminology first lists the layer, then the unit number within the layer. For example,
2.1 stands for unit 1 in layer 2
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16000007
1400000
1200000 —=—85M
100000
800000
600000 ——RSM

4000007
200000+
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—+—0Observed Series

No. of touristst
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JAN1984
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MAY1991
MAR1993
JAN1995
NOV1%96
SEP1998
JUL2000

Fig. 1. Observed number of tourists and their estimation values obtained by appropriate SSM, RSM
and ARM
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programs. Secondly, we consider an additive regression model where both the seasonal and the trend
components are unknown smooth functions of time. So, we have chosen A, and A, parameters by
specifying the df. Observed number of tourist for the January 1984-December 2001 period and the
tourist estimation results obtained by appropriate non-parametric models are shown in Fig. 1.

Figure 1 shows that the data have an upward trend together with seasonal variation. In these
series, the main advantage of the non-parametric regression models that perform prediction by means
of the models without data loss. In other words, as the initial 216 data are used to estimate the model,
216 residuals are obtained for each of non-parametric model. Consequently, 216 data was used to
estimate non-parametric regression models called as smoothing spline, regression spline and additive
regression models.

COMPARISONS OF THE MODELS

An evaluation of the non-parametric regression models obtained by using S-Plus and R programs
was made depending on the forecasts for the January 2002-December 2003 period. Namely, we
calculated the performance values of the non-parametric regression and ANN models for the mentioned
period. Table 2 shows for each model, the values of the MSE, RMSE, MAE and MAPE called as
performance indicators. The scores of the MSE, RMSE, MAE and MAPE belong to MLP model are
lower than the ones of the concurrent specifications. In that sense, the MLP model outperforms the
other formulations. Furthermore, as shown Table 2, the SSM model has indicated better performance
than the RSM and ARM since SSM has had the lowest scores of the model evaluation criteria among
the non-parametric models.

For test data composed of the 24 values, the observed and forecasted values obtained by different
models are calculated, but they are only given as graphically since they would occupy very much
place. Observed and their forecasted values by the models are shown in Fig. 2.

As shown in Fig. 2, the output from the MLP model shows that predicted and observed values
very close to each other. However, the output from the RBF model presents that there is big

Table 2: Performance values for the selected models

Models MSE RMSE MAE MAPE
ARIMA (1,1,1)(1,1,0n, 3.06E+10 174926.3 137589.4 13.74
SSM 2.45E+10 156520.6 117409.6 14.05
RSM 2.55E+10 159783.1 119122.2 14.35
ARM 341E+10 184594.6 141483.7 15.85
MLP (12:3:1)* 2.12E+10 145575.7 123480.7 13.73
RBF (12:7:1) 1.80E+11 424314.6 352104.0 34.02

*The model having best performance
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—=— Obsvered series

I 20000001 —=— ARIMA

‘g SSM

2 1500000

kS RSM

2 10000004 ARM

—e— MLP (12:3:1)
—+—RBF (5:11:1)

500000 as

0

[ ] [ B T, S | o o
SEE:8=z53¢8:¢8¢
gr\l!\lgr\l(\l g a8 85 3 a
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q:g o 2 I 2 B O
- E»—.mzhgghmz

Fig. 2: Observed and their forecasted values by the models
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difference between actual and predicted observations. The outputs shown in Fig. 2 support the ideas
advanced in the Table 2.

RESULTS AND DISCUSSION

It is proved that the ANN model gives a comparable performance to the ARIMA model for longer
time horizons (Zhang, 2003). There have a great deal of studies comparing various neural network and
some non-parametric methods for time series. For example, Sallur-Ruiz ef af. (2008) indicated that
MLP model outperformed than other methods. Different ANN and non-parametric methods have been
applied to time serics data set in the study. However, most of them are designed to predict the time
series. In this study, these methods mentioned here are considered as a comparative on aspect of
forecasting performance.

It is known that neural networks very good performance in time series forecasting problems. As
can be seen from Table 2, the MLP {12:3:1) have performed very good performance, while the RBF
have not performed well enough. This case supports the idea that the RBF is usually unsuccessful in
extrapolation problems (Bishop, 1995). On the other hand, as shown Fig. 2, the values forecasted by
ARIMA, SSM, RSM, ARM and MLP (12:3:1) are closely following the real observed values, whereas
the values forecasted by the RBF is not proper the observed series. Itis also seen that RBF is not good
predictor for such time series.

Non-parametric regression models can be considered as alternative method to ANN models. The
SSM indicated a good empirical performance among the non-parametric models, while another
non-parametric model called as ARM showed the worst performance. As a result, our opinion is that
MLP can be usefill in time series forecasting problems included seasonality and trend. We propose to
use the MLP, especially on these type semes. Furthermore, the SSM model can be used as an
alternative method to the MLP.
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