@

Academic
Journals Inc.

Trends in

Applied Sciences
Research

ISSN 1819-3579

www.academicjournals.com

Trends in Applied Sciences Research 5 (3): 177-187, 2010
ISSN 1819-3579
© 2010 Academic Journals Inec.

Setting up a Virtual Laboratory for Evaluation of Congestion
Control Algorithms in TCP/IP Networks

'Sogol Babainejad, *Sasan Babainejad, *N. Bigdeli and K. Afshar
"Department of Electrical Engineering, Semnan University,
Damghan Road, Semnan, Iran
“Department of Communication and Information Technology,
National Iranian O1l Company, Tehran, Iran
*Linear Systems Control Lab. Department of Electrical Engineering,
Imam Khomeini International University, Qazvin, Iran
“Laboratory of Linear Systems Control, Department of Electrical Engineering,
Imam Khomeini International University, Qazvin, Iran

Abstract: This study proposed a method for synthesizing a virtual laboratory for
evaluation of congestion control algorithms in TCP/IP networks (CCVL). In CCVL
(1.e., congestion control virtual laboratory), the required hardware and the risk of
hardware malfunctioning is noticeably reduced. The result is a low-cost compact
portable virtual laboratory which also has the capability of connecting to the real
mternet and interchanging and gathering test data with/from 1t, if applicable. This
method can be greatly useful in congestion control laboratories at umversities and
research institutes.

Key words: Congestion control, virtual laboratory, network simulation, network
emulation

INTRODUCTION

Congestion control has become a major problem in computer network management area
in the recent years and a wide range of algorithms have been proposed for solving this
problem in the literature (Bigdeli and Haeri, 2009a; Chrysostomou et al., 2009, Manfredi et al.,
2009; Aweya et al., 2008; Wang et al., 2008). These algorithms are mainly categorized as
heuristic, mathematical and control theory-based models (Kelly et al, 1998). The TCP
congestion control methods being TCP Reno, Tahoe, New Reno, Sack, Vegas, Westwood
and control-theory based AQM-controllers such as P, PI, PD, sliding mode and Coefficient
Diagram Method (CDM) (Bigdeli and Haeri, 2007; Bigdeli and Haeri, 2009b; Sun et al., 2003,
Hollot et al., 2002, Fengyuan et al., 2002; Ryu ef al., 2003) as well as heuristic methods like
Blue (Feng et al., 1999) and Purple (Pletka et al., 2003) are examples of developed congestion
control schemes. In spite of such a wide range of developed congestion control methods,
just a few of them has been employed/implemented practically. The reason is that there is no
proper and reliable evaluation test bench for the proposed congestion control methods. The
evaluations are mainly based on simple scenarios which are implemented via Network
Simulator 2 (NS-2) (refer to The Network Simulator, ns-2) scripts on one computer. Therefore,
the derived results are not sufficiently reliable (Floyd and Kohler, 2002).

Corresponding Author: Sogol Babaingjad, Department of Electrical Engineering,
Semnan University, Damghan Road, Semnan, Iran
177

Trends Applied Sci. Res., 5 (3): 177-187, 2010

In synthesizing an evaluation test bench three different aspects should be considered. The
structure of the computer network, the topology and the traffic passing through the network
are the two main subjects of interest. Tn Bigdeli (2007), these two parts of an evaluation
test bench has been considered closely and a simulation test bench based on
characterization of the topology and traffic of the real networks has been synthesized.
Implementation complexity and packet-level examination of a congestion control scheme is
another matter of interest which should be considered. However, examination of these
properties via a simple NS-2 script on one computer 1s not possible. Due to the complexity
of real traffic synthesizing and implementation, setting up a real evaluation test bench is
not a straight-forward task. On the other hand, implementation of such a network is not
cost-effective. The main portion of the cost in a network 1s the cost of hardware components
such as computer sets, hubs, switches, cables and etc. Besides, the implementation of
user-defined congestion control algorithms is impossible in commonly available routers. In
such cases, computers should be programmed as routers, which is a professional task and
cammot be performed easily. Nonetheless, special software and protocols are required to
connect the machines together.

Based on the above arguments, m this study we propose a method for synthesizing a
virtual laboratory for evaluation of congestion control algorithms in TCP/AP networks
(CCVL). In CCVL, the traffic exchange is based on emulation capability of NS-2 (refer to the
Network Simulator, ns-2) and the structure of a simplified real network 1s implemented in one
machine via Xen (http://www.cl.cam .ac.uk/research/srg/netos/xen/readmes/user/user.html).
Therefore, the required hardware is noticeably reduced. In this approach, the physical
features of an actual network are transferred to an artificial network where NS-2 (refer to The
Network Simulator, ns-2) is used as the network simulator and manager for testing. That is,
NS-2 is connected to the artificial network where performance of the network is studied prior
to complete fabrication In this manner, the potential risk of hardware malfunctioming 1s
reduced considerably. The result is a low-cost compact portable virtual laboratory which also
has the capability of connecting to the real internet and interchanging and gathering test
data to/from 1t, if applicable. This method can be greatly useful in congestion control
laboratories at universities and research institutes.

MATERIALS AND METHODS

Congestion Control Virtual Laboratory (CCVL) Implementation
Hardware Implementation

Xen kernel facilities are used to create and run the real network and virtual machines.
Virtual machines are employed to act as the real nodes in the virtual laboratory
(Barham et al., 2003; Fraser ef al., 2004). Figure 1 shows the schematic of the connected
virtual Ethernet interfaces via Xen. Xen creates, by default, seven pairs of connected virtual
Ethernet interfaces for use by the domain “dom 07, “veth 0 is connected to “vif 0.0”, “veth
17 18 connected to “vif 0.17, etc., up to “veth 7 which 15 connected to “vif 0.7”. It is possible
to use them by configuring TP and MAC addresses on the “veth #” end and then attaching
the “vif 0 # end to a bridge (Barham et al, 2003, Fraser et al, 2004,
http:/fwww .cl.cam. ac.uk/research/srg/metos/xen/readmes/user/user.html).

Every time a running “dom1]” instance is created, it is assigned a new domain id number.
Tt is not possible to manipulate the number. The first “domU” will be id #1. The second one
started will be #2, even if #1 1s not runming anymore.

For each new “dom U™, Xen creates new connected virtual Ethernet interface, where one
end of each pair 13 within the “dom U” and the other end exists withun “dom 0”. For Linux

178

Trends Applied Sci. Res., 5 (3): 177-187, 2010

Computer-Xen

_ dom 0 | [
! vetho (<= | veth oo
EA emo — —

7 1
T veth 1 <:> wveth 0.1
1 — —
@F eth 1 E<==>E
D<_>E
I T—T D<=>E
S0
veth 7]4:{>|- veth 0.7

Fig. 1: Schematic of the connected virtual Ethernet mnterfaces via Xen

Computer-Xen
dom 0 dom 1
eth0 g | vif0.0 vif1.0 || et
 — | == —d —
veth 1 vif 1.0 vif L1 KR eth 1
 — | —
dotn 2

vif 2.0 eth 0
— —

Fig. 2: Logical network card connected between dom 0 and dom 1

“dom U™ 's the device name it sees 13 named “eth 0”. The other end of the virtual Ethernet
interface pair exists within “dom 07 as interface “vif<id#>.0". For example, the “eht 0" of
“dom 57 1s attached to “vif 5.0”. If multiple network interface for a “dom U™ 1s created,
it's ends will be “eth 07, “ethl”, etc, whereas the “dom 0” end will be “vif=<id#=.0",
“yif<ad#>.1" | etc. Figure 2 shows such a logical network card connected between “dom 0
and “dom 17).

When “dom U” 1s shutdown, the virtual Ethemet mterfaces for it are deleted.
Virtualized network interfaces in domains are given Ethernet MAC addresses. By
default Xen will select a random address. This will differ between instantiations of the
domain. If it is required to have a fixed MAC address for a domain (e.g., for using DHCP) then
this can be configured using the “mac=" option to the “vif” configuration directive (e.g.,
vif=['mac=aa:00:00:00:00:11"].

179

Trends Applied Sci. Res., 5 (3): 177-187, 2010

Computer-Xen
dom dom 1
U
cth O
T
Xembro ¥ 3
f vif 0.0

H 3
E vif 1.0 K 4| etho
<:> peth 0 —T —
[i
I vif 1.1 eth 1
| —] —

Fig. 3: Tllustration of Network Bridge and Vif Bridge

When MAC addresses should be used, it 1s necessary to ensure that a umicast address
is chosen. That is, one with the low bit of the first octet set to zero. Tt is the best to keep to
the range of addresses declared to be locally assigned (rather than allocate globally to
hardware vendors).

These have the second lowest bit set to one m the first octet. The correct form
of the MAC address is “XY: XX X33OI KK where, “X” is any hexadecimal digitand “Y™
is one of the 2,6,A or E. Tt is recommended to use a MAC address inside the range
“00:16:3e:xx:xxxx”. This address range 1s reserved for using by Xen

The default Xen configuration uses bridging within domain O to allow all domains to
appear on the networlk as individual hosts. Tf extensive use of TP tables (“iptable”) is made
in domain 0 (e.g., a firewall) then this can affect bridging because bridge packets pass
through the PREROUTING, FORWARD and POSTROUTING IP table chains. This means
that packets being bridge between guest domaims and the external network will need to be
permitted to pass those chains. The most likely problem is the FORWARD chain being
configured to DROP or RETECT packets (this is different from TP forwarding in the kernel)
(Barham et al., 2003).

Arrived packets, at hardware, are handled by “dom 0 Ethernet driver and appears on
“peth 07, “peth 07 is bound to the bridge, so it is passed to the bridge from there. This step
is run on Ethernet level, no TP addresses are set on “peth0”or bridge. Therefore, the bridge
distributes the packets, just as the manner a switch would. Filtering at this stage would be
possible with “ebtables”. Now there 1s a number of “vifx.y” comnected to the bridge, it
decides where to put the packet based on the MAC address of the receiver. The “vif”
interface puts the packet into Xen, which then puts the packet back to the domain that the
“vif” leads to. The target device in the “dom 0/domU™ finally has an IP address. It would be
possible to apply IP tables filtering here. As shown in Fig. 3 when Xen starts up, 1t runs the
network-bridge script as (Barham et al., 2003; Fraser et al., 2004):

* Creates a new bridge named “xenbr 07
* Real Ethemnet interface “eth 07 13 brought down

180

Trends Applied Sci. Res., 5 (3): 177-187, 2010

¢ The TP and MAC addresses of “eth 0” are copied to virtual network interface “veth 0
¢ Real interface “veth 0” is renamed “peth 07

* Virtual interface “veth 07 i1s renamed “eth 07

+ “peth 07 and “vif 0.0” are attached to bridge “xenbr0”

¢ The bridge, “peth 07, “eth 0" and “vif 0.0” are brought up

It would be better to have the physical interface and the “dom 0™ interface separated. It
would however, be possible for example by setting up a firewall on “dom 07 that does not
affect the traffic to the “dom1J”'s (just for protecting “dom 0 alone). When a “domU” starts
up, xend (running in “dom 07) runs the vif-bridge script, which:

* Attaches “vif<id#=.0" to “xenbr 07
¢ “yif<id#>.07 is brought up

Software Implementation (Emulation)

Once, the real and virtual Ethernet interfaces are set up, the traffic passing and
manipulation among them should be created and/or managed via proper software. The
employed software in this study is NS-2 (refer to The Network Simulator, ns-2), which is
capable and free-access software. It has good emulation capabilities which are vital for
constructing the virtual laboratory.

Emulation refers to the ability to introduce the simulator into a live network. There are
two type of use for such a facility, depending on whether the simulator appears to the end
station as a router or as another end station (Fall and Varadhan, 2007). In the first mode the
simulator can grab the live traffic from the real network and pass them through a simulated
network and then inject them back to the live network (the opacque mode). In the second
mode the simulator include the traffic source or sinks that communicate with the real-world
entities (the protocol mode) (Fig. 4). In the opaque mode, the live network packets are passed
through the sumulator without being mterpreted. Network packets maybe dropped, delayed,
re-ordered or duplicated by the simulator.

Emulation

Opague mode Protocol mode

Fig. 4 Emulation diagrams

The opaque mode 1s useful in evaluating the behavior of the real-world implementations
when subjected to adverse network conditions that are not protocol specific. Notice that n
the opacque mode, the live traffic can come from a real network or a trace file. In both cases
it is necessary to specify the source of the live traffic in the related module in the Emulation
file (For example Pcap/File) (Alefiya, 2002). Figure 5 shows the mteraction of sumulator with
the real network 1n the opaque mode.

181

Trends Applied Sci. Res., 5 (3): 177-187, 2010

Data C /
Read packets ‘Write packets
Network packet

Fig. 5: The mteraction of N3-2 sumulator with the real network n the opaque mode

/ Host 2 N (Host 1

Source Source P Apent
Destinati [Destinati e
Size Size 7y { TCP
\r} LY 1"‘ server
! : application

Fig. 6: The mteraction of N 3-2 sumulator with the real network n the protocol mode

In the protocol mode, the simulator is used as an end-pomt to generate TCP traffic. A
TCP agent within NS-2 interacts with a real-world TCP server and can receive data from the
external applications. This mode can be used for end to end application testing, protocol and
conformance testing (Alefiya, 2002). Figure 6 shows the interaction of simulator with the real
network in the opaque mode.

Implementation Critiques
Connectivity via Xen

As stated earlier, Xen 1s used to create real network and virtual machine. Between
different scenarios of making a network, the networle-multinet is the most appropriate one for

182

Trends Applied Sci. Res., 5 (3): 177-187, 2010

this kind of studies. The virtual machine's Ethernet (eth 0) has to be configured to connect
to the network bridge (xenbr 3) which is created in the network-multinet scenario. The real
machine's Ethernet (veth 3) is also comnected to xenbr 3. Network-multinet sets the IP
address and subnet mask of veth 3 t0 172.23.0.1 and 255.255.0.0, respectively. So eth 0 of the
virtual machine has to be configured with the TP address of the same class (Fraser et al.,
2004).

Emulation Components

In order to implement emulation in NS-2, different components should cooperate.

The first component is Real-time scheduler that synchronizes the simulation virtual clock
with the system time and ties event execution within the simulator to real time. In this way
1t ensures that the packets, passing the simulator network, are delayed a proper amount of
time.

The second component is Network object. Network objects provide access to a live
network or to a trace file of captured network packets. In addition to the facilities providing
by the host operating system, there are several forms of network objects, depending on the
protocol layer specified for access to the underlying network. Network objects provide an
entry point into the live network at a particular protocol layer (like raw TP, UDP, Pcap/bpf ...)
and with particular access mode like read-only, write-only or read-write.

Tap agent 1s the next component which 1s used to covert live packets in to simulated
packets and vice versa. The tap agent handles the setting of the common header packet size
field and the type filed. Tt uses the packet type PT-LIVE for packets injected in to the
simulator. Each tap agent can have at most one associated network abject, although more
than one tap agent may be instantiated on a single simulator node like what we have in our
Emulation script in this study.

And the last component is Pcap/bpf networls object. These objects provide an extended
mterface mto the LBNL (Lawrence Berkeley National Laboratory) packet capture library
(Libpcap). This library provides the ability to capture link-layer frames in the promiscuous
fashion form network interface drivers. It also provides the ability to read and write packet
trace files in the tepdump format. The extended interface provided by NS-2 also allows for
writing frames out to the network mterface driver, provided that the driver itself allows this
action. Use of the library to capture or create live traffic may be protected; one generally
requires at least read access to the system's packet filter facility which may need to be
arranged through a system administrator.

The packet capture library works on several UNTX-based platforms. Tt is optimized for
use with the Berkeley Packet Filter (BPF) and provides a filter compiler for the BPF
pseudo machine code. On most systems supporting it, a kernel-resident BPF
implementation processes the filter code and applies the resulting pattern matching
mstructions to received frames. Those frames matching the patterns are received through the
BPF machinery.

RESULTS AND DISCUSSION

Here, the creation and the connectivity of real and virtual machmes for implementing
congestion control algorithms via Xen and NS-2 are described via a simple example. The
simulated scenario is a four-node network with the topology of Fig. 7, where the directions
of arrows show the traffic passage direction. Two of the nodes are virtual nodes made inside
NS-2 whereas the other two nodes are real ones. The real machine and the virtual machine

183

Trends Applied Sci. Res., 5 (3): 177-187, 2010

Eeal node 2
Virmal Real node 1 Virmal
node 1 node 2

Fig. 7: Topology of the implemented network

set ns [new Simulator]

$ns use-scheduler RealTime

set myd [open out.tr w]

$ns trace-all Smyd

set entry_node [$ns node]

set tcp_node [$ns node]

set $tcE_n0de “10.0.0.1"

$ns duplex-1ink $entry_node $tcp_node 10Mb 1ms DropTail
set tcp [new agent/TCP/FullTcp]

$ns attach-agent $tcp_node $tc

set bpf [new Network/Pcap/Live

set dev [$bpf open readonly veth3]
set capture_tap [new Agent/TCPTap]
$capture_tap network $bpf

3ns attach-agent 3entry_node 3capture_tap
$ns simplex-connect $capture_tap $tcp
set rawsocket [new Network/IP]
$rawsocket open writeonly

set inject_tap [new AaenthCPTap]
$inject_tap advertised-window 512
$inject_tap extipaddr "172.23.0.2"
§inject_tap extport 8000

$inject_tap network $rawsocket

$ns attach-agent $entry_node $inject_tap
$ns simplex-connect $tcp $inject_tap
$bpf filter “dst 172.23.0.1"

proc finish {} {

lobal ns myd nmyd

ns flush-trace

close $myd

exit 0

$ns at 0.01 “$tcp advance 1"
$ns at 2.0 “exit o"
$ns run

Fig. 8: The N3-2 script of the first real machine

act as the real nodes in this scenario. It should be neted that the second real machine has
been actually implemented via X en in the same computer as the first real one The generated
traffic is TCP and the congestion control method is the well-known Random Early Discard
(RED) method (Christiansen ef al, 20003 The capacity and the delay of the links are
considered as 10 b and lms, respectively.

The chjective 15to send a packet of data from the first virtual node via the real machines
to the second wirtual machine and then receive the acknowledgrment by the first virtual node.
The N3-2 scripts for implementing such connections in the different machines are shown in
Fig 8 and 9, respectively.

The script in Fig. 8 should be run on the first real machines and the script in Fig. 9,
should berun on the virtual machine The IP address of the first real node 15 172.23.0.1 and
the TP address of the second real node 15 172.23.0.2 Based on these codes, a virtual node 15
created in the first real node when MB-2 runs within the first real node. This is the first virtual
node shown in the topology. Then N3-2 begins to send a packet to the real netw ork from this
virtual node The first real node receives the packet and then sends it to the second real
node,

184

Trends Applied Sci. Res., 5 (3): 177-187, 2010

set ns [new Simulator]

$ns use-scheduler RealTime

set myd [open out.tr w]

¢ns trace-all Smyd

set entry_node [3ns node]

set tcp_node [$ns node]

tns duplex-Tink $entry_node $tcp_node 10Mb 1ms DropTail
set tcp [new Agent/TCPsink/Delack]

$ns attach-agent $tcp_node $tc

set bpf [new Network/Pcap/Live

set dev [$bpf open readonly ethl]

set capture_tap [new Agent/TCPTap]
$capture_tap network Sbp

$ns attach-agent $entry_node $capture_tap
$ns simplex-connect $capture_tap $tcp
set rawsocket [new Network/IP]
$rawsocket open writeonly
set inject_tap [new Agent/TCPTap]
$inject_tap advertised-window 512
$inject_tap extipaddr "172.23.0.1"
$inject_tap extport 8000

$inject_tap network 3rawsocket

$ns attach-agent $entry_node $inject_tap
fns simplex- connact ftcp $inject_tap
$bpf filter “dst 172.23.0.2"
proc finish {} {

Tobal ns myd nmyd
%ns flush-trace
close $myd
exit 0

$ns at 2.0 "exit OV
tns run

Fig. 9: The NS-2 seript of the second real machine

Tahle 1: Cutpt trace file ofthe first rrachine

Inpt Cutput
Ewent Time node node Pt type Pkt size Flag Srcaddr Dstaddr Segnum Pltid
+ 0.010001 1 il tep 40 0 1.0 01 0 i]
- 0.010001 1 il tep 40 0 1.0 0.1 il i]
t 0.011033 1 il top 40 0 1.0 1 il i]
+ 0.122543 0 1 tep 1] i 0o 1.0 -1 1
- 0.122543 0 1 tep a0 0 0.0 1.0 -1 1
L 0.123609] 1 icpo] 0 0.0 1.0 -1 1
Table 2: Outpt trace file ofthe second machine
Inpt Cutput
Ewent Titne finde finde Fldt type Pl size Flag Srcaddr Dataddr Segrnum Flgid
+ 0.44285 0 1 live 40 0 [IR1] 1.0 -1 1]
- 0.44285 0 1 live 40 0 0.0 1.0 -1 i
t 0.443834 0 1 live 40 0 0.0 1.0 -1 n
+ 0.549212 1 0 ack 40 0 1.0 01 0 1
- 0.549212 1 il ack 40 0 1.0 0.1 il 1
t 0.550248 1] ack 40 i 1.0 0.1] 1

The second real node sends the packet to the second virtual node which is made inside
NS-2 running on the virtual machine with the same scenario as the first virtual node. The
acknowledgment packet is received by the first virtual node after passing the reverse path.

Tables 1 and 2 contain the output trace files of running the programs which have been
saved in tarce files “out.tr’ files. The first colurm shows the event type. It is given by one of
four possible symbols 1, +, - and d which correspond, respectively to received (at the output
of the link), enqueued, dequeued and dropped. The second column gives the time at which
the event occurs. The third and the fourth columns give the input and output nodes of the
link at which the event ocecurs, respectively. The fifth column shows the packet type

185

Trends Applied Sci. Res., 5 (3): 177-187, 2010

(Pt type) and the sixth one gives the size of the packet (Pkt size). Seventh column is a kind
of flag. The eighth and ninth columns are the source and destination addresses (Src addr and
Dst addr). The tenth one is the sequence number (Seq num). The last column shows the
urique 1d (Pkt 1d) of the packet. From these trace files it is observed that the packet exchange
between desired machines has been done, satisfactorily.

CONCLUSIONS

In this study, a method for synthesizing a virtual laboratory for evaluation of congestion
control algorithms in TCP/AP networks (CCVL) has been proposed. The main significant
advantage of this method is the ability of virtualization of a small real network even with one
machine. Also, by this method it is possible to construct big real networks within only a few
numbers of machines at universities or research institutes where fabrication of such networks
can be expensive in terms of both cost and volume. In CCVTL, the required hardware and the
risk of hardware malfunctiomng 1s noticeably reduced. The result 1s a low-cost compact
portable virtual laboratory which also has the capability of connecting to the real internet and
mterchanging and gathering test data with/from it, 1f applicable. This method can be greatly
useful m congestion control algorithms evaluation at personal laboratories, umversities and
research mstitutes.

Tt should however, noted that the number of virtual machines or equivalently, the size
of the implemented networlk are confined by the available memory and processing limitations.
However, with current advanced technologies these limitations are of minor concern.

ACKNOWLEDGMENT

The authors would like to express their appreciation to Linear Systems Control
Laboratory of Imam Khomein International University for providing facilities for this study
and also the reviewers for theiwr helpful comments.

REFERENCES

Alefiva, H., 2002. Emulation in ns. http:/www.isi.eduw/nsnam/ns/ns-tutorial/tutorial-
02/slides/emulation. pdf.

Aweya, J., M. Ouellette, D.Y. Montuno and K. Felske, 2008. Design of rate-based controllers
for active queue management in TCP/IP networks. Comput. Commun., 31: 3344-33590.

Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho and R. Neugebauer ef ol., 2003.
Ken and the art of virtualization. Proceedings of the 19th ACM Symposium on Operating
Systems Principle, Oct. 19-22, Bolton Landing, USA., pp: 164-177.

Bigdeli, N., 2007. Synthesis and modeling of a test bed for evaluation and improvement of
AQM methods in mternet congestion control. PhD. Thesis, Sharf University of
Technology, Tehran, Iran.

Bigdeli, N. and M. Haer1, 2007. ARM-PFC, An optimized AQM congestion controller in
TCP/IP networks. Iran. I. Sci. Technol., 31: 663-678.

Bigdeli, N. and M. Haeri, 2009a. CDM-based design and performance evaluation of a robust
AQM method for dynamic TCP/AQM networks. Comput. Commun., 32: 213-229.
Bigdeli, N. and M. Haeri, 2009b. Predictive functional control for active queue management

in congested TCP/TP networks. ISA Trans., 48: 107-121.

186

Trends Applied Sci. Res., 5 (3): 177-187, 2010

Christiansen, M., K. Teffy, D. Ott and F.D. Smith, 2000. Tuning RED for web traffic.
Proceedings of the ACM/SIGCOMM, Sept., 2000, Stockholm, Sweden, pp: 139-15%.

Chrysostomou, C., A. Pitsillides and Y. A. Sekercioglu, 2009. Fuzzy explicit marking: A umfied
congestion controller for best-effort and diff-serv networks. Computer Networks: The
Int. . Comput. Telecommun. Network., 53: 650-667.

Fall, K. and K. Varadhan, 2007. The ns manual. http:/Avww.isi.edu/nsnam/ns/ns-
documentation html.

Feng, W., D. Kandlur, D. Saha and K. Shin, 1999. Blue: A new class of active queue
management algorithms. Technical Report CSE-TR-387-99, University of Michigan.

Fengyuan, R., I.. Chuang, Y. Xunhe, S. Xiuming and W. Fubao, 2002. A robust active queue
management based on sliding mode variable structure control. Infocom, 1: 13-20.

Floyd S. and E. Kohler, 2002. Internet research needs better models. Hotnets-I.
http:/Awww.icir.org/models/bettermodels. htm L.

Fraser, K., 5. Hand, R. Neugebauer, I. Pratt, A. Warfield and M. Williamson, 2004. Safe
hardware access with the Xen virtual machine monitor. Proceedings of the 1st OASIS
ASPLOS 2004 Workshop.

Hollet, C.V., V. Misra, D. Towsley and W.B. Gong, 2002. Analysis and design of controllers
for AQM routers supporting TCP flows. TEEE Trans. Automat. Control, 47: 945-959.

Kelly, F.P., A Maullooand D. Tan, 1998. Rate control in commumication networks: Shadow
prices, proportional fairness and stability. J. Operat. Res. Soc., 49: 237-252.

Manfredi, 3., M. Bernardo and F. Garofalo, 2009. Design, validation and experimental testing
of a robust AQM control. Control Eng. Prac., 17: 394-407.

Pletka, R., M. Waldvogel and S. Mannal, 2003. PURPLE: Predictive active queue management
utilizing congestion information Proceedings of the 28th Annual IEEE International
Conference on Local Computer Networks, Oct. 20-24, TEEE Computer Society,
Washington DC., pp: 21-30.

Ryu, 3., C. Rump and C. Qiao, 2003. A predictive and robust active queue management for
Internet congestion control. Proceedings of the 8th IEEE International Symposium on
Computers and Communication, June 30-JTuly 3, TEEE Computer Society, Washington
DC., pp: 991-998.

Sun, I, K.T. Ko, G. Chen, 3. Chan and M. Zukerman, 2003. PD-RED: To mnprove the
performance of red. IEEE Commun. Lett., 7: 406-408.

Wang, T., L. Rong and Y. Liu, 2008. Design of a stabilizing AQM controller for large-delay
networks based on internal model control. Comput. Commun., 31: 1911-1918.

187

	Trends in Applied Sciences Research.pdf
	Page 1

