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ABSTRACT

This study 1llustrated the procedures in selecting the best model when there are more than one
independent variables. In this case, multiple regressions were used to analyze the data. First of all,
all of the possible models are listed out. Then, in order to obtain the selected models, the
multicollinearity test and coefficient test were carried out on all of the possible models. In this study,
the alternative method was used to overcome multicollinearity, rather than the conventional
method. After that, the best model was obtained by using the Eight Selection Criteria (85C).
Meanwhile, the normality test and randomness test were also carried cut on the residuals of the
best model. As a result, by getting the best model, the main factor that indicated the changes of
percentage of body fat in men can be identified.

Key words: Multiple regressions, dummy variables, multicollinearity, alternative method, selected
models, best model

INTRODUCTION

Regression analysis is a statistical technique concerning about the study of the relationship
between one dependent variable and one or more independent variable (Gujarati, 1999).
Researchers have made heavy use of regression analysis in business, social sciences, biological
sciences and many other fields. The linear regression analysis is used to find the influence of the
independent variable on the dependent variable while the multiple regressions is used to find the
influence of more than one independent variables on the dependent variable. An example of the
study done on multiple regressions is by Matiya et al. (2005) in determining the factors influencing
the prices of fish and its implications on development of aquaculture in Malawi. Reliable alternative
approaches are also suggested to other existing methods in order to obtain better estimates, such
as, Midh ef al. (2009) had propesed a leverage based-near neighbaors in the estimation of parameters
in heteroscedastic multiple regression models. Besides that, the effect of processing parameters on
the microstructures and properties of automobile brake drum using multiple regression analysis was
also studied by Oluwadare and Atanda (2007).

A common problem in multiple regression is multicollinearity. As Zainodin and Khuneswari
(2009a) had stated that multiple regression is a regression model with more than one explanatory
variable. The general form of multiple regression is shown as follows:

Y = Q+Q,W,+Q W +.. +Q W, +random scatter (1)
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where, Y is the dependent variable, Q,is constant term, € is the j-th coefficient of independent
variable W, and W, is the j-th independent variables (included the single independent variables,
interaction variables, generated dummy variables and transformed variables) where =1, 2, ..., k.
When there exist highly correlated independent variables in the model, then multicollinearity
effects are said to exist. Various methods had been suggested to overcome this problem. El-Salam
(2011) had proposed an estimation procedure for determining ridge regression parameter in terms
of least Mean Square Error (MSE). In the presence of multicollinearity, models’ parameter
estimation became inaccurate. Hence, Camminatiello and Lucademo (2010) had developed an
extension of the principal component logistic regression to overcome this problem. Midi et af. (2010)
had alse proposed Robust Variance Inflation Factors (RVIFs) in the detection of multicollinearity
due to high leverage points which were the sources of multicollinearity.

MATERIALS AND METHODS

Multiple regressions are used to analyse the data in this study. There are four phases in the
model building procedures of multiple regressions, from listing down the all possible models to
carrying out the goodness-of-fit on the residual of the best model. The model building precedures
are shown in Fig. 1.

All possible models: According to Fig. 1, all of the possible models have to be listed out before
analysis is carried out. Zainodin and Khuneswari (2009a) stated that the number of all possible
models can be calculated as follows:

N:ij(ch) (2)

where, N 1s number of possible models and q is single independent variables which excluded the
dummy variables.

Selected models

Multicollinearity test: In order to get the selected models, the multicollinearity test is carried out
to remove multicollinearity source variables from each models and the procedures are shown
in Fig. 2.

In this study, the alternative method is used in overcoming multicollinearity, rather than the
conventional method. The multicollinearity source variables are variables with absolute correlation
coefficient greater than 0.95 and they are marked with circles in the correlation coefficient matrix.
There are three types of cases in the multicollinearity test and the removal steps of multicollinearity
source variable are based on these three cases as follows:

Case A: The most common variable is removed first. Then, rerun the reduced model

Case B: When more than one tie exists {(or with frequency two and above), the variables with the
highest frequency are considered first. Then, independent variable which has the smallest
absolute correlation coefficient with Y 1s removed. Then, rerun the reduced model

Case C: When only one tie exist {or with frequency one), the pair variables which have a higher
carrelation coefficient 1s considered first. Then, independent variable which has a smaller
absolute correlation coefficient with Y is removed. Then, rerun the reduced model
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Phase 1: List down all possible models

l

Phase 2: Selected models
Phase 2.1-Multicollinearity test
Phase 2.2-Coefficient test

l

Phase 3: Best model
Using eight selection criteria (8SC)

4

Phase 4: Goodness-of-fit
Randomness test and normality test

Fig. 1: Model building procedures

Step 1: Build a correlation cofficient matrix for a specific model

A 4

Step 2: Count the frequency for each identified
multicollinearity variable in the specific model

!

Step 3: Identify type of case of the specific model

A 4

Step 4: Based on type of case in step 3, remove multicollinearity
source variable by using the removal steps that belong to its case

Fig. 2: Multicollinearity test procedures

Then, to get the frequency for a specific identified multicollinearity variable in the correlation
coefficient matrix, the algorithm of counting the frequency is as follows:

Step 1: For each variable, draw a horizental line until off-diagonal values

Step 2: Then, the horizontal line 1s continued by drawing a vertical line on the lower part
values from diagonal value and circle absolute values greater than 0.95

Step 3: Lastly, among all of the values cut by both horizontal and vertical lines, count the number
of times the circle (s) has appeared {the diagonal values are not considered)

Since the correlation coefficient matrix is symmetry, thus only the lower diagonal values are
considered in counting the number of frequency. Thus, according to Fig. 2, after the frequency for
each independent variables in a model are cbtained, type of case can be identified and removal of
multicollinearity source variable can be carried out. This Zainodin-Neraimi multicollinearty remedial
procedure is carried out to each of the possible model.

Coefficient test: After removal of multicollinearity source variables, according to Fig. 1, the next
step 1s to perform coefficient test on the reduced model. Zainodin and Khuneswari (2009a) stated

1243



Trends Applied Sei. Res., 6 (11): 1241-1255, 2011

that coefficient test 1s used to test the coefficient of the corresponding variables. Variables which
are insignificant are eliminated subsequently. For a specific j, the hypothesis for Coefficient Test
is as below:

Hy:Q#0
The decision is that the null hypothesis is rejected if |t ;| is greater than [t_,. .| where
t =[Q —QH, )| se (Q)]

and [t g0 | 18 tys ey Se(fg_) is the standard error for fgj and Q; (H,) is the value of Q, under H,
forj=1, 2,.., k. The decisicn {s to accept the null hypothesis. Thus, variable with the smallest |t |
and 1s nearest to zero 1s eliminated from the models. The elimination process is repeated until there

is no more insignificant variable in the models.

Best model: After all of the selected models are obtained, models with the same independent
variables are filtered out. After that, to get the best model, Eight Selection Criteria (85C) is carried
out. on the selected models which have undergone filtration. Zainodin and Khuneswari (2009b)
have discussed in detail the usage of the 85C. The Akaike Information Criterion (AIC)
{Akaike, 1974) and Finite Prediction Error (FPE) (Akaike, 1969) are developed by Akaike. The
Creneralised Cross Validation (GCV) 1s developed by Golub ef al. (1979) while the HQ criterion 1s
suggested by Hannan and Quinn (1979). The RICE criterion is discussed by Rice (1984) and the
SCHWARYZ criterion is discussed by Schwarz (1978). The SGMASQ is developed by
Ramanathan (2002) and the SHIBATA criterion is suggested by Shibata (1981). The Eight
Selection Criteria (85C) 1s presented in Table 1.

Tahble 1: Kight. selection criteria (88C)

No. Criteria No. Criteria
! AIC: [ﬂ](e)m*‘”“ ® RICE: [@}[l-M}
n n n
Akaike (1974) Rice (1984)
? FPE.[SSEJ ntk+l 6 SCWARZ:[@J(M‘W"
o — n
T
Akaike (1969) Schwarz (1978)
3 2 i 1
k+Hl k+1
Gov: [ﬁj{l—;} SOMASQ: [ﬁj{l—;}
n n n n
Golub ef al. (1979) Ramanathan (2002)
4 [ SSE 2k 8 +2(k+1
HQ'[TJ(M) SHIBATA: (LSE] n+2(k+D
n n

Hannan and Quinn (1979) Shibata (1981)

SS8HK = Sum of square error, k+1 = No. of parameters and n = No. of observations
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Goodness-of-fit

Randomness test: Randomness test is used to test the randomness of residuals. The distribution
of the residual can be obtained from the histogram and scatter plots of the residuals.
Bin Mohd et al. (2007) stated that the randomness of residuals, u; (i =1, 2, 3,..., n), can be checked
by simple correlation coefficient. The procedures are as below:

Step 1: The null and alternative hypotheses are defined as follow:

+ H,: The residuals, u; are randomly distributed
+ H,: The residuals, u; are not randomly distributed

Step 2: Test statistic is calculated as follows:

1& =
fEiulqu
R:n1=1
SuS1
where,
-1 12 — = n+l |
t==—Yu,8 == (111—11)2,K=n—,51=Il
NS n 3 2 12

and R is simple correlation coefficient and n is sample size. Since u, are independent on i, then
random variable

T -R (n-p)
(1-RH)

follows a t-distribution with degree of freedom = n-p where p = k+1 which is the number of
estimated parameters.

Step 3: The null hypothesis is accepted if [t_...| 1s greater than |T | which means that the
residuals u, are randomly distributed.

Normality test: According to Gujarati (1999) the normality of a regression model can be obtained
by using the histogram of residuals and Normal Probability Flot (NPP). By plotting the histogram
of residuals, the shape of the underlying probability distribution can be estimated. In the NFP, the
variable of interest is normally distributed if a straight line fits the data well. Besides that, the
Kolmogorav-Smirnov test and Shapiro-Wilk test are also used to test the normality of the residuals.
Kolmogorov-Smirnov test 1s used when the number of observations is large while Shapiro-Wilk test,
is used when the number of observations is small. Both of these tests can be carried out by using
the SPSS software. The null and hypotheses for normality test are as below:

+ H,: The residuals, u, are normally distributed
+« H;: The residuals, u, are not normally distributed
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The decision 1s to accept the null hypothesis if the p-value from the SPSS output is greater than
0.05. Thus, the residuals are assumed to be normally distributed. Apart from this, some graphical
plots, such as scatter plot, histogram, Q-Q plot and box plot can also used as supporting evidence
for the normality test.

Data analysis

Data deseription: The data is obtained from Dr. A. Garth Fisher from the Human Performance
Research Centre of Brigham Young University and containg the observations of 252 men
{Johnson, 1996). In this study, nine variables are selected and analysed. They are the percentage
of body fat using Siri’'s equation, abdomen circumference, adiposity index, chest circumference, hip
circumference weight, density, height and neck circumference. According to
Bosy-Westphal et al. (2005), the Sir1's equation used in estimating the percentage of body fat 1s as
follows:

Percentage of body fat = (495/body density)-450 )

where, the body density will be caleculated as weight/volume. The descriptive statistics of these 9
variables are shown in Table 2.

The correlation among dependent variable, percent of body fat using Sirt's equation and the
other 8 independent variables is presented in Table 3. However, due to limited space, the name of
the variables in Table 3 are represented by their short forms, where their full names can be
referred in Table 2.

Table 2: Descriptive statistics for all 9 variables

Standard Standard Sample
Variables Mean  error Median Mode deviation variance Kurtosis Skewness Range Minimum Maximum
Percent body fat using 19.15608 0.5272 19.2000 20.4000  8.3687 70.0358 -0.3338 0.1464 47.5000 0.0000 47.5000

Siri's equation (Y)
Abdomen circumference (X;) 92.5560 0.6793 90.9500 100.56000 10.7831 116.2747 2.2488 0.8384 78.7000 69.4000 148.1000

Adiposity index (Xy) 254369 0.2298  25.0500 23.7000  3.6481 133087 67125 15617  30.8000 18.1000  48.9000
Chest circumference (X;) 100.8242 0.5311  99.6500 99.1000 84305 710729 09873 0.6816 569000  79.3000 1362000
Hip circumference (X 99.9048 0.4513  99.3000 98.3000  7.1641 513237 74714 14971 627000  §5.0000 1477000
Weight (X:) 178.9244 1.8513 176.5000  184.2500 29.3892 863.7227 52695 12053 244.6500 118.5000 363.1500
Density (Xz) 1.0556  0.0012 1.0549 1.0610  0.0190 0.0004 -0.3096 -0.0202 0.1139 0.9950 1.1089
Height (X7 70,1488 0.2307  70.0000 71.5000  3.6629 13.4165 b9.5443 -53850 482500  29.5000  T7.7500
Neck circumference (X 37.9921 0.1531  38.0000 38.5000  2.4309 5.9093 2.7196 05526  20.1000  31.1000  51.2000

Table 3: Correlation coefficient table for all 9 variables

Y Xy X X; X4 Xs X Xq X
Y 1.0000
Xy 0.8134 1.0000
X 0.7275 0.9239 1.0000
X; 0.7026 0.9158 0.9118 1.0000
X4 0.6252 0.8741 0.8833 0.8294 1.0000
Xs 0.6124 0.8880 0.8874 0.8942 0.9409 1.0000
X -0.9878 -0.7990 -0.7147 -0.6826 -0.6093 -0.5941 1.0000
Xq -0.0895 0.0878 -0.0249 0.1349 0.1704 0.3083 0.0979 1.0000
X 0.4906 0.7541 0.7779 0.7848 0.7350 0.8307 -0.4730 0.2537 1.0000
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Dummy transformation: Dummy variables are variables that take the values of O and 1
{Gujarati, 1999). Among the eight independent wariables in Table 2, the latter three are
transformed into dummy variables because density (X;) and height ;) have negative skewness
and among the other six independent wvariables which are highly correlated with dependent
variable Y, neck circumference (X;) has the weakest correlation coefficient value. In addition, neck
circumference can also  used 1n identifying overweight and ocbese patients
{Ben-Noun and Laor, 2006). Therefore, it is suitable to be selected as one of the variables for this
study.

The transformation of independent variables into dummy variables can help to decrease the
number of possible models in this study. This can be seen by using Kq. 1 and 2 if the three
independent variables are not transformed into dummy variables, the number of independent
variables are 8 and the number of possible models are 1024. However, if density, height and neck
circumference are transformed into dummy wvariables, the number of possible models for 5
independent variables are 80 only.

After transformation, density (X;), height (3;) and neck circumference (¥;) are represented by
D, H and N, respectively. The mode for Density (D), Height (H) and neck circumference (N) is
1.061, 71.5 and 38.5, respectively. For those which are less than their respective modes are denoted
as 0, while for those observations which are more than their respective modes are denoted as 1. For
better understanding, partly of the data of dummy variables after transformation is presented in

Table 4.

Procedures in getting the best model: After transformation, according to the model building
procedures in Fig. 1, all of the possible models are listed out by using Eq. 1 and 2. Since, there are
five single nen-dummy independent variables in this study, thus the numbers of all possible models
are 80. Then, the selected models can be obtained by carried out the multicollinearity test. For
illustration purpose, model M53.0.0 1s considered as follows:

Y = f (XlJ XQJ XSJ XS! XlQJ XIS! X15J XQS! X25J XBS!
D, H, N, X,D, X,H, X,N, X,D, X,H, X,N, X.D, X,H, X,N, X,D, X,H, X,N) (4)

However, due to limited space, model Mb3.12.0, which has eliminated 12 independent variables
from the parent model is considered as follows:

Y =f(X, X, X, X,, X, X;,, D, H, X,D, X,N, X,H, X,N, X,D) (5)

Model M53.12.0. which has eliminated 12 independent variables from the parent model can be
known from its model name, where 12 represents that 12 variables are eliminated in FPhase 2.1 and

Table 4: Partly of the data of dummy variables after transformation

X6 (Mode = 1.061) Density (D) X7 (Mode =71.5) Height (H) X8 (Mode = 38.5) Neck circumference (N)
1.0708 1 67.75 0 36.2 0
1.0853 1 72.25 1 38.5 1
1.0414 0 66.25 0 34.0 0
1.0751 1 72.25 1 374 0
1.0271 0 70.00 0 40.8 1
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zero shows that no variable is eliminated in Phase 2.2 from the parent model. For better
understanding, the definition of model name is presented in Fig. 3. Besides that, the removal of
multicollinearity source variables from model M53.12.0 1s presented in Table 5.

The frequency tables for several cases in removing the corresponding variable from model
M53.12.0 until model M53.17.0 are shown in Table 6.

In Table 5, variable X,,is numbered as 13 because it is the 13-th variable removed from model
MB3.0.0. Model MB3.12.0 belongs to Case B because there exists more than one tie, where variables
X D, XD and XD has frequency of two respectively. Since variable ¥, has the smallest absolute
correlation coefficient with Y, which 1s 0.7505, so it 1s removed from model M53.12.0. Then, the
analysis is rerun and a new model MB3.13.0 is produced.

Besides that, for model Mb53.16.0, it belongs to Case C because there exists only one tie. This
is due to variable X,, X, H, X,H has frquency of one respectively. Then, the pair variables of X;
and X, 1s considered first because it has a higher correlation coefficient than the pair variables of
H and X H, which are 0.9859. After that, X, is removed from model M53.16.0 due to its smaller
absolute correlation coefficient with Y than Xg;, which is 0.6124. Then, the analysis is rerun and
a new model M53.17.0 is produced. The same removal steps are carried out on other
multicollinearity source variables according to their types of cases. The way to count frequency and
the removal steps based on related types of cases. Thus, after removal of 18 variables from model
M53.0.0, the correlation coefficient table for variables in model Mb53.18.0 1s shown in Table 7.

From Table 7, it can be observed that all of the absolute correlation coefficient values
{excluded the diagonal values) are less than 0.95 and thus model M53.18.0 1s said to be free from
multicollinearity.

Table 5: Removal of multicollinearity source variables from Model M53.12.0

17 13 14 15 18 16

¥ %, X, X, X, X Kes D H %D XN XH XN XD
Y 1.0000
X, 08134 10000
X, 07275 09239 10000
X, 07026 09158 09118  1.0000
X, 06124 08880 08874 08942 10000 7
Ko 0.7605  0.9611 0.9828 0.9126 0.8983 1.0000 13

X 0.6433 0.9152 09226 09433 0.9859 09376 1.0000
D -0.8081 -0.6331 -0.5320 -0.5273 -0.4903 -0.5483 -0.4922  1.0000
H -0.0391  0.1539 00393 01964 04032 00880 03301 -0.0386 1.0000

XD -07883 -0.5954  -0.5007 -0.4889 -0.4528 -05186 -0.4573  0.9955 -0.0221  1.0000 14
XN 04675 06707 06613 06740 06953 06585  0.6969 -0.3670 0.2146 -0.3403  1.0000 15
XH 00209 02563 01584 02916 05081 02086 04424 -0.0896 09826 -0.0716 0.2899  1.0000 18

XN 04729 06820 06901 06880 07130 06841 07168 -0.3659 0.2028 -0.3397 09974 0.2825 10000
XD 07948 -0.6062  -0.5051  -0.4904  -0.4575  -05249  -0.4607 09968 -0.0232  0.9988 -0.3471 -0.0734 -0.3461 10000 16

Bold values are cases which are in removing the corresponding variable from model

Number of variables

Model Ma.b.c removed in phase 2.2

/ |\

Y

Number of the parent model
Number of variables removed in phase 2.1

Fig. 3: Definition of model name
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Tahble 6: Frequency tables from Model M53.12.0 until Model M53.17.0

Frequency table for model M53.12.0 Frequency table for model M53.13.0 Frequency table for model M53.14.0
Variable Frequency Case Action Variable Frequency  Case Action Variable Frequency Case Action
X 1 X5 1 X5 1
X 1 X35 1 X35 1
pit 1 D 2 D 1
Xis 2 B Removed H 1 H 1
Xas 1 X1D 2 B Removed X1N 1 C Removed
D 2 1IN 1 X2H 1
H 1 X2H 1 X2N 1
X1D 2 H2N 1 X3D 1
XN 1 X3D 2
¥,H 1
XN 1
X:D 2
Frequency table for model M53.15.0 Frequency table for model M53.16.0 Frequency table for model M53.17.0
Variable Frequency Case Action Variable  Frequency  Case Action Variable  Frequency Case Action
Xe 1 X5 1 [ Removed
His 1 X35 1 H 1
D 1 H 1 X2H 1 C Removed
H 1 X2H 1
X:H 1
XD 1 C Removed
Table 7: The correlation coefficient for variables in Model M53.18.0
Y X X Xs s D H XN
Y 1.0000
X 0.8134 1.0000
X 0.7275 0.9239 1.0000
X; 0.7026 0.9158 0.9118 1.0000
Kag 0.6433 0.9152 0.9226 0.9433 1.0000
D -0.8081 -0.6331 -0.5320 -0.5273 -0.4922 1.0000
H -0.0391 0.1539 0.0393 0.1964 0.3301 -0.0386 1.0000
XN 04729 0.6820 0.6901 0.6880 0.7168 -0.3659 0.2028 1.0000

Then, according to Fig. 1, the ceefficient test is carried out to remove insignificant variables
from the models. Therefore, further analysis 1s taken on model MB3.18.0, where Table 8 shows the
t_, values for each variable in model M55.18.0.

For the hypotheses of coefficient test for model M53.18.0, 1t 0| 18 £y 095 @se..1) Which is 1,97,

The decision is to accept the null hypothesis, where the [t | 1s smaller than |t which shows

critical | '
that the corresponding variable of the specific coefficient has no contribution to the model. For
M53.18.0, both of the corresponding variables of fy; and Poyy, H and XN have [t_,| which are
smaller than the [t_,,. |, however only one variable is eliminated in each elimination step. Thus,
only variable H is eliminated due toits |t_;| is nearer to zero than variable X,N. The analysis is
rerun with the remaining variables and the new model 1s model M53.18.1. The resulting t_, values

after eliminated variable H are shown in Table 9.

cal

The [t e | 15 tooos esaeq, Which is 1.97. The decision is to accept the null hypothesis, where the
|t is smaller than |t Since only corresponding variables of Py, XN has [t | which is

critical | '
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Variables Parameters Standard error toa Decigion
Constant -41.4200 6.7449 -6.1410
X 0.5595 0.0675 8.2018 Reject H,
p 0.4983 0.2392 2.0831 Reject H,
Xs 0.1818 0.0862 21091 Reject H,
Xss -0.0010 0.0002 -4.3792 Reject H,
D -7.4346 0.5905 -12.5902 Reject H,
H -0.2617 0.7003 -0.3737 Accept Hy
XN -0.0265 0.0222 -1.1969 Accept H,
Table 9: The t,. values for each variable in model M53.18.1
Variables Parameters Standard error tea Decision
Constant -42.5399 6.0318 -7.0525
X 0.5596 0.0674 8.3065 Reject H,
p 05571 0.1798 3.0976 Reject H,
X; 0.1883 0.0842 2.2355 Reject H,
Xss -0.0011 0.0002 -6.5534 Reject H,
D -7.4227 0.5886 -12.6106 Reject H,
XN -0.0269 0.0221 -1.2166 Accept Hy
Table 10: The t.4 values for each variable in model M53.18.2

Parameters Standard error tea Decision
Caonstant, -41.3121 5.9526 -65.9401
X 0.5555 0.0673 8.2484 Reject H,
X, 0.5425 0.1796 3.0203 Reject H,
Xs 0.1877 0.0843 2.2262 Reject H,
Has -0.0011 0.0002 -£.9128 Reject H,
D -7.4430 0.5889 -12.6379 Reject H,

smaller than the [t | and is nearest to zero, thus it is eliminated from model M53.18.1. The
analysis 1s rerun with the remaining variables and the new model 1s model M53.18.2. The resulting
t,, values after eliminated variable X,IN are shown in Table 10.

The |t e | 18 toogs @sesay, which is 1.97. Sinee, all of the variables have [t ;| that are greater
than the [t .|, thus no variable is eliminated from model Mb53.18.2. Therefore, model M53.18.2
is said to be free from multicollinearity and insignificancy. Besides that, p-values can also used in
eliminating insignificant variables, variables with the highest p-values and greater than 0.05 are
eliminated from the model one by one. Similar procedures are carried cut for other 79 possible
models. Table 11 shows the summary for selected models.

All the selected models in Table 11 have filtered out models with the same independent
variables, where the first appeared name of the model 1s taken. For example, model M53.18.2 has
the same independent variables with model M57.25.3, model M75.22.3 and model M80.40.4, thus
model MB3.18.2 1s taken to carry cut the analysis. Table 12 shows the corresponding selection
criteria values for each selected models.

From Table 12, model MB3.18.2 1s found to be the best model because it has most of the
minimum values among the others in 85C. Model MB3.18.2 can be written as in the equation as
follow:

Y=ot B+ B+ B+ B o+ D+ u (&)
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Tahble 11: Summary for selected models

Selected model Summary k+1 SSE

M1.01 M1—+M1.01 4 30094.973
M2.0.1 M2—+M2.0.1 4 3821.549
M3.0.1 M3—+M3.0.1 4 38050.011
M4.0.1 M4—=+M4.0.1 4 4330.523
M5.0.1 ME—M5.0.1 4 4312.925
M8.0.1 M&—+M8.0.1 5 3027.433
M9.0.2 M9—+M9.0.1-+M9.0.2 4 2943.217
M10.0.1 M10—+M10.0.1 5 3730.770
M12.0.2 M12—M12.0.1-M12.0.2 4 3769.550
M13.0.1 M13—M13.0.1 5 3807.426
M18.0.2 M18—+M18.0.1—=+M18.0.2 5 2859.993
M23.0.2 M23—+M23.0.1—M23.0.2 5 3635.453
M25.0.1 M25—M25.0.1 5} 3728.767
M30.0.2 M30—+M30.0.1+M30.0.2 5} 3564.464
M35.7.1 M35—+M35.1.0—...—+NM35.7.00M35.7.1 5 2891.949
M44.12.2 MA4—=M44.1.0— . = M44. 12,0 M44. 1212 M44.12.2 5 2864.029
M49.12.2 MA9—+M49.1.0— ... = M49.12.0- M49.12. 1=+ M49.12.2 5 3619.194
Mb1.12.1 MBI M51.1.0—.. . = M51.12.0-M51.12.1 6 3738.263
M53.18.2 MB3—M53.1.0—...—+M53.18.0+M53.18.1+M53.18.2 5} 2835.003
M56.18.2 MBE6—MB56.1.0—+ ...+ M5EE.18.0—+ M56.18.1+ M56.18.2 5} 35568.772

Table 12: The corresponding selection criteria values for each selected models

Selected model k+1 SSE AlIC FPE GCV HQ RICE SCHWARYZ SGMASQ SHIBATA
ME3.18.2 4 2835.0930 11.6133 11.6133 11.6162 11.8780 11.6192 12.2824 11.4318 11.6075
M73.34.4 6 2835.0930 11.7991 11.7992 11.8059 12.2049 11.8129 12.8334 11.5248 11.7861
M18.0.2 5 2859.9930 11.8086 11.8087 11.8133 12.1461 11.8182 12.6652 11.5789 11.7995
M44.12.2 5 2864.0290 11.8253 11.8253 11.8300 12.1632 11.8348 12.6831 11.5953 11.8162
M35.7.1 5 2891.9490 11.9405 11.9406 11.9453 12.2818 11.9502 12.8067 11.7083 11.9314
MT1.22.3 5 2924 .4800 12.0749 12.0749 12.0797 12.4199 12.0846 12.9508 11.8400 12.0656
Mo.0.2 4 2943 .2170 12.0562 12.0562 12.0502 12.3310 12.0624 12.7509 11.8678 12.0502
M8.0.1 5 3027.4330 12.4999 12.5000 12.5049 12.8572 12.5101 13.4067 12.2568 12.4904
Mil.0.1 4 3094.9730 12.6778 12.6778 12.6810 12.9668 12.6843 13.4083 12.4797 12.6715
M56.18.2 4 35568.7720 14.5776 14.5777 14.5813 14.9100 14.5851 15.4176 14.3499 14.5704
M30.0.2 4 3564.4640 14.6009 14.6010 14.6047 14.9338 14.6085 15.4423 14.3728 14.5937
M49.12.2 5 3619.1940 14.9433 14.9433 14.9492 15.3703 14.9553 16.0272 14.6526 14.9318
M23.0.2 5 3635.4530 15.0104 15.0105 15.0164 15.4394 15.0225 16.0992 14.7184 14.9989
M66.12.4 4 37201710 15.2388 15.2388 15.2426 15.5862 15.2466 16.1168 15.0007 15.2312
M25.0.1 4 3725.7670 15.2617 15.2617 15.2656 15.6096 15.2695 16,1411 15.0233 15.2541
M10.0.1 5 3730.7700 15.4039 15.4040 15.4101 15.8442 15.4164 16.5213 15.1043 15.3921
M51.12.1 4 3738.2630 15.3129 15.3129 15.3168 15.6620 15.3208 16.1952 15.0736 15.3053
M12.0.2 4 3769.5500 15.4410 15.4411 15.4450 15.7931 15.4490 16.3308 15.1998 15.4334
M13.0.1 5 3807.4260 15.7204 15.7205 15.7267 16.1697 15.7332 16.8608 15.4147 15.7084
M2.0.1 4 3821.5490 15.6540 15.6541 15.6580 16.0109 15.6621 16.5560 15.4095 15.6463
M3.0.1 4 3800.0110 15.9345 15.9345 15.9385 16.2977 15.9427 16.8526 15.6855 15.9266
M5.0.1 4 4312.9250 17.6668 17.6669 17.6713 18.0696 17.6759 18.6848 17.3908 17.6581
M4.0.1 4 4330.5230 17.7389 17.7390 17.7434 18.1433 17.7480 18.7611 17.4618 17.7302
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Fig. 4: Scatter plot of standardized residual

where, X, represents the abdomen circumference, X, is the adiposity index, X, is the chest
circumference, X, is the first-order interaction variables of chest circumference and weight, D
represents density and u is the residual.

According to Fig. 1, after the best model is obtained, the goodness-of-fit 1s carried out on the
residuals of the best model. In this case, the randomness test is carried out to verify the randomness
of residuals. The hypothesis of randomness test 1s as follow:

* H,: The observations u; are random
+ H,: The observations u, are not random

where, [ =1, 2,..., 252

The null hypothesis is accepted if |T,| is less than [t where [t ..l =t, ... The

rican |
critical | ?
caleulation of T and the result is T, equals to -0.0013, where k equals to 5 as can be seen in
Eq. 6 that there are five independent variables in the best model. From the t-distribution table, at
o =005 [t .l =1.65 Since |T,| =0.0013 is less than [t

and the residuals u; are randomly distributed. Besides that, the scatter plot for the standardized

wirieet |+ the null hypothesis is accepted
residual in Fig. 4 also shows that the residuals are randomly distributed because no cbvious pattern
is observed.

Then, the normality test is also carried out to test the normality of the residuals in the best
model. In this study, Kolmogorov-Smirnov is used to test normality since the number of
observations are large, which are 252 men.

The hypothesis of normality test 1s shown as follow:

* H_: The standardized residual is normally distributed
« H,: The standardized residual is not normally distributed

The decision is that the null hypothesis is rejected if the p-value is less than 0.05, Table 13
shows the SPSS cutput of the Kolmogorov-Smirnov Test on the standardized residual.

Since the p-value in Table 13 is 0.2000, which is greater than 0.05, thus the null hypothesis
is accepted and residuals are said to be normally distributed. Besides that, the bell-shaped
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Tahble 13: Kolmogorov-smirnov test on standardized residual

Kolmogorov-smirnov test

Statistic Degrees of freedom p-value
Standardized residual 0.0248 252 0.2000

Table 14: The final coefficient values of model M53.18.2

Unstandardizsed coefficients

Model M53.18.2 5 Standard error t p-value
Constant -41.3121 5.9526 -5.9401 0.0000
X1 0.5555 0.0673 8.2484 0.0000
X 0.5425 0.1796 3.0203 0.0028
Xs 0.1877 0.0843 2.2262 0.0269
Xss -0.0011 0.0002 -5.9128 0.0000
D -7.4430 0.5889 -12.6379 0.0000
Histogram
30 — Meam = -1.98 E-11
Std. Dev. = 1.000
N=252
20- ]
z 1 [
% —
=
g —
=
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Fig. 5: Histogram of standardized residual

histogram of standardized residual in Fig. 5 also shows that the residuals are normally distributed.
Therefore, the residuals of the best model are said to be random and normally distributed.

DISCUSSION

This study showed that model M53.18.2 is the best model, where the equation is shown as in
Eq. 6 to represent the factors that affect the percentage of body fat in men. Table 14 shows the final
coefficient values of model Mb3.18.2.

As can be seen from Table 14, the positive coefficient values show that the percentage of body
fat in men by using the Siri’s equation (Y) will increase if the corresponding variables increase,
while the negative coefficient values show that the percentage of body fat in men (Y) will decrease
if the corresponding variables decrease. Thus, the increment in abdomen ecircumference (X)),
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adiposity index (X,) and chest circumference (X;) will cause inerement on percentage of body fat by
Siri’s equation (Y) in men. However, the increment in Density (D) and first-order interaction
variables of chest eircumference and weight (X,;) will cause decrement on percentage of body fat
by the Siri’s equation (Y) in men. This increment in Density (D)) is found to bring the most
decrement or influence (f = -7.4430) but a very minor change (f =-1.1x1079) on the percentage of
body fat in men.

CONCLUSION

As a conclusion, the body density is found to be the main factor that contributed negatively in
estimating the percentage of body fat in men, followed by the positive relationships of the other
main factors, namely, the abdomen circumference, adiposity index and chest circumference. The
interaction variable between the chest and the body weight only caused a very minor negative
effect on the percentage of body fat. It 1s also suggested that further analysis can be carried out by
including the Brozek’s equation, which is also used in estimating percentage of body fat in human.
Comparisons can then be made on the efficiency of both the Siri's equation and Brozek’s equation
in estimating the percentage of body fat.
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