@

Academic
Journals Inc.

Trends in

Applied Sciences
Research

ISSN 1819-3579

www.academicjournals.com




Trends in Applied Sciences Research 4 (1): 36-46, 2009
ISSN 1819-3579
© 2009 Academic Journals Inc.

Artificial Neural Network as a Clinical Decision-Supporting
Tool to Predict Cardiovascular Disease

Beatrice Fidele, Jayrani Cheeneebash, Ashvin Gopaul and Smita S.ID. Goorah
Faculty of Science, University of Mauritius, Réduit, Mauritius

Abstract: The aim of the study is to use artificial intelligence tools as a clinical decision
support in assessing cardiovascular risk in patients. A two-layer neural network using the
Levenberg-Marquardt algorithm and the resilient backpropagation have been used in the
proposed artificial neural network. It has been shown how this network is efficient in
predicting cardiovascular risk in individual patients by using the Long Beach dataset. The
use of this new network seems to better address the prediction of cardiovascular disease at
an individual level.
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INTRODUCTION

Analyzing data for clinical decision support is a task of great importance to help save time of both
patients and doctors and to minimize the risk of making wrong diagnoses. With the advent of new
technology and the development of a broad variety of computerized analytical techniques, this process
is being done by computers rather than by human intervention. In the past a number of algorithms for
cardiovascular risk assessment have been proposed to the medical community (Wilson ef af., 1998,
Assmann ef al., 2002; Mennotti et af., 2000; Mennotti ef al., 2002; Conroy et af., 2003). These
algorithms that were used were mainly based from statistical analyses performed on longitudinal study
cohorts. There are some drawbacks in considering the algorithms presented by classical statistical
approach mainly in dealing with nonlinear and complex data that arise in analyzing the heart disease
data set (Enzo, 2006). The drawback is the inability to capture the disease complexity and the process
dynamics. In this study we use a data-mining technique, namely Artificial Neural Network (ANN) to
diagnose whether a patient has heart disease. The analysis will help as clinical decision support, that
is, it will confirm the presence or absence of heart disease for a patient. The novelty in this study is
the new network that is presented using the Levenberg-Marquardt Algorithm and the resilient
backpropagation. The analysis shows that our ANN is fast and reliable in predicting. Since, ANNs are
able to handle a very high number of variables at the same time and can furthermore capture the
nonlinearity ina data set; it gives a great advantage over classical statistical techniques. ANNs are more
concerned about the actual number of variables rather about their nature. Due to the particular
mathematical infrastructure, ANNs can handle large amounts of variables, which constitute the basis
for developing recursive algorithms. In our model we first check whether the variables in the data set
are highly correlated and this is done by a principal component analysis. The output is then fed into
the neural network.

MATERIALS AND METHODS

Due to rapid innovation of computer technology, we use the ANN technique which is a powerful
tool for non-linear modeling compared to the classical ARTMA model. Two main advantages are that
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Fig. 1. An artificial neural network model

ANN has the ability to learn a complex nonlinear relationship with limited prior knowledge of the
system structure and that it can perform inferences for an unknown combination of input variables.
The ANN method imitates the way by which the brain processes information. Given an input vector
P =Py Po ... 07 the network produces an output vector r=(%.£,.....1,)7 where, n indicates the
number of inputs and m the number of output units. A neural network is typically organized into
several layers of nodes. The first layer is the input layer, the number of nodes corresponding to the
number of variables and the last layer is the output. The input and output layer can be separated by
one or more hidden layers. The nodes in adjacent layers are fully connected. Each neuron receives
information from the preceding layer and transmits to the following layer only. The neuron then
performs a weighted summation of its inputs; if the sum passes a threshold the neuron transmits,
otherwise it remains inactive. An example of a fully connected ANN model with one hidden layer is
shown in Fig. 1, where, p;,i=1,2,3,4, are the inputs at time t, h),j=12, are the hidden outputs. The
variables 1, and 1, are the actual and ANN modsl output, respectively. The vector p represents the
input to the ANN model where p; is the level of activity at the ith input. Associated with the vector
is a series of weight vectors W, = (w,, wy, ..., W,) so that, w, represents the strength of the connection
between the input p; and the unit b, There may also be the input bias % modulated with the weight
w; associated with the inputs. The total input of the node b, is the dot product between vectors p and
w, less the weighted bias. It is then passed through a nonlinear activation function to produce the
output value of processing unit b, defined as:

b, = F(X W, — wy, ) = (X))
i=1

The activation function introduces a degree of nonlinearity to the model and prevents the
output from reaching very large values that can paralyze ANN models and inhibit traiming. In this
study we choose f(x) = (e%-e™)/(e"+e™) as the activation finction. The modeling process begins by
assigning random values to the weights. The output value of the processing unit is passed on to the
output layer. If the output is optimal, the process is halted. Else the weights are adjusted by using an
appropriate algorithm, which we choose as the back propagation algorithm for our work. The process
continues until an optimal solution is found that is when the output or optimisation error, which is the
difference between the actual value and the ANN model output, is mimmized.

Here propose a two-layer network based on two algorithms namely the Levenberg-Marquardt
algorithm and the resilient backpropagation method. We, first describes the Levenberg-Marquardt
algorithm, which is a combination of the method of steepest descent and the Gauss-Newton method.
We next study the resilient backpropagation (Riedmiller, 1994) algorithm, which performs supervised
batch learning in multi-layer networks.
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Levenberg-Marquardt Method (L.M)

The Levenberg-Marquardt method is an iterative technique, which locates the minimum of a
function expressed as the sum of squares of non-linear real-valued fimetions. Whenever the current
solution is far from the current one, the algorithm behaves like a steepest descent method: slow but
with the guarantee to converge. On the other hand, if the current solution is close to the correct one,
it becomes a Gauss-Newton method. We next give a short description of the steepest descent and the
Gauss-Newton method.

Gradient Descent Method

Gradient descent is an optimisation algorithm. To find a local minimum of a function, the steps
are taken proportional to the negative of the gradient (or the approximate gradient) of the
function at the current point. Gradient descent is based on the following observation: if the real-
valued function F(x) is defined and differentiable in a neighborhood of a peint a, then F(x)
decreases fastest if one goes from ain the opposite direction of the gradient of F at a denoted
by VF(a). It follows thatifb=a-yVF(a), for v>0, then F(b)<F(a). With this observation in
mind, one starts with a guess x, for a local minimum of F and considers the sequence x;, X, X,, such that
Koy = X YVF(R), 120,

We have F(xp)=> F(x)> F(x))= ..., so that the sequence (x,) converges to the desired local minimum.
The value of the step size v is allowed to change at each iteration.

Gauss-Newton Algorithm

The Gauss-Newton Algorithm is used to solve non-linear least squares problems. It is a
modification of the Newton’s method that does not use second derivatives. Given m functions f, f,,
f, of n parameters p,. Ps...., p, With men, the aim is to minimize the sum

S = S,

where, p=(p;, Pz, ... Pu)-
The Gauss-Newton algorithm is an iterative procedure and hence an initial guess for the parameter

vector p has to be provided which is denoted as p°. Subsequent guesses p* are then obtained by the
recurrence relation given by p**! = pS(I{pSTTpN)Y ™ I{pY)T fp"), where £=(f,, £, ..., £) and J; (p)
is the Jacobian of f at p. The matrix inverse is never computed explicitly in practice. Instead, we use
P! = P8 and we find the update 8* by solving the linear system J; (p¥)™ J; (p")&" = -1, (p9 7 f(p*).

The Levenberg-Marquardt Algorithm

We assume f is a functional relation, which maps a parameter vector peR™ to an estimated
measurement vector X =f(p), eR" Aninitial parameter estimate p° and a measured vector x are
provided and the aim is to find the vector p* that will best satisfy the finction relation f, that is, a
funetion that minintises the squared distance 7 with €= X —X. The Levenberg-Marquardt algorithm
(Lourakis Manolis, 2005) is an iterative algorithm, which is based on linear approximation to the
neighborhood of p.

The method, initiated at the starting point p,, produces a series of vectors p,, p,. ... that converge
towards a local minimiser p* for f. At each iteration, we have to look for the §, that minimises the
quantity ||x-fp+d )~ |Ix-f(p)-T &,=lle-T &,||. The sought &, is therefore, the solution to a linear least-
squares problem: we reach the minimum when J &-¢ is orthogonal to the column space of 1. This leads
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to JI(J &,-e) = 0), which yields the Gauss-Newton step &, as the solution of the so-called normal
equation:

138, =1"e (D

Ignoring the second derivative terms, the matrix I'J in the left hand side of Eq. 1 is the
approximate. Hessian, that is, an approximation to the matrix of second order derivatives. However,
the Levenberg-Marquardt method actually solves a slight variation of Eq. 1, known as the augmented
normal equations:

N3 =1"¢ 2)

where the off-diagonal elements of N are identical to the corresponding elements of J'J and the
diagenal elements are given by N = J'J+ul for some pu>0 and where I is the identity matrix. This
strategy of altering the diagonal elements of J™T is called damping and p is called the damping term.

The algorithm, which is given in Appendix A, terminates when at least one of the following
conditions is met:

+  The magnitude of the gradient of e, that is, I¢ in the right-hand side of Eq. 1, drops below a
threshold ¢,

«  The relative change in the magnitude of &, drops below a threshold ¢,

¢ The error €7e drops below a threshold e,

« A maximum number of iterations k. is completed

Resilient Backpropagation Algorithm (RFP)

Resilient backpropagation (Riedmiller, 1994) is a local adaptive learning scheme, which performs
supervised batch learning in multilayer networks. The basic principle is to eliminate the harmful
influence of'the size of the partial derivative on the weight step. Consequently, consider only the sign
of the derivative to indicate the direction of the weight update. The size of the weight change is
exclusively determined by a weight-specific, so-called update value A :

0
-AP if % >0
i
e
aw® =1 a0 i BT g (3)
oW,
0, otherwise

‘Where:

JE®
ow

Y

denotes the summed gradient information over all patterns of the data set (batch learning).
The second step of resilient backpropagation learning is to determine the new update-value Ay(t).
This procedure is based on a sign-dependent adaptation process.
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Afjt‘lj, otherwise,

whered <1 <l<n'.

The adaptation rule works as follows: whenever the partial derivative of the corresponding weight
w; changes in sign indicating that the previous update was too large and the algorithm has jumped over
a local minimum, the update-value A" is decreased by the factor m~. If the sign of the derivative
remains unchanged, the update-value is slightly increased in order to accelerate convergence in shallow
regions. Moreover, if there is a change in sign, there should be no adaptation in the suceeeding learning

step. In practice, this can be achieved by setting

-1

4

in the above adaptation rule.

The resilient backpropagation algorithm follows the principle of batch learning or learning by
epoch since it tries to adapt its learning process to the topology of the error fumetion. Weight-update
and adaptation are performed after the gradient of the whole pattern set is computed.

RESULTS AND DISCUSSION

The heart disease data set problem is a pattern recognition problem. The objective of the network
is to decide if an individual has cardio pathologies, based on personal data (age, sex) and the results of
medical examinations (e.g., blood pressure, cholesterol, maximum heart rate, etc). The data was
obtained from the Long Beach data set (more specifically Cleveland Clinic Foundation data set [Heart
Disease Databases]) with fourteen attributes (including the target) and 303 records and the network
has been implemented in Matlab 7.0. Table 1 shown an extract of the data set.

Table 1: An extract of the data set showing the records of the patients

Chest Fasting Max.

pain  Blood blood sugar Resting heart Colored
Age Sex type pressure Cholesterol <120 ECG  rate Angina Peak Slope vessels Thal Class
60 1 4 130 206 0 2 132 1 2.4 2 2 7 0
49 1 2 130 266 0 0 171 0 0.6 1 0 3 1
64 1 1 110 211 0 2 144 1 1.8 2 0 3 1
63 1 4 130 254 0 2 147 0 1.4 2 1 7 0
53 1 4 140 203 1 2 155 1 31 3 0 7 0
58 0 1 150 283 1 2 162 0 1.0 1 0 3 1
58 1 2 120 284 0 2 160 0 1.8 2 0 3 0
58 1 3 132 224 0 2 173 0 3.2 1 2 7 0
63 1 1 145 233 1 2 150 0 2.3 3 0 [ 1
67 1 4 160 286 0 2 108 1 1.5 2 3 3 0
67 1 4 120 229 0 2 129 1 2.6 2 2 7 0
37 1 3 130 250 0 0 187 0 35 3 0 3 1
41 0 2 130 204 0 2 172 0 1.4 1 0 3 1
56 1 2 120 236 0 0 178 0 0.8 1 0 3 1
62 0 4 140 268 0 2 160 0 3.0 3 2 3 0
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Before training, it is useful to scale the input and targets so that they always fall within a
specified range. One approach is to normalise the mean and standard deviation of the training set. This
procedure is implemented in the function prestd in Matlab. It normalises the inputs and targets so that,
they will have zero mean and unity standard deviation.

Principal Component Analysis

In some situations, when the input vector is large, the components of the vectors are highly
correlated (redundant). It is useful in this situation to reduce the dimension of the input vectors and
one way is to perform a principal component analysis. The aim of the principal component analysis
is to eliminate those components that confribute the least to the variation in the data set.

The matrix ptrans comtains the transformed input vectors. The matrix transMat contains
the principal component transformation matrix. After the network has been trained, the matrix
should be used to transform any future inputs that are applied to the network. We must note that
pn * transMat = ptrans.

For the data set we find that all components account up to 99% of the variation.

Training Session

The next step is to divide the data up into training, validation and test subsets. One fourth of the
data has been taken for the validation set, one fourth for the test set and one half for the training set.
Now we can create a network and train it. For this purpose, here used a two-layer feed-forward
network, with tan-sigmoid transfer function in the hidden layer and linear transfer function in the
output layer. First, we start with the resilient backpropagation algorithm:

net=newif{minmax(p),[50,1], {logsig', purelin' },'trainrp”);
net.trainParam.show=2;

net.trainParam.epochs=100;

net.trainParam.goal=0;

net.trainParam.1=0.01;

[net, tr]=train(net,ptr.ttr,[],[], val test);

The performance of the network during the training is shownin Table 2. The training stopped
after 22 iterations because the validation error increased. The traiming, validation and test errors
have been plotted to check the progress of the training. The network’s performance is shown in
Fig. 2 and 3. The result here is reasonable because the test set error and the validation set error have
almost similar characteristics and it does not appear that any significant over-fitting has occurred.

Table 2: Performance of the resilient backpropagation method

Epoch No./100 MSE Gradient 1e-006
0 27.3780 44.66290

2 2.27457 5.50831

4 0.77268 2.05134

6 0.357213 1.00170

8 0.21155 0.14890
10 0.14548 0.511365
12 0.105335 0.115695
14 0.08044771 0.212329
16 0.0631842 0.0995071
18 0.0505347 0.0846935
20 0.0414915 0.102431
22 0.0346487 0.0729705
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Fig. 3: Minimum square error per epoch using the LM algorithm

Now, we train the same set of data using the Levenberg-Marquardt algorithm. The same
commands have been used with the same parameters except for the training function’s parameter,
which has been set to “trainlm’ (Table 1).

The training stopped after eight iterations since the minimum gradient had beenreached
(Fig. 2, 3).

For each approach, the technique for calculating the weight changes, so as to minimize the mean
square error between the targeted output and the network’s output, have been analyzed. When applied
to our data, for the resilient backpropagation algorithm, the training started with a mean square error
of 27.378 and it reached a minimum of 0.03465 after 22 epochs as shown in Table 2. On the other
hand, in Table 3, we find that for the Levenberg-Marquardt algorithm, the fraining started with a mean
square error of 32.7958 and it attained a mimmum of 1.18597x107"% after eight epochs. With these
levels of error, we can consider the results as being reliable.
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Table 3: Performance of the Levenberg-Marquardt method

Epoch/100 MSE Gradient/1e-010
0 32.7958 4012.23

2 0.55615 96.2396

4 0.013799 19.6271

6 3.04231e-008 0.00704829
8 1.18597e-029 4.95044e-013

Table 4: Network’s output and targets with the Levenberg-Marquardt and the resilient backpropagation algorithrs

Target Train T.M Difterence Train RP Ditterence
0 0.20566 0.20566 -0.06423 -0.06423
1 0.92145 -0.07855 0.96938 -0.03062
1 0.94331 -0.05669 0.96354 -0.03646
0 -0.10144 -0.10144 -0.14915 -0.14915
0 0.020379 0.020379 -0.11029 -0.11029
1 0.11824 -0.88176 0.0098 -0.9902
0 0.25587 0.25587 0.19964 0.19964
0 0.22976 0.22976 0.44656 0.44656
1 0.92561 -0.07439 1.0008 0.0008
0 -0.15991 -0.15991 -0.34354 -0.34354
0 0.12718 0.12718 -0.09191 -0.09191
1 -0.03765 -1.03765 0.0348 -0.9652
1 1.2102 0.2102 1.017 0.017

1 0.65052 -0.34948 1.0795 0.0795
0 0.20316 0.20316 0.038164 0.038164
1 (.85242 -0.14758 0.52739 -0.47261
1 0.96297 -0.03703 0.7813 -0.2187
1 1.0578 0.0578 1.1283 0.1283
0 0.12602 0.12602 0.1933 0.1933
1 1.049 0.049 0.93916 -0.06084
1 0.99569 -0.00431 1.0108 0.0108
1 1.4273 0.4273 0.97587 -0.02413
1 0.97839 -0.02161 0.96026 -0.03974
1 0.8241 -0.1759 0.76021 -0.23979

Table 4 shows a sample of the network’s output compared to the targeted output. When
analvzing the network’s output, we can see that it has not been limited to 0 and 1 only since we have
used the linear transfer function in the output layer. In such a way, it can be analyze the severity of
the disease. For example, a patient for whom the network’s output is -0.8 is not likely to have heart
disease, whereas, a network’s output of 1.5 indicates the presence of the disease and it can be
considered as being severe. Also, the cases where the doctor may have made wrong diagnoses are in
bold.

CONCLUSIONS

In this study, we have considered two algorithms for training the artificial neural network for heart
discase database. From this experiment we obtain a well trained network with a relatively good
accuracy by using the LM method, which is faster than the RP method. Most of the diagnoses made
by the cardiologists were accurate but still there were a few cases where the diagnosis of heart discase
might have been wrong. Based on this analysis, cardiologists can reconsider the records of those
patients to see if there has been any error in the diagnosis. The same approach may be used in other
medical problems where prediction based on subsets of attributes is required on several target
attributes at the same time.
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APPENDIX A

We present the Levenberg-Marquardt algorithm.

Input: A vector fnction f: R®—=R" with n>m, a measurement vector xeR® and an initial parameter’s
estimate p, ¢ R™
Qutput: A vector p* € R™ mimimising ||x-f{p)|*
Algorithm:
k=0, v=2p=p;
A=TT e =xfipyg=1"¢,
stop= (lg. =& u=1xmax,, ,(A);
while (not stop) and (k<k_ )
k=k+1;
repeat
Solve (A+pl)d, = g;
It 5 <,

Stop = true;
Else
Pow =Dt3;
p= (e, ~ e~ £p (8T 08, +20;
if (p>0)
P = Puews
A=TTe =x-f(p,g=T¢,;
stop=(g|_<e)or (‘ SpH2 <e);
h= s, 1= Q17 V=2
else
W=UXV, V=2XV,
endif
endif
until {(p>0) or (stop)
endwhile
p=p;

Next, we consider the Resilient Backpropagation algorithm. The minimum (maximum) operator is
supposed to deliver the minimum (maximum) of two numbers; the sign operator returns +1 if the
argument is positive and -1 if the argument is negative and 0 otherwise.

foralli, j: A, () = A,,

foralli, j :;:N—E(t—l): 0,

Y

Repeat

. JE
Compute Gradient —(t
P o (t

For all weights and biases {

44



Trends Applied Sci. Res., 4 (1): 36-46, 2009

JE ok
If ( W‘J(tfl)xa(t) = 0) then {
Al_](t) = minimum (Aq(t'l)XTr: Amax)
Aw () = - sign (%(t))x Ayt

w(t+ 1) =w () + Aw (D)
% O
ﬁu(t— = aWu (ty

!
else if { aaW—Eij(t - l)xaaW—Eij(t) < 0) then {
Ay (1) = maximum (A (t-Dxn7, A )
dE
aw

Y

t-1=0

H
d%if(ég%ﬁ—ﬂjxég%a):o)men{

1 1

Aw (1) = -sign (%(t))x Ayt

wyt+1)=w, )+ Aw, (D)

oE oE
1) = —(t
=50

}

Until convergence

The algorithm takes two parameters: the initial update-value A, and a limit for the maximum step
size, A .. All the update-values are set to an imtial value A, when learning starts. Since, the size of the
first weight step is directly determined by A,, it should be chosen according to the initial values of the
weights thamselves, for example A; = 0.1 (default setting). The choice of this value is rather uncritical
since it is adapted as learning proceeds.

To prevent the weights from becoming too large, the maximum weight step determined by the
update-value is limited. The upper bound is set by the second parameter A, and its default value is
set to A__. = 50.0. The minimmum step size is constantly fixed to A__ =10""
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