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Abstract: This study describes an innovative strategy to the problem of non-linear
estimation of states for electrical machine systems. This method allows the estimation of
variables that are difficult to access or that are simply impossible to measure. Thus, as
compared with a full-order sliding mode observer, in order to reduce the execution time of
the estimation, a reduced or third-order discrete-time extended sliding mode observer is
proposed for on-line estimation of rotor flux, rotor resistance and torque in an induction
motor using a robust feedback linearization control. Simulations results on Matlab-
Simulink environment for a 1.8 KW induction motor are presented to prove the effectiveness
and high robustness of the proposed nonlinear control and observer against modeling
uncertainty and measurement noise.

Key words: Nonlinear control, induction motor, reduced-order extended sliding mode
observers, parameter estimation

INTRODUCTION

The Induction Motors (IM) become very popular for motion control applications due to its
reasonable cost, simple and reliable construction. However, the control of IM is proved very difficult
since the dynamic systems are non linear, the electric rotor variables are not usually measurable or the
transducers are expensive (such as torque, flux transducers) and the physical parameters are often
imprecisely known or variable. For instance, the rotor resistance drifts with the temperature of the
rotor current frequency.

This naturally structure of non-linear and multivariable state of M models induces the use of the
non-linear control methods and in particular the robust feedback linearization strategy (Isidori, 1995;
Yazdanpanah ef af., 2008; Mohanty et af., 2002) to permit a decoupling, assure a good dynamic
performance and stability of the IM.

However, a variation of the rotor resistance can induce a state-space coupling which can induce
a degradation of the system. In order to achieve better dynamic performance, an on-line estimation
of rotor fluxes and rotor resistance is necessary. An approach proposed by Derdivok (2005),
Jingchuan ef al. (2005), Benchaib et af. (1999) and Shraim ef af. (2007) to estimate with success the
state variables in an IM is the use of the full-order Sliding Mode Observer (SMQ). This latter, built
from the dynamic model of the IM by adding corrector gains with switching terms, is used to provide
not only the unmeasurable state variable estimation (rotor fluxes and Torque) but also the estimation
ofthe measurable parameters (stator currents and speed). However the determination of the measurable
parameters estimation imposes some estimation algorithms very long and usually sophisticated
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with an increase of the computational volume. Therefore, in order to reduce the accuracy and
the computation rate of the estimation algorithms, the measured parameters estimation is not
necessary.

Thus a Reduced-order Discrete-time Extended Sliding Mode Observer (RDESMO) for the IM is
presented in this study to solve only and specially the problem of the unmeasurable parameters
estimation (rotor fluxes and rotor time constant).

MATERIALS AND METHODS

Robust Feedback Control of an Induction Motor Model

By assuming that the saturation of the magnetic parts and the hysteresis phenomenon are
neglected, the classical dynamic model of the IM in a {(d, q) synchronous reference frame can be
described by De Fornel and Louis (2007) and Mendes ef af. (2002):

Ve =R I, + aDe, _

0,0, |Pu :L—“‘fbdr +ol. I,
. (la)
do ’ L,
Vqs:RS.IqS+T+ 0D, | :L—(I:'q,Jrcs.Ls.Iqs

Dy _ L, L.l ls and (Dqs _ L, L. Iqs (1b)
| Dy L. L. L @, L, Ll

The load mechanical equation is:

w, =C, -C, (1e)

‘Where:
Lm
Cop =P (@4 1, =0 L)

The application of Eq. la-¢ returns a system of fifth-order non-linear differential equation, with
as state variables the stator currents (1, 1), the rotor fluxes (®,, @) and the rotor pulsation (cw,):

X, =f&x)+tg u )]
Where:
X - [ Ids Iqs (I)dr qu oy ]T
u - [ Vds Vqs ]T
- - - ) B
Al tol +0,p0, +Bo D, gl
L.—AL, -Po®, +po, D, 0 1
fx,)=|oL,l,—00,+0,0, - oL,
oL,l,—0,0,—0,D, 0 0
: L, _ _p. 1 0
7p .ﬁ.(dhd‘.lqs D, 1) TC’ E.wri | 0 |
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Moreover, by choosing a rotating reference frame (d, q), so that the direction of axe d is always
coincident with the direction of the rotor flux representative vector (field orientation), it is well known
that this rotor field orientation in a rotating synchronous reference frame realizes:

@y, = @, = Constant and &, = ¢ (3)

Thus the dynamic model of the IM, completed with the output equation, can be rewritten as:

X = 1) +gu 5y =[hy(0) b7 = [@, ] with x =[Iy L, ®, o, u=[Vs Vgl

Al ol +o pD, — 0

5" gs

0,1, -AI, - Bo, o, ¢

tx)=|o,L 1, -0c,®, ;og=| 0 oL |” 8 2] “
p? .%.CD,.IHS —%c, —%.m, o0
o 0 0
From the expressions Eq. 2 and 3, one can write:
dI
2 —g I, -0l
dt, rds Tmy
C, =0 SI.I“" (5)
I
C.= pLLm ®,1,
Where:
®l
we ST

This relation Eq. 5 shows that the dynamic model of the IM can be represented as a non-linear
fimetion of the rotor ime constant. A variation of this parameter can induce, for the IM, a lack of field
orientation, performance and stability. Thus, to preserve the reliability, robustness performance and
stability of the system under parameters variation {in particular the rotor time constant variations) and
disturbances, we can uses a robust feedback linearization strategy to regulate the motor states.

As a matter of fact, we can see that the system Eq. 4 has relative degree r, = 1, = 2 and can be
transformed into a linzar and controllable system by chosen:

+ A suitable change of coordinates given by:
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z =h(x); Z =Lily(®) 2 =ha(x); 2 =Lrhy(x)

+  The feedback lincarization control having the following form:

-1

c L
B T m 0
[Laleh ) Lol [v-Léheo] | oL, v, L7, ()
L L (x) LoLh00| v, —L h,(x) pt.L, v, — L. h,{x)
oL, L.J °®

where, ®, # 0 and [v,, v,]" are the new input vector of the obtained decoupled systems.

+  Tworobust controllers C(s) to provide a good regulation and convergence of the rotor flux (@)
and speed (o). On the other hand, in order to impose after a closed loop a second order dynamic
behaviour defined by H(s), the controller C(s) can be chosen by Dovle ef af. (1992):

() = R{s).H(s)™ (6)
1-R(s)
Where:
1
RO =
His) = 1

1+2—‘:‘°s+%s2
wl] m[l

where, the real t; is an adjusting positive parameter.

The block diagram structure for the control of (@, w,) is shown in Fig. 1.

Furthermore, as the control of an IM generally required the knowledge of the instantaneous flux
of the rotor that is not measurable, a full-order SMO built from the model Eq. 2 by adding corrector
gains with switching terms is widely used (Asseu ef af., 2008; Tursini ef a/., 2000) with success for
on-line estimation at one and the same time of rotor time constant, fluxes, currents, speed or torque.
The equivalent value of the switching function depends on the current errors given by the difference
between the estimated currents to their real or measured values. However, as the currents and speed
are already measurable, their estimated values are not therefore necessary.

Here, in order to respect to the rotor time constant variations and reduce the execution time of the
observation, a reduced-order extended sliding mode observer is proposed to provide only the
unmeasurable parameters estimation (rotor fluxes and rotor time constant). And the switching term of
this reduced observer will be only function of the measurable parameters (voltage, currents and speed).

D, 0
D et> O et » O

:
1
— — C(s) (— Feedback L Motor 1 >
1
I
1
I

algorithm model

|
1
+ 1
1

Fig. 1: The block diagram structure for the control of (®,, w,)
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Reduced Order Discrete-Time Extended Sliding Mode Observer

Letus consider the dynamic model of the IM given by the system Eqg. 2. Assume that among the
state variable, the stator currents (I, 1) and the rotor speed (w,) are measurable, therefore their on-line
estimation is not necessary. Moreover, as previously underline, a variation of the rotor resistance can
induce performance degradation of the system. Thus from the expression Eq. 2, in order to estimate
the rotor flux and rotor time constant, a two-dimensional state vector extended to the rotor time
constant defined by X, = [@, ®, ®]" =[x, x, %] can be introduced with o, =R,/L.. The corresponding
reduced order extended state space equation become: where, v(t) =[I,,, I,]" is the new input vector.
We can write:

X =KX tog X, +x, L I
X =—0,X, - XX +X, L, I (N

X, =E

where, & presents the slow variation of ,. The fact that the state vector only consists of the rotor flux
and resistance offers an advantage namely the reduction of the computational volume and complexity.
Thus the rotor flux and resistance can be more casily and rapidly estimated.

Denote %, &; and %; the estimates of the fluxes and rotor time constant. The proposed reduced
order ESMOQ is a copy of the model Eq. 7 by adding corrector gains with switching terms:

o

L moX X oy X X L T+
R % S &

X, =e+ 1,1,

where, T', and I'; are the observer gains. The switching I, is defined as:

Isz[Sig“(Sl)} with § = F‘}:M.Z, and M:P'G’ B'“’f] ()

sign(s,) s, —Bw, Po,

where, Z, is a function depending on the stator currents, voltages and speed measurements.

Setting %, =x, —%, with i1=1,2, 3, Firstly to determine I, and I',, let us assume that the estimation
error of the rotor constant time converge to zero (X; =X, —%,=0)  The estimation error dynamics of
the fluxes is given by:

{Xl =-0 X +tw,X, -1

f,=-0,%-0,%-T,1

s

With the following observer gain matrices:

TR "
I, -0, q-0, 0 n

where, q and n are positive constants, the estimation [%, ¥;] emror converge to zero.
Secondly, to determine observer gain I';, it can be supposed that the observation errors of the
fluxes converge to zero. The estimation errors of the fluxes X, =x, —X, =0 (i =1, 2) are then given

by:

0=-%, % +8,% to, %, +L I, %, 1,1,

0=-w, % %% 1%, %, 1L I & T,

m s
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By replacing the expressions of T', and T',, we obtain:
% 1| Ly ly— )”{1 «
== L&
X, q Lm.Iqs - X,

The estimation error dvnamics of the rotor time constant is given by:

% L, I,-%
ﬁB:—rg.Is:—FB.A{ ‘}:—n.a*i.{ o h‘}g
2 q | Lale =%

W

We can see that this error dynamics is locally and exponentially stable by chosen:

L L.~%T
o=mq . "% | Awithm=0 (1
L.I,-%;

The parameter m is adjusted with respect to rotor time constant estimation.

Finally, from the expressions Eq. 10 and 11, it can be seen that there are three positive adjusting
gains: g, nand m which play a critical role in the stability and the velocity of the observer convergence.
These three adjusting parameters must be chosen so that the reduced observer satisfies robustness
properties, global or local stability, good accuracy and considerable rapidity.

In order to implement the reduced-order ESMO algorithm in a DSP for real-time applications, the
corresponding three-dimension state space equation defined in Eq. 7 must be discretized using Euler’s
approximation (2nd order). Thus the new discrete-time varying model represented by a function
depending on the stator current is given by:

X k+D)=x(k)+ T.L, (x, () + %.Li (x, (k)

=%, (k) + T, (x, (), v(k)) + Te' 1, (x,(k), v(k)) (12)

21’
v.(k)=h(x (k)

Where:
%0 =[0. K @0 o]
vk =[I,& I&]

-6,(K.Q, kK +o,0, ki+o ()L, Ik
(%, (k) v(k)) =| 0, &)@, (k) -0,k P, K +0,K&).L, K [
0

(0! (k) 04 (k) Dy (k) - 20,(k) o, (K) D, (k)
- ()L, LK)+ 6,() L, .0, (k1.1 (k)

1, (x,(k), v(k)) = | 2.0,(K) 5, (K) @y, (k) + (0 (K) — 3 (k) D, (k)
— G, (K).L,.00, (k) L. (k) - 2K L, I, (k)

m ety

where, k means the kth sampling time, i.e., t = k. Te with T, the adequate sampling period chosen
without failing the stability and the accuracy of the discrete-time model.
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The proposed RDESMO can be defined by the following equation:

2

&k +1) =%, 00) + T,.J, (£, (), v()) + =, (%, (), v(k)) + GLR) T (K) 13
This Eq. 13 is composed of:
¢ The correction: 8 = G(k).Is(k) -
e The prediction vector: X,(k+1y=% (k) +T,J (X, (k) v(k)) + = T, (X, (k) w(k))

with % (k)= [cp k) Dk & (k)]

The switching vector [,(k), deduced from the continuous case given by Eq. 9, can be written as:

1ok = Fg“(sl (k))} with § = F (k)} =T M) Z(k +1) (14)
sign(s, (k) 5, (k)

Where:

=&,(k) + E(éf K -wi) 0,6 -T,.6K .0,k
MKy = 2

—wy (k) + T,.6,(kw,k) &)+ %(63 (k) —wik))

~ (zak+1-2,k+1)
k1) = [z,q(kﬂ) 3, k+ 1)}

Thus the output vector becomes h (x.(k)) = [h,(k), h,(k)]” where, h, and h, are given by:

hy =z, + 1= @,k + 1)~ Dy () - To D, (&), by =z, kD=0, k1)~ D)+ T D, K

From the electrical Eq. 1a of the M, an approximate (1st order) discrete-time relation of the fluxes
is given by:

2 kD)= f[v (9~ R, 1,00]- GLSLf[I 1) LK T, (0]

m

z,k+1)= L. '[Vqs(k) Rqus(k)] L. '[1 k+D-I,00+ T,0,06I,K

m

and
fuk+1)) (D k+D)-d 0-T.0,0d, K (15)
2, kA1) || Bk +1)- D, (0 + Tew, (0.D, ()

The proposed gain matrix representation G (k), deduced from the contimuous case given by
Eq. 10 and 11, can be defined as follows {discrete-time approach):

I,(k) q-T..8.(k) T,.0, (k)
Gk =T.| T,k |= ~T ., (k) q-"T..5.(k) A (16)
) )| TmL, Ik -, k) T.mL, I k-, K)

Onee the fluxes are estimated, it is casy to deduce the estimated torque defined by:

. L
G (y=pon
o () PT

T

(4 k)1, k) - B ()1, (K) 47
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RESULTS AND DISCUSSTON

In order to verify the feasibility of the proposed RDESMO, the simulation on SIMULINK from
Mathwork has been carried out for a 1.8 kW induction motor controlled with a robust linearization via
feedback algorithm (Fig. 2). The nominal parameters of the induction motor are shown in the Table 1.

The RDESMO is implanted in a S function using C language. In order to evaluate its
performances and effectiveness, the comparisons between the observed state variables and the
simulated ones have been realized for several operating conditions with the presence of about 15%
noise on the simulated currents (I, 1)) or speed. Thus, using a sampling period T, = 1 m sec, the
simulations are realized at first in the nominal case with the nominal parameters of the induction
motor {Table 1) and then, in the second case, with 50% variation of the nominal rotor time constant
(0,= 1.5 orn) in order to verify the rotor time constant tracking and flux estimation.

Figure 3 and 4 shows the simulation results for a step input of the rotor speed and flux. One can
see that in both nominal (Fig. 3a, ¢) or non-nominal (Fig. 4a, ¢) cases, the estimated values of fluxes and
torque converge very well to their simulated values.

The observed fluxes (Fig. 3a) indicate the good orientation (@, is constant and ®,, converges to
zero) which is due to a favorable rotor time constant estimation (Fig. 3b, 4b). The estimated torque
(Fig. 3¢) is in good agreement with the simulated value.

Once the fluxes are estimated, we can deduce the algorithm of the feedback linearization control
(Fig. 2). The waveforms show the good uncoupling between the rotor flux and the speed because a step
variation in @, (Fig. 4a) can not generate a speed w, change (Fig. 4d). Thus the field orientation and the
synthesis of robust linearization and decoupling control are well verified.

All those results show the satisfying tuning, the excellent performance of the robust decoupling
control and RDESMO against rotor resistance variations and perturbations or noises.

D grons l Ie ¢ Ty

- Vds »
(DdIR¢f ‘ : I d tv t Ids
controller . L nduction motor 7
+ ®, —| Linearization O model in the (d, q) ¢

i —> D,
Oper 4 05 ——pf algorithm 0, — synchronous ar
O Rotor speed | reference frame >,
- >
controller Vv, o
OF A A4 v

D 005

Tos —>

Torque
I, — Reduce Order estimation

— C

Discrete-time Disovs
Va—>  Extend Sliding
V,——  Mode Observer

o) (RDESMO)

Os —» Oy

Estimation

Fig. 2. Simulation scheme

Table 1: Nominal parameters of the Induction motor

P..=1.8kwW U, =220/380V In=208/12A p=2

F, =50Hz Q, =1420mpm J, =015kgNm? L, =0.05 Nmsecrad™!
R.=570 R,.=14750Q L, =01766 H Ln,=01262H

L =0.0504 H L..=01262H
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CONCLUSION

In this study, a robust feedback lincarization strategy and RDESMO are used to permit a
regulation and observation for the Induction motor states in order to assure a good dynamic
performance and stability of the global system. This RDESMO is based on SMO principle and
extended for the reconstruction of the fluxes, the rotor time constant and the torque estimation.

The interesting simmulation results obtained on the induction motor show the effectiveness, the
convergence and the stability of this robust decoupling control and RDE SMO against rotor resistance
variations measured noise and load. Thus, in the industrial applications, one will appreciate very well
the experimental implement of this robust estimator for the reconstitution of the fluxes and the torque
as well as the rotor resistance.

NOMENCLATURE
Co C : Electromagnetic and load torques (Nm)
Lig 10 :  Stationary frame (d, q)-axis stator currents (A)
Lo Iy Ly . Stationary frame (d, g)-axis rotor currents and rotor magnetizing current (A)
p, L f : p: Pole pair No. I: Inertia, kg?; £ Friction coefficient (Nm.s/rad)
L.L, L. L . Rotor, stator, mutual and leakage inductances (H)
R.E . Stator and rotor referred resistance (£2)
T, T, T, : Sampling period, rotor and stator time constant (T, =L/R, =1/ 0,; T,=L/R,),

(s)
Vi Vi : Stationary frame d- and g-axis stator voltage (V)
®,. ®,.. @, @, : d-qcomponents of rotor fluxes (@, @,,) and stator fluxes (P, D) (Wb)
Wy, Wy, Wy : Stator, totor and slip pulsation (or speed) (rad sec™)
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