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Abstract: The aim of this study is to evaluate the effect of frequency on the
ratchetting behavior of plain stainless steel pressurized cylinders that may be used
in the power plant components. The cylinder is subjected to an internal pressure
(calculated as the design pressure for each cylinder) and alternately bending
moments at different frequencies typical of seismic events. Ratchetting of the
cylinder wall has been observed and recorded in the hoop direction. The nonlinear
isotropic/kinematic (combined) hardening model is used to evaluate the ratchetting.
Finite element analysis which models the cylinders under above mentioned loads
and combined hardening model 1s applied to investigate the ratchetting.
Stress-strain data and material parameters have been obtained from several
stabilized cycles of specimens that are subjected to symmetric strain cycles. The
results show that initially, the calculated rate of ratchetting is large and then
decreases with the increasing of cycles. Also, the ratchetting data using FE analysis
show the hoop strain ratchetting decreases with the increasing of frequencies and
spacing from the resonant frequency.

Key words: Ratchetting, pressurized pipes, cvelic bending moment, frequency,
strain hardening, finite element

INTRODUCTION

The literature review shows that accurate closed form solutions may not be found to
analyze the ratchetting behavior of the pressurized pipes under cyclic bending loading which
can be caused by seismic loads. However, approximate solutions have been developed by
Cao er al. (2009), Tasmim et al. (2008), Rahman ef al. (2008), Zehsaz er al. (2008), Chaboche
(1989, 1991, 1994, 2008), Abdel-Karim (2005) Chen ef al. (2005), Johansson er al. (2003),
Chen and Jiao (2004), Bari and Hassan (2001, 2002), Abdel-Karim and Ohno (2000) and
Beaney (1990, 1991) which can be used to calculated the induced incremental plastic strains
caused by ratchetting. Experimental works to study the ratchetting of the straight pipes have
also been carried out by the EPRI (Ranganath et al., 1989; English, 1988).

The kinematic hardening theory of plasticity based on the Armstrong-Frederick model
is used to evaluate the cyclic loading behavior of thick cylindrical vessels. The results found
from their numerical analysis shows that the when the stress range is more than twice the
vield stress, kinematic hardening theory with the Armstrong-Frederick model excluding creep,
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predicts ratchetting for load controlled cyclic loading while shakedown is predicted for
deformation controlled cyclic loading. Kinematic hardening theory with the Prager model
predicts shakedown for load and deformation controlled cyclic loading of thick vessels
(Eslami and Mahbadi. 2001).

The study reported here 1s based on a series of tests conducted using specimens having
D/t = 12, There is notable dearth of information available which seeks to compare
experimental data such as that reported by Moreton er al. (1994, 1996, 19984, b) with finite
element computations. This 1s surprising since 1t 15 well known that analytical solutions,
(such as those presented in references (Beaney, 1990), differ with experimental data by
several orders of magnitude. It is of paramount importance to establish reliable theoretical
methods for predicting ratchetting rates and the use of Finite Element (FE) codes would seem
to be a logical way forward. Therefore, in this study a finite element analysis with the
nonlinear isotropic/kinematic (combined) hardening model is used to evaluate ratchetting
behavior of plain stainless steel pressurized cylinders subjected to dynamic bending moment
with different frequency.

MATERIALS AND METHODS

In this study, a finite element code, ABAQUS, is used to study the effect of frequency
on the ratchetting of plain stainless steel pressurized pipes subjected to cyclic bending
loading. First, a series of tests have been undertaken subjecting the pressurized pipe
specimens to rising amplitude dynamic bending moments at the resonant frequency of about
5 Hz to simulate a seismic event. Generally, the fundamental (resonant) frequency of piping
system 1s low (typically less than 5 Hz), due to the necessity of flexibility to cope with thermal
loads (Touboul ¢r al., 2006). Second, by conducting a series of finite element runs based on
the nonlinear isotropic/kKinematic hardening model using the ABAQUS, the experimental tests
are modeled and ratchetting data obtained. The two sets of results are compared with each
other.

Also, in this study, the effect of frequency on the ratchetting behavior of plain stainless
steel pressurized cylinders used in the power plant components is investigated.

HARDENING MODEL

The isotropic and kinematic hardening models are used to simulate the inelastic behavior
of materials that are subjected to cyclic loading. The use of plasticity material models with
isotropic type hardening i1s generally not recommended since they continue to harden during
cyclic loading. The isotropic hardening model always predicts shakedown behavior, if creep
1s not considered. The kinematic hardening plasticity models are proposed to model the
inelastic behavior of materials that are subjected to repeated loading. For example, the
Armstrong-Frederick kinematic hardening model i1s suggested for the nonlinear strain
hardening materials. The results of these models are discussed for structures under various
types of cyclic loads in references (Rahman eral., 2008; Eslami and Mahbadi, 2001;
Prager, 1956).

A kinematic hardening model or a (combined) nonlinear isotropic/kinematic hardening
model may be used to simulate the behavior of materials that are subjected to cyelic loading.
The evolution law in these models consists of a kinematic hardening component which
describes the translation of the yield surface in the stress space. An isotropic component
which describes the change of the elastic range i1s added for the nonlinear isotropic/Kinematic
hardening model.
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Isotropic Hardening Model

The isotropic hardening model which describes the change of the elastic range is
discussed here. The isotropic hardening means that the vield surface changes size uniformly
in all directions such that the yield stress increases in all stress directions as plastic straining
OCCurs.

According to the isotropic hardening rule, the evolution of the loading surface is
governed only by one scalar variable, K. For time independent plasticity and isothermal
plastic deformation, the yield surface is expressed as (Lemaitre and Chaboche, 1994 ):

f =f(c.R) (1)

The above equation, considering the von-Misses criterion may be rewritten in the form
(Chaboche, 1989):

f=J,(c)-R-k (2)

where, k 1s the initial size of the yield surface and R 1s the 1sotropic hardening parameter that
can be expressed as a function of the equivalent plastic strain g,

R =R (g, (3)

with g, defined through:

de, = Edﬁ"  de” (4)

and I, denotes the von-Mises distance in the deviatoric stress space;

J3f=ﬂ=.||§-:=’:~:' (3)

where o and o' are the stress and stress deviatoric tensors in the stress space.
The flow rule associated with the yield function has the general form (Lemaitre and

Chaboche, 1994):

gt =t =3O (6)
dg 2 R+k

where, the constant dA is defined as dA = de,.
The isotropic hardening can be introduced using the evolution of the size of the yield
surface as (Chaboche, 1989):
dR = b(Q-R)de, (7)

where, Q and b are two material coefficients. Integrating the above equation with the initial
value R =0 gives:
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R = Q(1-e") (8)

Kinematic Hardening Model

The classical linear kinematic hardening rule and different nonlinear kinematic hardening
models are available for the plastic analysis of structures. The nonlinear Kinematic hardening
model was first proposed by Armstrong and Frederick (1966). Nonlinearities are given as a
recall term in the Prager rule. So, that the transformation of yield surface in the stress space
15 different during loading and unloading. This is done by assuming different hardening
modulus in loading and unloading conditions.

The yield function for time independent plasticity, using the von-Mises yield criterion,
1s expressed as (Lemaitre and Chaboche, 1994 ):

=1, (6-X)k (9)

where, X is the back stress tensor, k is the initial size of the vield surface and 1, denotes the
von-Mises distance in the deviatoric stress space:

Jz{a—x}:%{n’—x'):[n‘—x’}ﬁ (10}

where, 0 and X are the stress and back stress tensors and o' and X' are the stress and back

stress deviatoric tensors in the stress space, respectively.,
The nonlinearities are given as a recall term in the Prager rule:

T
4X = 2Cde" ~ X de, (11)

where, de. is the equivalent plastic strain rate, C and v are two material dependent
coeflficients in the Armstrong-Frederick Kinematic hardening model and v = 0 stands for the
linear kinematic rule.

The normality hypothesis and the consistency condition df = 0 lead to the expression
for the plastic strain rate (Lemaitre and Chaboche, 1994);

of _H(f) far (12)

de" = =0 \30 9%/30

where, H denotes the Heaviside step function: H(f) = 0if f<0, H(f) = 1 if f20 and the symbol
{; denotes the MacCauley bracket, i.e., (u) = (u+|u| /2,
The hardening modulus h becomes:
i a-X (13)

h=C-=-vyX:
1? k

In the case of tension-compression, the criterion and the equations of flow and
hardening can be expressed in the form (Lemaitre and Chaboche, 1994);

f=|o-X|-k=0 (14)
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i i
ge, = LT X yg)o=X _do (15)
hy k !k h

dX = Cde, — X |de, | (16)
h=C—vX Sznio—X) (17)
The evolution equation of hardening can be integrated analvtically o give:

X =vE+{.‘-:“—vE}e:{m—v'r'ft'.P—Em]] f”ﬁ]
1) T

where, v = £1 according to the direction of flow and g, and X, are the initial values. For
example at the beginning of each plastic flow.

Nonlinear Isotropic/Kinematic (Combined) Hardening Model

In the kinematic hardening models, the center of the yield surface moves in the stress
space due to the Kinematic hardening component. In addition, when the nonlinear
1sotropic/kinematic hardening model is vused, the yield surface range may expand due to the
isotropic component. These features allow modeling of inelastic deformation in metals that
are subjected to cycles of load or temperature, resulting in significant inelastic deformation
and, possibly, low-cycle fatigue failure.

The evolution law of this model consists of two components: a nonlinear kinematic
hardening component, which describes the translation of the yvield surface in the stress space
through the back stress X and an isotropic hardening component, which describes the
change of the equivalent stress defining the size of the yield surface R as a function of
plastic deformation,

The kinematic hardening component is defined to be an additive combination of a purely
kinematic term (linear Ziegler hardening law) and a relaxation term (the recall term), which
introduces the nonlinearity. When temperature and field variable dependencies are omitted,
the hardening law is:

dx=cﬁlm-x}da,,—yx de, (19)

where, C and vy are the material parameters that must be calibrated from the cyclic test data,
Here, C is the imtial kinematic hardening modulus and v determines the rate at which the
kKinematic hardening modulus decreases with increasing the plastic deformation. The
kinematic hardening law can be separated into a deviatoric part and a hydrostatic part; only
the deviatoric part has an effect on the material behavior. When C and v are zero, the model
reduces to an 1sotropic hardening model. When v 1s zero, the linear Ziegler hardening law 1s
recovered.

The isotropic hardening behavior of the model defines the evolution of the yield surface
size R as a function of the equivalent plastic strain g,. This evolution can be introduced by
specifying R as a function of &, by using the simple exponential law:

R=k+0Q(l—e™) (200)
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where, k i1s the yield stress at zero plastic strain and Q and b are the material parameters. Here,
Q is the maximum change in the size of the yield surface and b defines the rate at which the
size of the yield surface changes as plastic straining develops. When the equivalent stress
defining the size of the vield surface remains constant (R = k), the model reduces to a
nonlinear kinematic hardening model.

REVIEW OF EXPERIMENTAL ARRANGEMENT

The experimental arrangements used for testing plain cylinders and other pressurized
piping components have been detailed previously (Moreton et al., 1998a). It is sufficient
to give a brief outline of the technigue.

Cylindrical specimens were machined from stainless steel bar stock to the form illustrated
in Fig. 1. In order to minimize any residual stresses, these specimens were machined 1.5 mm
oversize on all dimensions. These blanks were stress relived at 650°C (1 h + furnace cool).
The bores of all specimens were reamed to 30 mm diameter and the outside surface profiled
using a CNC (computer numeric controlled) lathe while holding the specimen on a mandrel.
Six holes were provided in each end flange using the powered axial tooling of the CNC lathe.
The specimens were machined in this way and the dimension A is given in Table 1.

Strain gauges were bonded to the top and bottom surfaces using M-Bond AE 10 curing
for 4 h at 30°C and 2 h at 100°C. Two-element, 90 rosettes were used to provide strain
measurement in the hoop and axial directions. The gauge type selected was EA-06-125TM-
120 from Micro measurements.

Tensile test specimens were taken axially from the bar stock. These were subjected to
the same oversize machining, heat treatment and final machining stages as the cylindrical
specimens. Tensile test showed that the linear part of the curve extended up to about
180 MPa and then strain-hardened significantly up to 76% strain with an ultimate stress of
565 MPa. Using the ASME III, Boiler and Pressure Vessel Code (section I1I, subsection NB),

the allowable design stress intensity 5, was determined as:

y.
5, = Min(La,.26.) (21)
' i T3
Dimension A
=1 =
7 / ‘
?777'?;1;;;;;;; '};;;777_"A I:II
_ _ _ _ NIEREE
ST
/7’&-;_! Falir i ol ol .}.ﬂ" ral IW‘J’
E +
== | F T
104}
i 160 L
— 180 L
" 210 X
Fig. 1: The test specimen-All dimensions in mm
Table 1: Specimen 55 with D/t = 12
Specimen Dimension A {mm) t {mm} Dt
55 35.46 2.73 12
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A typical stress-strain curve is included in Fig. 2. It should be noted that all values of
stress given above and in Fig. 2 are engineering stress. The rig used to provide simulated
seismic bending is illustrated in Fig. 3. This 1s a 250 kN servo hydraulic testing machine fitted
with a fatigue module. The test specimen was attached to extension limbs (via the flanged
connections) and mounted in roller bearing supports outboard of the flanged connections.
Tuning weights were added to the ends of the extension limbs which were supported on
constant force springs to eliminate any gravity stresses. Excitation of the test machine cross
head thus caused large-amplitude vibration of the test pipe work. Frequency sweeps at
clastic amplitudes allowed the natural frequency to be established and to confirm the

6011 -
550+
500+
4501+
4001)-
150+
3001+
250
20)-

Stress (MPa)

150
100 -
51 -
il

T T T T T T T T 1

] 11 20} il 4 50 ) Fil Ll Gl
Strain (%)

Fig. 2: Stress-strain curve for the stainless steel used to manufacture the wbular specimens

Fixed crosshead
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Raoller

- Htrﬂi']?uaes N P

== 03 m

T f
: L
""--:"il f——"" —— _b"'-"J
/ - / ~ I“'w-.,_ Pm55u¢
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Fxtension limbs Test section
! ! Tuning
I 1 [ | weights
L Test machine base
1
I
- =245 m -

Fig. 3: The seismic test rig (Moreton er al., 1998b)
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amplitude of vibration to be the same on each side of the rig. The bending moment
experienced by the test specimen was extrapolated from moment measurements made in the
elastic region of the extension limbs.

The design pressure for each cylinder was calculated using the ASME 111 code, which
ZIVES:

P, = 25,1 (22)
D, — 2yt

With 5, =161 MPa (Table 2) and y = 0.4,

All specimens were tested using a rising amplitude technique; i.e., having mounted the
specimen in the test rig, tuned the natural frequency and applied the test pressure, where
small input amplitude was applied and maintained for about 200 sec. During this time a
high-speed data logger was used to record the input displacement, all strain gauge readings
and the output acceleration provided by an accelerometer positioned on one of the tuning
weights, Having completed such a test, the amplitude of vibration was increased and the
process repeated. At high input amplitudes the duration of the test was reduced because of
the limited stored hydraulic capacity of the testing machine.

FINITE ELEMENT ARRANGEMENT

For all specimens the nonlinear finite element code, ABAQUS, was used to study
ratchetting of straight pressurized pipe subjected to simulated seismic bending moments,

The cylindrical specimen model under pressure and cyclic bending moment is shown
in Fig. 4. The simulation assembly was a 2.30 m long pipe work modeled by 23 elements. The
central test section was 3 elements long and the lateral extension limbs 10 elements long.
Each element used 18 integration points around the pipe and four Fourier (or ovalization)
modes. In the radial direction, 7 and 9 integration points through the thickness were used for
the thin- and thick-walled models, respectively. The latter numbers of integration points were
decided after a series of solution convergence runs. In the analysis, the load reactions were

Table 2: Matenal properties obtained by tensile test

Properties Value
Young's modulus 200 GPa
Ultimate stress 565 MPa
2% proof stress 242 MPa
Elongation at failure (%) 8%
Sy = min (0,/3.20,/3) 161 MPa
F={sinu F={xinu
3 )
L ﬁ %‘-‘ ¥
FEEIIIE
o -
o+ -
b AA21E e
A prim prim D
Yk B i
7 X

Fig. 4: Cylindrical specimen model under pressure and cvclic bending moment
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simulated by applying boundary conditions at nodes 11 and 14 of the model. The lauwer
nodes are the ends of the three elements making up the central test section. The
displacements in all three directions and twisting about the pipe axis were prevented at these
nodes. The additional boundary condition along the pipe axis was to simulate the closed end
axial force reaction due to the internal pressure,

The most accurate element in the ABAQUS code for this type of structural system
considering beam elements, pipe elements and elbow elements 1s the elbow element. Four
types of elbow elements are available in the ABAQUS library, of which the two-noded
element ELBOW 31B was found to give the best results. Although, these elbow elements
appear like beam elements, they are actually elements where shell theory is used to model the
behavior. Element type ELBOW 31B is cheaper (in computational time) than the standard
ELBOW 31 and ELBOW 32 elements. It uses a simplified formulation where only ovalization
1s considered. Both warping and axial gradients of the ovalization are neglected.

The loading was applied in two stages. First the internal pressure, set at the design
value of the pipe, was applied and held constant for the remainder of the analysis. Next, the
dynamic load to induce the cyclic bending was applied at the end nodes of the simulation
model. It was specified as a sinusoidal force with a circular frequency as obtained from the
simulation test. Because of the dynamic nature of the analysis which induces different inertia
loads due to the distributed weight of the lateral extension limbs as the vertical displacement
frequency and amplitude were increased, the amplitude of the excitation had to be carefully
adjusted until an equivalent moment equal to the value obtained during testing was
achieved.

The material parameters of the kinematic hardening component of the model
C = 1488.77 MPa, v = 6.15 and the cyclic hardening parameters of the isotropic hardening
component () = 123.87 MPa and b = 1.98 are calibrated from test data obtained from several
stabilized cycles by the exponential law.

EXPERIMENTAL AND FE RESULTS

Detailed results will be presented for specimen S5. It is perhaps useful to present, firstly,
the bending moment response obtained by the FE analysis (Fig. 3). This clearly shows that
a reasonably stable bending moment response has been achieved for the duration of the test.

B0
400
=,
—E' L
E
=
=
'E‘m I I I ¥ 1
.00 2.0M} 4,00 . 00 £.00 100, (H}

Time {5ec)

Fig. 5: FE analysis dynamic bending moment responses for the specimen 58 at M=724.10 Nm
and Frequency = 5.00 Hz
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Strain gauges and a high-speed data capture system were used to record the
experimental hoop and axial strains developed on the top and bottom surfaces of the seismic
specimens. A FORTRAN routine was written to reconstruct the form of the strain signal. The
experimentally obtained axial strain was found to be constant throughout the test and thus
no data for these gauges has been included.

The results for specimen S8 is shown in Fig. 6, which includes results from the FE
analysis using with the combined hardening model. Here, the ratchet strain per cycle
averaged over the first 20 sec of excitation has been plotted against increasing M/M,, ratios
for the experimentally obtained data and the finite element data (M,, is moment based on
proof stress g,, = 242 MPa). For both experimental data and the finite element results, the
averages of the top and bottom surface ratchet strains are shown,

It is evident from Fig. 6 that the hoop strain ratcheting rates predicted by the FE analysis
15 near that found experimentally in all cases that M/M,, .= 1. Otherwise, the results show that
the FE method gives over estimated values comparing with the experimental data.

The response of the specimens during these tests is illustrated in Fig. 7. The dynamic
bending moment experienced by the specimen has been plotted against the input
displacement for the specimen SS. Although, there is some evidence in this plot that the
dynamic bending moments do approach a self-limiting value, this is much less distinct than
has been seen in previous works (Moreton ef al., 1996; Beaney, 1990),

Swelling introduced by ratcheting for stainless steel is shown in Fig. 8, This Fig. 8
shows the nature of this failure for typical specimen of stainless steel which appears to be
a combination of hoop ratcheting (leading to the gross local swelling of the cylinder) and
fatigue causing the hoop crack.

In Table 3. the ratchet strains found experimentally over a 20 sec test period and by FE
analysis, for the same period, for specimen S5 are summarized. The strains recorded on the
top and bottom surfaces were found to be significantly different. In Table 3, the average of
these two surface strains is presented. The effect of frequency on the ratchet strains is
presented in Table 4, 5 and is shown in Fig. 9, 10. For specimen S5, the resonant frequency

1496 Experimental
* [E

Fachet strain per cvele averaged over
the test (micro sirain)
o
*

(]
Q

n i i .
il | [l ] L] I

0.4 (.6 (0.8 1 :ﬂ 1.2 1.4 1.6
MIM, .

Fig. 6: Experimental and FE (combined hardening) ratchet strains for specimen 55 at a testing
frequency of 7.26 Hz
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Fig. 7: Dynamic bending moment against the input displacement for the specimen S8

%

Fig. 8: Swelling in stainless steel specimen

Table 3: Experimental and FE ratchetting data for specimen 55

Dynamic bending Experimental ratchet rate FE {combined) ratchet rate averaged
momeni MM, MMy o averaged over the test (pedeyele) over the first 20 sec ipefevele)
271.45 (.53 0.39 1.99 (20) 0

334.95 (.66 (h4a 2.35 (200 ()

41525 (1.82 0.60 388 (20) [J

475.25 (.94 {h.68 3.56 (20) 3.23

530.60 .04 0.76 4.44 (20) 4.53

S82.45 115 .84 7.04 (20) 4.77

632.45 1.24 0491 889 (19.13) 3.56

68010 |34 (.98 9.73{17.77) 7.20

724,10 |42 1.4 11.24 {16.39) 12.64

T84.00 |.54 L13 | 8.82 (8.95) 6184

Columns 4, 5 are the average of the top and bottom surface strains. Data obtained for P = Pd = 26,10 Mpa
(PP . = 0.66). M, . was based on proof stress o, = 242 MPa. Values in parentheses in column five indicate the duration
of the test in seconds at a testing frequency of 7.26 Hz

is about 5 Hz. In Table 3 by increasing the dynamic bending moment in constant frequency,
it considers that the hoop strain ratchet rate increase. The ratchet strain per cycle averaged
over the test has been plotted against increasing frequency for the finite element data and
is shown in Fig .10. Also, the results of FE analysis in Table 4 show that when the bending
moment is constant then the hoop strain ratchet rate decreases with the increasing of the
frequency. In the higher dynamic bending moments and in the frequency near the resonant
frequency value, it considers that the hoop strain ratchet rate is more.
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Fig. 9: Hoop strain data using FE analysis for the top surface of the specimen 55 at a
dynamic bending moment of 724, 10 Nm. (a) Frequency = 5.00 Hz; (b) Frequency = 5.50)
Hz; ic) Frequency = 6.00 Hz; (d) Frequency = 6.50 Hz; (e) Frequency = 7.00 Hz and (1)
Frequency = 7.25 Hz

Table 4: FE (combined) ratchet rate averaged over the first 10 sec for specimen S8 (uefoyele)
Dynamic bending moment {Nm)

Frequency (Hz) 58245 03245 GRl, 10 72410
5.0 14.25 17.55 3067 170.17
5,50 12.57 |4.59 19.06 143,32
.00 1.4 1308 1728 Rra7
6,510 10.60 11.85 14.63 46,94
7.00 9.86 10,958 13.13 24.41
T.25 9.57 10.67 12.67 20,74
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[ b & M= 58245 (Mm)
o * M= 63245 (Nm)
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Fig. 10): The effect of frequency on the ratchetting behavior of the specimen 8§

Tahle 5: FE (combined) hoop strain over the first 10 sec for specimen 55 (ug)
Dynamic bending moment (Nm)

Frequency (Hz) 582.45 632.45 680,10 724,10

5.0 T12.72 BTT.67 | 53373 BA0E.5]
5.5 690,17 80103 | (k6,61 TeeE.06
6.0 G144 TET.58 [ ORih 25 5295.67
6.5 DRE.TT TTLEG Q50084 INA0.TE
7.0 HRD.ED THE.OE 1901 170881
7.25 694,59 T774.71 920,19 1505.89

Data obtained for P = P, = 2610 MPa (PP, = (L.66). M, . was based on proof stress d,, = 242 MPa
RESULTS AND DISCUSSION

The experimental work reported here provides reliable data which can be used to judge
the value of FE analysis using the ABAQUS package. However, it should be noted that the
experimental work used a rising amplitude technique which may effectively reduce the ratchet
strain at any particular dynamic bending moment. It 1s possible that those tests conducted
at low amplitude will harden the material sufficiently to reduce the ratchet strains observed
at higher amplitudes. It is not possible to quantify the possible magnitude of this effect. This
possible effect would not have influenced the dynamic bending moment at which ratchetting
was first observed. Typical data obtained experimentally and from FE model for specimen S5
on the average of the top and bottom surface are shown in Fig. 6.

Both experimental results and the FE analysis agree that ratcheting is influenced by the
material stress-strain curve and load history. The rate of ratchetting depends significantly
on the magnitudes of the internal pressure, dynamic bending moment and material constants
for combined hardening model. The results show that initially, the calculated rate of
ratchetting is large and then decreases with the increasing of cycles. The FE model predicts
the hoop strain ratchetting rate to be near that found experimentally in all cases that
M/M,, .= 1. Otherwise, the results show that the FE method gives over estimated values
comparing with the experimental data.
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The linear kinematic model 15 a simple model that gives only a first approximation of the
behavior of metals subjected to cyclic loading, as explained in above. The nonlinear
isotropic/kinematic hardening model can provide more accurate results in many cases
involving cyclic loading, but it does have several limitations. For example, the model dictates
that the governing isotropic hardening equation is independent of the strain range.
Experimental results have shown that the amount and rate of isotropic hardening may depend
on the magnitude of the strain range. Thus, it is recommended that the model be calibrated
with experimental data that is close to the expected strain range and loading history of the
application. Therefore, it is important to accurately calibrate the plasticity model to
experimental data in such a way to distinguish the individual contributions of isotropic and
kKinematic hardening to the overall material response. The results obtained from FE method
based on the present model comparing with previous work (Zehsaz er al., 2008) to be near
that found experimental data.

Also, the results of FE analysis in Table 4, 5 and Fig. 9, 10 show that when the bending
moment is constant then the hoop strain ratchetting decreases with the increasing of
frequency and far away from the resonant frequency value. The maximum hoop strain
ratchetting occurs at proximity the resonant frequency value. For specimen S5, the resonant
frequency is about 5 Hz. In Table 3 by increasing the dynamic bending moment in constant
frequency, the hoop strain ratchet rate increases. Otherwise, the hoop strain ratchetting
extremely increases in the resonant frequency with the increasing of the dynamic bending
moment. Of course, in frequencies far away from the resonant frequency value the effect of
increasing the bending moment is less than increasing the hoop strain ratchetting., The
relative increasing rate of hoop strain ratchetting is 11% for frequency = 5Hz and dynamic
bending moment from 582.45 o 724.10 Nm. Otherwise, it considers that the hoop strain
ratchet rate is 1% in frequency = 7.26 Hz and the same dynamic bending moment range.
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NOTATIONS

: Cylinder thickness

: Cylinder mean diameter

: Cylinder outside diameter
: Young's modulus

: Dynamic bending moment
 Yield moment

: 0.2% collapse moment

: Internal pressure

: Design pressure
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=

: Yield pressure

: Allowable design stress intensity
- Thickness correction factor = (.4
: Tensile stress

: Yield stress

=

o = W
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I : Yield surface

1. Von-Misses vield function

] . Stress tensor

0 : Stress deviatoric tensor

X - Back stress tensor

X' ¢ Back stress deviatoric tensor

k . Initial size of the yield surface

R : Isotropic hardening parameter

b, Q : Materials constants for isotropic hardening
C,y : Materials constants for kinematic hardening
g" : Plastic strain tensor

g, . Equivalent plastic strain
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