@

Academic
Journals Inc.

Trends in

Applied Sciences
Research

ISSN 1819-3579

www.academicjournals.com

Trends in Applied Sciences Research 6 (9): 1046-10564, 2011
ISBN 1819-3579 / DOIL: 10.3923/tasr.2011.1046.1054
© 2011 Academic Journals Inec.

Synthesizing a Composite Model for Runtime Monitoring and
Adapting Goal Oriented Systems

Seyed Morteza Babamir and Abdollah Aghaei

Department of Computer Engineering, University of Kashan, Kashan, [ran

Corresponding Author: Seyed Morteza Babamir, Department of Computer Engineering, University of Kashan,
Kashan, Iran

ABSTRACT

In goal oriented requirements engineering, a system is developed through identifying and
refining goals. Then, the system developer proceeds with geal identification and refinement to
obtain requirements. Responsibility for satisfaction of requirements 1s assigned to agents. Because
of insufficient specifications and change of environmental conditions, goals may be viclated during
run time. The main aim of this study was to identify goal violation by run time monitoring system.
This paper has presented a composite model for: (1) menitoring behavior of software agent and (2)
adapting system to requirements if some software agent viclates some requirement. To show the
effectiveness of the proposed model, we applied it to the CIIF (Continues Infusion Insulin Pump)
system. By applying present method, we came to the conclusion that our model presented a way
by which one is able to: (1) develop a system by goal-oriented approach, (2) monitor it based on the
events and (3) adapt it to the new situation.

Key words: Goal oriented, goal adaptation, requirement engineering, runtime monitoring,
verification

INTRODUCTION

Goal-oriented is a requirements engineering method for eliciting, elaborating, structuring,
specifving, analyzing and documenting requirements (Van Lamsweerde, 2004). Goals vary from
high-level concerns to low-level requirements. To achieve goals, agents such as software
components, input/output devices and human should collaborate with each other. The significant
decision in the requirements engineering process is assignment of responsibilities for goals to
agents. However, agents may fail in achieving goals. In the following viclation of a system
specification is considered.

System specification may be viclated because: (1) environment agents may behave in an
unpredictable way at run-time and (2) the post-deployment evolution of environment conditions
can make initial valid assumptions are no longer valid. Two complementary approaches can be
followed to manage runtime violations of requirements:

* Predicting as many as possible requirements at specification time
* Detecting and resolving such viclations at runtime

The first approach called static approach applies method obstacle handling

{(Van Lamsweerde and Letier, 2000). In this method, having identified goals, we should identify
and resolve the causes of dissatisfaction of the goals. While obstacle analysis may highly deliver a

1046

Trends Applied Seci. Res., 6 (9): 1046-1054, 2011

cost-effective method for obtaining robust specifications, identifying complete specification of
all possible obstacles may be unachievable. Besides, an overly defensive specification may be too
costly to implement and result in unnecessary complexity of the software. It is here that the
runtime monitoring comes into play (Sayenko ef al, 2010) as well as testing
{(Layachi-badri, 20086; Xin ef al., 2010) 1s effective.

Our suggested model has three main steps. In the first step, we specify the system by the KAOS
{Van Lamsweerde, 2009, 2008) goal oriented methodelogy. Then, we identify the possibly viclated
goals at run-time and generate monitor code by the FLEA (Feather et af., 1998) compiler. In the
second step, an agent monitor observes the software agent behavior while it 1s executing. In the
three step, the system is adapted if some goal 1s violated. We use one point adaptation method by
which the system stops its initial execution path and starts an alternative one. That which of the
alternative execution paths should be started is a concern. To deal with this concern, we use
alternative sub-goals of the refinement tree. Having adapted the system to an alternative, we
change the monitor code to ohserve the new situation if necessary. Overall, this study discusses
runtime viclation of goals identified at specification time. The wviclation may be due to
unpredictability of the behavior of environment agents or change of environmental conditions.

GOAL ORIENTED REQUIREMENT ENGINEERING

Goal oriented requirement engineering deals with identifying the goals of a system, refining
the goals to sub-goals so far as to identify requirements. Then, it addresses assignment of
responsibility for satisfying requirements to the agents. ach goal 1s an objective that system should
achieve it in collaboration with software agents and environment ones. Requirement engineering
is a significant step in software development (Kheirkhah ef al., 2009) and goals have important role
in the process (Mylopoulos, 2006) in which the geal refinement is performed by andfor in a
refinement graph.

Graphically, a goal is depicted as a parallelogram in and refinement, a goal is gradually refined
to a set of connected sub-goals; so, to satisfy the goal, all sub-goals should be satisfied. In an or
refinement, each goal is refined to a set of alternative sub-goals so that it is enough that at least
a goal 18 satisfied (Van Lamsweerde, 2009),

An agent is graphically represented as a hexagon. Responsibility an agent for a geal is
indicated by pointing an arrow from the agent to the geal or requirement. Graphically, a
requirement is depicted as a parallelogram with a bold black border (Van Lamsweerde, 2009),

An operation is an action performed by an agent to achieve a goal by operationalizing a
requirement. Graphically, operations are represented as ovals. Operationalization is shown
graphically as a circle indicating a requirement should be operationalized. An agent is responsible
for an operation and the agent responsibility is shown by a circle including lines that point to the
operation for which the agent is responsible (Van Lamsweerde, 2009).

A message 1s a communication between two agents represented graphically as a pentagon
together with a pointer (Van Lamsweerde, 2009),

In requirements engineering, KAOS is a goal oriented methodelogy defining formally goals in
real-time temporal logic formulae (Van Lamsweerde, 2009). Figure 1 shows the KAOS methodology
steps. The figure consists of four sub models: Goal, object, responsibility and operational. The
responsibility model is obtained from goal model and the operational one is cbtained from
responsibility one. Figure 1 shows the KAOS method by indicating that how the corresponding sub
models are obtained. To construct the goal refinement. graph, goals are elicited from available
sources while we ask why and how questions (goal elaboration step); objects, relationships and
attributes are derived from the goal specifications (object modeling step); agents are identified,

1047

Trends Applied Seci. Res., 6 (9): 1046-1054, 2011

No train collision Goal model

Object mo de/ \ Responsibility model

[l Train I% Block |] ‘l]

Operation send command

Dom pre sent (m, tr)

Dom post sent (m, tr) Operational model
Reqgpost for safe acceler

m.acceler < F (tr. tr. preced)

Fig. 1: The KAOS models

alternative responsibility assignments are explored and agent interfaces are derived (responsibility
assignment step); operations and their pre-conditions and post-conditions are identified (operational
model). These steps can be advanced in parallel with each other or one step can be backtracked to
a previous one.

To identify goals from initial document, one can search the document for keywords “objective”,
“purpose”, “intent”, “concern”, “in order to” and ete. Then, goals are formalized and the object model
is derived. To explore alternative responsibility assignments, goals should be formulated from the
goal elaboration step. In the refinement graph, assignments of termmnal goals to individual agents
are captured and/for by responsibility links. Having assigned terminal sub-goals to individual
software or environmental agents, we derive each agent from the goal specifications in order to
derive agent interfaces. To identify operations, one should identify operations relevant to goals and
then define their pre-conditions and pos-conditions. Since goals show specific state transitions, an
operation that fires the transition is identified. The goal pre-condition and post-condition captures
the state transition. To operationalize goals, one should elaborate the conditions so that the various
goals linked to the operation are achieved. For goals assigned to software agents, this step produces
requirements on the operations for the corresponding goals to be achieved.

The KAOS model uses temporal operators to formally define the components: o, means next
state, ® means previous state, ¢, means eventually, ¢, means sometime in the past, I, means
always in the future, B, means always in the past, U, means until and W, means unless. Real-time
restrictions are indicated by subscripts; e.g., ¢ < nu means “sometime in the future within n time
units u”. We use the KAOS methodology for development of our system.

RUNTIME MONITORING

Having developed the system, we identify the goals that may are violated at runtime. We use
the formal definition of these geals to generate the monitor code. By the FLEA compiler
{(Feather et al., 1998), we generate the monitor code from formal definition of the goals may be
violated.

The FLEA language provides constructs for expressing temporal combinations of events.
Run-time code to monitor such combinations is automatically generated by the FLEA compiler. The
run-time system comprises an historical database management system equipped with an inference
engine and a communication mechanism to gather events and distribute notifications of occurrences

1048

Trends Applied Seci. Res., 6 (9): 1046-1054, 2011

(Avoid assertion) P= [J = Q

| negation

PAGQ

| violation event

then P* Q*
(Maintain assertion) P= Q WR

| negation

PA-(QWE)

| violation event

then-excluding P* (= Q)* R* or (P* and not Q)
(Achiebe assertion) P = ¢ < nuQ

| negation

PAO>nu-Q

| violation event

too-late P* Q* N

Fig. 2: Translating the KAOS goals patterns to FLEA ones

Table 1: Temporal patterns of FLEA

Syntax Meaning

Then P @ An event P followed by an event

Then-excluding P @ R An event P followed by an event @, without any event R. in-between
In-timeP @ d An event P followed by an event Q within time delay d

Too-lateP Q@ d An event P not followed by an event Q within time delay d

of event combinations. The FLEA introduces events as special relations in which the first parameter
is the time at which the event occurs. Other parameters are event attributes. Table 1 shows the
various definable temporal patterns in FLEA. Using some transformation rules, the KAOS goal
patterns can then be translated into FLEA event definition patterns shown as in Fig. 2.

RUNTIME ADAPTATION OF THE SYSTEM

At run-time, the monitor agent controls the behavior of system agent. If some goal violation
occurs, the monitor reports this viclation to the change agent. The change agent then adapts
system to one safe state so that prevents the system from some failure. To keep the system off some
failure, we should replace the execution path of the viclated goal with an alternative sub-goal path.
To this end, we use refinement tree of the violated goal and use one-peint adaptation in adaptation
part of our model.

Semantic of the one point adaptation indicates that the system initially 1s executing by first
program named the source program. The system is able to work by alternative way named the
target program. When the one point adaptation should be carried out, the source program should
be stopped and the target program should be started. This approach is well-suited for systems that
have at least two alternative ways.

Zhang and Cheng (2008) presented the semantic of adaptation for Meta-Socket
problem. Brown et al. (2008) presented a goal oriented approach for the Meta-Socket problem by
KAOS methodology. These approaches are compatible with adaptive systems having two different
execution modes; however, we use them and adapt it so that we can replace an alternative sub-
tree of the goal refinement tree for some violated goal Figure 3 shows the general one-point
adaptation we use for the model which it may be generalized to different systems.

1049

Trends Applied Seci. Res., 6 (9): 1046-1054, 2011

Request source to targef
program one point éRefmement
;Operationalize g Responsib

o .
/Adopt from source progr: Legends:
to target program

Adopt source prog to
target prog

Perfosgance

/gource progran‘/ 71‘arget program/

A request source to
target one point

Change agent

Fig. 3: One point adaptation model

1. Specitying the system by the

KAOS and identifying the

alternative

refinements 5. System

One point adaptation one point adaptation

Identifying the violate able goals
One point
adaptation

. . . t
2. Generating the monitor code with FLEA reques

Monitoring

Implementation l' Monitoring report

4. System state analysis
by change agent
3. System executing and
runtine monitoring

Fig. 4: This study suggested model to monitor and adapt goal-oriented systems

By one-point adaptation, cur general model works as follows: (1) the monitor agent performs
the operation “Request source to target program by cne point” and (2) reports the message "A
request. for source to target by one point”. Having observed the monitor agent message, the change
agent performs the operation “Adaptation of source-prog to target-prog”. The system initially is in
“source program” state and it will be in the “target program” state when the goal adaptation 1s
satisfied.

THE SUGGESTED MODEL

Here, we represent run-time monitoring and adaptation model (Fig. 4). The composite model
is based on Feather model (Cohen ef al., 1997) and Brown model (Zhang and Cheng, 2006;
Brown et al., 2006). But the Feather model specifies no specific method for system adaptation and
so their model is not a precise model. Therefore, we should adapt it for different systems. We
generate a general one point adaptation model and combine it with the Feather model. This study

1050

Trends Applied Seci. Res., 6 (9): 1046-1054, 2011

adaptation model works with replacing an alternative refinement sub-goal from refinements tree
of viclated goal. One point adaptation is compatible for such systems stopping the execution of the
program at changing alternative sub-goal time and so the systems will work without fail.

The first step of this study model is goal oriented specification of system properties. In this step,
goals and requirements of system are specified by and/or refinement tree. Then, responsibility for
satisfaction of requirements is assigned to the system agents and the system executes. Another
work that should be performed at development time 1s verification of system so as to identify and
resolve the errors that may oceur.

The second step is identification of all erronecus states which not only it may be not practical
but also it is a costly idea. This is why that we want to identify the goals that just may be viclated
at run-time. To this end, we design the monitor through formal definition of such goals. The
monitor is an agent whose responsibility is monitoring the behavior of system agents and
comparing the system behavior with the system specification. We use the FLEA language for
translating the formal definition of goals may be viclated and then we generate the monitor code.

The third step is the system execution and monitoring the system behavior by the agent
monitor. If a goal violation occurs, the monitor reports it to the change agent.

The fourth step i1s analyzing the system states and requesting adaptation by the change agent
if necessary.

The fifth step is the system adaptation by one point adaptation method carried out by the
change agent. The system execution through source program stops and the execution through an
alternative sub-tree of the violated goal starts (this is the target program). After adapting the
system, system conditions may change and so we need to reconstruct the monitor to monitor the
system together with new conditions.

STATEMENT OF THE PROBLEM

Here, we aim to show the effectiveness of present method to synthesize the run-time monitor
of a safety-critical system called CIIP (Continues Infusion Insulin Pump) one. The system includes
a controller, whose software determines diabetic's blood sugar and computes some insulin doese to
deliver the diabetic. In order to constant control of the diabetic’s sugar, a miniature insulin pump
is worn by the diabetic. The system works as follows. The input sensor samples diabetic's bloed one
time per 10 min to determine the current blood sugar and reports the sugar value, measured in
micrograms/milliliter between 1 and 35, to the controller. Then, the controller computes some
insulin dose and the needle set delivers it to the diabetic. Developed for depicting the goal-oriented
software engineering, the Objectiver tools (http://www.objectiver.com) used to develop present
models.

Figure 5 shows the goal refinement tree for the insulin delivery. The goal “give needed insulin”
constitutes the root of the tree and its sub-goal 1s “adapt from auto dose computation to user give
dose”. We provided this property to adapt some viclated goal. The goal is followed for two reasons:
(1) The requirement “insulin dose calculus’ is achieved by the software agent and (2) The
requirement “user give dose” is achieved by the user agent respectively. The goal behind “give
needed insulin” may be failed due to change of some condition or due to some behavior during the
operation. 5o, we design the monitor code using the formal definition of goals shown in Fig. 6. The
figure, first of all, shows the formal definition of the goal negatively and then regarding the
patterns stated in Fig. 2, it shows the generated monitoring events.

The goal “given needed insulin” consists of “achieve” pattern; therefore, we use the pattern
shown in Fig. 2 and then generate the monitor code. During the system execution, the monitor

10561

Trends Applied Seci. Res., 6 (9): 1046-1054, 2011

Give needed insulin

Adapt from auto dose
computation to user give dose

Insulin dose calculus / User give dose /

Fig. B: Refinement tree for the CIIP system

Goal achieve [give needed insulin]
FormalDef
Insulin dose requested = ¢ < 10 min insulin dose given
| negition
Insulin dose requested A [> 10 min — insulin dose given
| violation event
too-late (insulin dose requestedd,
insulin dose given, 10 min)

Fig. 6: Monitor code of the CIIP System

observes the software agent behavior and in case of goal viclation, the “adaptation request” is sent,
to the change agent. Here, the change agent (which is a software agent) considers adaptation of
the “insulin calculation by software” to “user give dose”. Using this method, the program execution
1s halted by the agent and the system starts to deliver some insulin dose by its user. Figure 7 shows,
present suggested model for the CIIP system in which a blood sample 1s taken one time per 10
minutes. As the model shows, the system can deliver insulin dose through two ways causing the
system 1s well-suited for this study model.

Having cbserved the software agent behavior, the monitor agent will carry out the “request on
point adaptation” operation if it ohserves some goal violation. Afterwards, the operation reports the
message ‘request on point adaptation”. Having received the message, the software agent carries
out the operation “adapt insulin dose calculation by software with user give dose”. Performing this
operation stops insulin delivery by the system and starts it by the user.

Van Lamsweerde and Letier (2000) presented an obstacle handling method to prevent the
system failure at the development time. However, because of insufficiency of static approaches,
dynamic approaches have come into play. Feather ef al. (1998) presented a model for monitoring
and adapting the goal oriented systems at run-time. In this model, the monitor was created
automatically by the FLEA compiler. In the adaptation part of the model, they only presented
general suggestions. However, we use the Feather approach in present model to develop the
system and automatically generate the monitor code. Another difference 1s that we use

1062

Trends Applied Seci. Res., 6 (9): 1046-1054, 2011

Adapt insulin dose calucation by Adapt from auto dose
software with user give dose computation to user give dose

Insulin dose calculus

Perforiiance

Monitoring

Software

Request one point adaptation >
7 ¥

Monitoring Ouf put

Performance -
- < Request one point adaptation
<_Monitor > 4 P P

Fig. 7: The suggested model for the CIIP system by three different adaptations

one point adaptation model (Zhang and Cheng, 2008) in the adaptation part. One point adaptation
model presented for the adaptive systems having two different execution ways (Brown et al., 2008),
The Brown et al. (2008) have no stress on the monitor part in their model. Accordingly, we changed
their model to replace an alternative sub-goeal of refinement tree and used it in the adaptation part
of present model. Also, Zhang and Cheng (2006) presented an adaptation semantic by a formal
approach and then Brown ef al. (2006) translated their formal models to the goal oriented ones by
the KAOS methodology. Present model has integrated the benefits of both models.

CONCLUSION, SUGGESTIONS AND FUTURE STUDY

The one-point adaptation model was suggested for the systems which are naturally adaptive
and can work at least in two special ways. We applied the one-point adaptation model in the body
of the monitoring system by substituting the alternative sub-goal using the goal refinement tree.
We stated a case study to show effectiveness of our suggested model. Feather ef al. (1998) presented
a general model for monitoring and adapting goal-oriented requirements whereas, the major
advantage of our model 1s the stress on the adaptation part and specially the use of the one-point
adaptation model. Although Brown et al. (2008) presented an adaptation model, cur model
considered the monitor as an event-oriented one. In the other words, we used the one point
adaptation which is appropriate for the adaptive systems and generalizes it for replacing an
alternative sub-goal using the refinement tree. Our model, in fact, presented a way to develop the
system by goal-oriented approach in order to one can monitor it based on the events and adapt. it
to a new situation. Moreover, our model integrated the advantages of both models. Applied in our
adaptation model, Fig. 7 showed three different adaptations. The choice of adaptation depends on
the application requirements.

We exploited the FLEA language for generating the monitor code. This can be resulted in use
aspect oriented languages such as the ASPECTJ (Laddad, 2009) language for generating the
monitor code. Aspects have been used to software development (Fazal-e-Amin et «l., 2010). Our
main contribution was generalization of a monitoring and adaptation model, where can be used by
different systems.

10563

Trends Applied Seci. Res., 6 (9): 1046-1054, 2011

REFERENCES

Brown, G., B.H.C. Cheng, H. Goldsby and J. Zhang, 2008, Goal oriented specification of adaptation
requirements engineering in adaptive systems. Proceedings of the International Conference on
Software Engineering, May 20-28, Shanghai, pp: 23-28.

Cohen, D., M.S. Feather, K. Narayanaswamy and 5.5, Fickas, 1997. Automated monitoring of
software requirements. Proceedings of the 19th Conference on Software Engineering,
May 17- 23, Boston, MA, USA., pp: 602-603.

Fazal-e-Amin, A. K. Mahmood and A. Oxley, 2010. A review on aspect oriented implementation of
software product lines components. Inform. Technol. J., 9: 1262-1269,

Feather, M.S., 5. Fickas, A. Van Lamsweerde and C. Ponsard, 1998 Reconciling system
requirements and runtime behavior. Proceedings of the 9th International Workshop on
Software Specification and Design, Apr. 18-18, Ise-Shima, Japan, pp: 50-52.

Kheirkhah, K., A. Deraman and 7Z.5. Tabatabaie, 2009. Screen-Based prototyping: A conceptual
framework. Inform. Technel. J., 8 558-564.,

Laddad, R., 2009. Aspectd in Action. 2nd Edn., Manning Publication, India, ISBN: 1933988053,
pp: H68.

Layachi-Badri, 5., 2006. Structural test of a data basis oriented object after phase of conception.
Inform. Technol. J., 5: 753-758,

Mylopoulos, ., 2006, Goal-oriented requirements engineering. Proceedings of the 14th TEEE
International Requirements Engineering Conference, Sept. 11-15, Minneapolis, USA., pp: 5-5.

Sayenko, V., M. Al-Rawajheh and A. Golubev, 2010. Continuous monitoring system for estimation
the quality of service of computer network. J. Applied Sci., 10: 2034-2040,

Van Lamsweerde, A. and E. Letier, 2000. Handling obstacles in goal-oriented requirements
engineering. IKEE Trans. Software Eng., 26: 978-1005,

Van Lamsweerde, A., 2004, Goal-oriented requirements engineering: A roundtrip from research
to practice. Proceedings of the 12th IEEE International Requirements Engineering Conference,
Sept. 6-10, IKEE Computer Society, Washington, DC. USA., pp: 4-8.

Van Lamsweerde, A., 2008, Requirements engineering: From craft to discipline. Proceedings of 16th
ACM BIGSOFT International Symposium on the Foundations of Software Engineering,
Nov. 9-14, Atlanta, Georgia, pp: 297-307.

Van Lamsweerde, A., 2009, Requirements Engineering: From System Goals to UML Models to
Software Specifications. John Wiley, New York,

Xin, W., H. Feng-Yan and Q. Zheng, 2010. Software reliability testing data generation approach
based on a mixture model. Inform. Technel. J., 9: 1038-1043.

Zhang, J. and B.H.C. Cheng, 2006. Using temporal logic to specify adaptive program semantics.
J. Syst, Software, 79: 1361-1369,

1054

	Trends in Applied Sciences Research.pdf
	Page 1

