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ABSTRACT

This study presents a new characterization on tree diameter distribution problem. The main
purpose of this study 1s to investigate the relationship between the stochastic Gompertz shape
diameter growth model and diameter distribution law using stochastic differential equation
methodelogy. The probabilistic characteristics of diameter growth model, such as the univariate
transition probability density of tree diameter, the mean and variance of tree diameter is
established. A generalized form of mean volume, volume increment and diameter increment of a
tree is introduced which implicitly incorporates an age-height-dependent transition probability
density function of tree diameter. To model the tree diameter distribution, as an illustrative
experience, is used a real data set from repeated measurements on permanent sample plots of pine
stands in Dubrava district at Lithuania. The results are implemented in the symbolic computational
language MAPLE 11.
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INTRODUCTION

Nowadays, in commercial boreal forest, forest management needs to utilize fundamental
principles of forest dynamies. Forest growth, like many other natural processes, 1s subjected to
various disturbances. Thus, the predictions computed from deterministic models limit our
understanding of other possible outcomes of stand diameter and height. One way of quantifying
stand growth under random perturbations is with diffusion process models.

The processes of growth play an important role in various applied areas, such as biology,
medicine, biochemical industry. The environment of any real system is in general not
constant but shows random fluctuations. Despite this, the growth model historically has
crystallized as the deterministic logistic type process (Kar and Matsuda, 2007; Sakancue, 2007).
The forest growth is usually modeled with a logistic model (Garcia, 2005). The parameters of
logistic diameter models are not directly measurable but they are estimated from the observed
data set.
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Stand as a community of trees is the main component. of the forest. Stand consists of trees with
different diameters and heights. Those differences depend on a lot of unsearchable genetic and
environmental factors, therefore it leads to consideration that diameter of a treeis a random
variable which depends on the age and height. Diameter dynamic is affected by many processes
and varies among stands (Temesgen and Gadow, 2004). Stochastic diameter growth models allow
us to reduce the unexplained variability of a diameter and te implement the randomness
phenomenon, which makes a stochastic influence on diameter growth process useful in practical
applications. Over the years an extensive amount of research has been devoted to the randomness
of stand growth since the pioneer work of Suzuki (1971) and the successive works of Tanaka (1986)
and Rupgys (2007). There are two types of approaches for this purpose. The first approeach is based
on ‘environment’ stochasticity, introducing a diffusion term in the ordinary differential equation
of diameter dynamic (Suzuki, 1971; Tanaka, 1986; Rupgys, 2007; Rupgys et «l., 2007, Rupiys and
Petrauskas, 2009, 2010). The second appreach 1s based on demographic stochasticity in which the
tree size X is a random variable (Boungiorno, 2001; Lochmander and Mohammadi, 2007). In this
study we follow the first approach.

The main purpose of this study is to develop the age-height-dependent probability density
funection on diameter size using measurements of tree variables such as age, height and diameter.
This study not only provides useful stochastic models for the diameter growth medeling, but shows
that it 1s possible to relate the diameter growth model and the diameter distribution model. The
distributions of tree diameter size in stands describe forest structure and can be used for the
assessment of stand velume and biomass, forest biodiversity and density management. Knowledge
of the predicted age-height-dependent distribution function enables a more differentiated prediction
of the assortment for a stand. This is not possible with commonly used distribution functions or
yield-tables.

In even-aged stands various distribution functions, such as negative exponential, Pearson,
gamma, lognormal, beta, Weibull, Johnson, Gram-Charlier, have been used in describing the
diameter distributions (Mehtatalo, 2005). In uneven-aged stands have been used bivariate
distributions and density mixtures (Wang and Rennolls, 2007; Wang et al., 2008). In this work we
motivate the use of stochastic differential equations in forestry. The methodology is to consider a
univariate distribution as arising from univariate diameter growth stochastic dynamical system.
The system fluctuations, generally infiltrated from outside, are defined by a one-dimensional
standard Wiener process.

In this study, a univariate age-dependent stochastic differential equation methodology of tree
diameter distribution is expanded into age-height-dependent distribution function methodology.
The Gompertz homogenecus and nenhomogeneous growth models are applied to analyze the trend
of tree diameter, taking the height as an exogeneous variable that affects the diameter of a tree.
The choice of the height among other possible exogenous factors 1s justified by the significant
correlation with the height and age (Skovsgaard and Vanclay, 2008; Gareia, 2009). This appreach
is rather different from the univariate diffusion models (Suzuki, 1971; Tanaka, 1986; Rupgys and
Petrauskas, 2009, 2010), since these distributions are not related with the dynamic of height.

MATERIALS AND METHODS

Growth model: Let study the dynamic behavior of tree diameter (diameter at breast height) and
its relationship with diameter distribution law. For determination of diameter growth we suppose
that dynamic of tree diameter 1s expressed in terms of the Gompertz shape stochastic differential
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equation with multiplicative noise. The Gompertz deterministic model 1s a classical continucus
model useful in desecribing population dynamie. It was introduced by Gompertz (1825) to analyze
population dynamic and to determinate life contingencies. We consider a univariate Gompertz
diameter growth process facing stochastic fluctuations in the following Ito (1942) stochastic
differential equation:

dD(t) =[{ ot, + a,g(t)) D(t) - BDOI(D() Jdt + SDAW (t) (1
P(D(t,)=d,) =1 te[t,;T], t, 20

where «,, ¢;, fi, 0>0 are unknown real parameters to be estimated, 1(t) is a breast height diameter
(in the sequel-diameter) at the age t, d,=0, g(t) is an exogenous factor which is expressed by a time
continuous known function, {W(t); te[t,; T[]} is a one-dimensional Wiener process and the
differential dD(t) is to be understood in the sense of 1t6 (1942). In the sequel, the density pid, t) of
D(t) at t D(ty =d, at t =t,1s denominated as transition probability density function or conditional
probability density function.

The height-age models can be used to detect trends in the exogenous factor g(t) because they
indirectly show whether the growing conditions are changing over time (Skovsgaard and Vanclay,
2008; Garecia, 2009). In the sequel, we relate the exogencus factor g(t) as the height-age trajectory
hit) of a tree. Chronolegies of height increments are a goed tool to quantify the exogenous factor,
thus 1s g{t) = h(t). It is well-known that tree growth is sigmamdal (Garcia, 2005) and several
sigmoidal growth models with biologically interpretable parameters have been proposed, such as
Verhulst, Gomperz, Mitcherlich and Bertalanffy models. Recently, the majority of the newly
developed age-height models are derived by the procedure named the algebraic difference approach
{Cieszewski and Bella, 1989). In this study, we focus on two types of height-age models. The first
height-age model is defined by the Gomperz shape growth model:

K
i vhxtnn(hl (t)}

The formula describing the Gomperz height-age trajectory is defined in the following form:

t-t0)
hl(t)—K[h—I{”} e[t T t, =0 (2)

where, v, K are unknown real parameters to be estimated from the observations of a realization of
a tree height for te[t,; T], v is the intrinsie growth rate of height, K is called the carrying capacity
of the environment and commonly represents the maximum height that can be supported by the
resources of the environment and h,(t,) = h;20. The second height-age model is defined by the
Mitcherlich shape growth model:

dh, (t)

dt =K, —vh,(t)
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The formula describing the Mitcherlich height-age trajectory 1s defined in the following form:

hz(t)—5+{hn 5}3“(”0), te[t,:T], t, 20 (3)
T i
where, v,, K, are unknown real parameters to be estimated from the observations of a realization
of a tree height for te[t,, T], v, is the intrinsic growth rate of height, K /v, is called the carrying
capacity of tree height and h, (t,), = h,=0.

According to Eq. 1 the parameter p affects the term D(t) In (D(t)) and acts to slow down the drift
term (o to,gt)Dit). When p =0, the diameter stochastic growth process D(t), te[t,; T] deseribed by
Eq. 1 contains the univariate nonhomogeneous lognormal diffusion process with the exogenous
factor g(t).

Using It&d's formula for the age dependent transformation X(t) = e® we obtain the explicit
solution of original stochastic differential Eq. 1 in the following form:

to to

D(t) =exp e 0nd, + J.[(OLD -c’ /2) + otlg(y)J . e_ﬁ(t_y)dy}exp(sj‘e_ﬁ(t_y)dW(y)) (4)

which is a continuous nonhomogeneous Markov {Gaussian) process with transition probability
density function (Gutiérrez ef al., 2008):

e (Ind—pco)
pld, 0y =[2m0*(1)] 7 d exp[m (5)
where,
uty=eng + L9 12 *gz 2 (1-e*) 40, j g(yR ™y (6)
2 _02 2Bty 7
y (t)fz—B(l e ) (7)

Noticing that the parameter «, of the homogeneous case is equal to 0, the functions p(t) and A*(t)
of the homogeneous case take the following forms:

At -c'/z2 Ao
M(t):eﬁ(f tU)lHdUJrOLU g X(l*eﬁ(t fu))

A —2;(1523“‘%))

Therefore, the random variable D{t)/D(t;) = d, has one-dimensicnal lognormal distribution

Alutt), A7 1))

137



Trends Applied Sei. Res., 6 (2): 134-153, 2011

The mean and variance of the stochastic process D(t) defined by Eq. 1 take the following forms:

m(t) = E{D(t)/D(t,) =d, ) = exp(u(t)+ 40;(1 _ Bl )} (8)
v(t) = Var(D(t)/ D(t,) =d, ) = exp[2u(t) + ;i;(l i) )}(exp[:;(l . )] _1} (9)

Next we address the approach of estimating the unknown parameters of stochastic
differential Kq. 1 from the following discrete sampling D(t) =d,, hit) =h, t),1=0,1,..., n, assuming
that t-t,, = 1. A natural estimation procedure is maximum likelihood because it is possible to write
the likelihood funection explicitly. Explicit knowledge of the transition prebability density function
of diameter dynamic allows us to construct the likelihood function Li(e,, ¢, B, 0). The transition
probability density function p(.tx.s;e.0,.8.0) denotes the probability density that tree diameter, D(t),
at time t 1s equal to y given tree diameter, D(s), at time s 1s equal to x. The conditional likelihood

function related with the discrete sample (Dit=d;, hit)=h;, t}, i=0L..n takes the following form:

d_ L t_o,aL B0 (10)

1—-13 112

L(OLD:O"‘I: B)G) = Hp(d13t1
i=1

Derivation of the maximum likelihood funection from Eq. 10 and the maximum likelihood
estimators are given in the Appendix.

Goodness-of-fit tests allow us to verify the correspondence between the estimated theoretical
model and real data set. The quantitative analysis of tree diameter distribution is usually based on
the tests, such as, the Chi-squared, the Kelmogorov-Smirnov, the Anderson-Darling, the Cramer-
von Mises (Thode, 2002). Most of these tests are very sensitive to the presence of cutliers in the
observed data. In forestry various measures for the deviation of an actual (empirical) distribution
from its estimated theoretical distribution are commeonly used, such as, the Reynolds error index,
the absolute discrepancy, the stand stability index, the bias and standard error of estimate and
many more (Reynolds ef al., 1988; Cao, 2004). These measures of the goodness-of-fit can be used
for comparisons between observed data sets and distribution models.

Statistical testing is often based on distributional assumption of normality. A useful technique
for evaluating the normality of small and moderate size samples is the Shapire-Wilk test statistic
W {(Shapiro and Wilk, 1965). In this study, we test the normality of the pseudo-residuals defined
by Zucchini and MacDonald (1999). The pseudo-residuals, r,

14

corresponding to the chservation
(d,, h;, t,) are defined in the following form:

d
L —(IDI{J.p(x,tl)dx}i—lﬂ,...,n (11)
i}

where, ® denoctes the distribution function of the standard normal distribution, {d,, h,, t) is the i-th
observation of diameter, height and age. Let (r=r,.5;...5,) denote an n dimensional vector of
ordered pseudo-residuals. Thus, given an assumption that the transition probability density
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function p(d, t) of tree diameter is indeed correct function for the observed data set (d.h.t).i=12,...n,
the pseudo residuals {r=r,.5,....1,,} follow the standard normal distribution. So, if r is drown from
a standard normal distribution then it is possible to write & =% where q; is expected values of
standard normal order statistics, defined by

q=®" ——|i=12..n
n+l

and @ denotes the distribution function of a standard normal distribution. In case of residuals
owning a standard normal distribution the value of statistics W tends to be close 1 and on the
contrary tends to be small if residuals are from non-normal distribution. A normal probability plot
of pseudo-residuals (11) is constructed by plotting r; against q;. The normal probability plot of
pseudo-residuals enables us to evaluate visually the fit of the estimated theoretical diameter
distribution to the observations.

In order to rank the performance of each transition probability density function we utilize
Reynolds’ error index measure. The error index is calculated in 5 em diameter classes for stem
numbers. Thus, a relative error index (%) is defined by a sum of the absolute differences between
the actual and predicted stem numbers of the diameter classes divided by the total stem number

N:

1%
REI% :ﬁz

1=1

100 (12)

nl 7n1

where, i and n; are the predicted and observed stem number of diameter class i, M, is the number
of diameter classes. In addition, the relative error index was calculated when the age is divided into
equal 10 years classes,

Growth data: The diameter analysis is based on measurements in pine (FPirus svlvestris) stands
at Lathuania. The data were provided by the Laithuanian National Forest Inventory. We included
full calliperings of permanent sample plots. Over 20 years period (1976-1996) in the even-aged
uncut stand sample plots were re-measured at the most five times. The following variables were
measured: age (t), number of trees per hectare, diameter at breast height (d}, trees position
{coordinates x, v), height (h) and descriptive variables such as alive or dead trees were also
recorded. Approximately 20% of the sample trees were randomly selected for the height
measurement. The measurements have been conducted in 30 occasions of permanent treatment
plots and the imitial planting densities are unknown. The age of stands ranges from 12 to 103
years. The diameter at breast height varies from 2.2 to 51.5 ecm. Height was measured to the
nearest 0.1 m with a digital height meter. Diameter was measured to the nearest 0.1 em. For model
estimation observations on 900 pines were used. The observed data sets of study plots are shown
in Fig. 1 and 2. Figure 1 and 2 show the variation of diameter and height subject to age.

RESULTS AND DISCUSSION
Deterministic height-age models: Using the cbserved data set presented in Fig. 1 and 2, were
calculated the parameter estimations of the exogencus curves h,(t), hy(t) defined by Eq. 2-3. Notice
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that the original observed data set was arranged by averaging the values observed in equidistant,
times. Estimation of models 2-3 is achieved using Nonlinear Weighted Least Square method. The
values of the weighted least squares estimators (standard errors) aref, =0.0176 (0.0009),

K, =0.6340 (0.0169) for the Mitcherlich model and 7=00329 (0.0011), K =30.9008 (0.5394) for the

CGompertz model.

Visual examination of the residuals versus predicted heights provided a random pattern around
zero with approximately constant variance both for the Mitcherlich model and the Gompertz model
(Fig. 3a, b). With the exception of some possible outliers the Mitcherlich and Gompertz models
provide a good representation of the height data.

The distribution of a normal probability plot that is nearly linear suggests normal distribution
of the standardized residuals. Figure 4a and b do not indicate any serious violation of the
assumption of normality for standardized residuals. Typically, normal probability plots are not
perfect straight. For the Gompertz and Mitcherlich height-age models the p-values of the
Shapiro-Wilk (1965) statistic, W, are 0.0553 and 0.0772, respectively.

The exogenous height-age curves h,{t), h(t), are presented in Fig. 5. For comparison, estimates
for precision of the models were carried out based on the coefficient of determination (R?) and the
relative error in prediction (RE%). The expressions of these statistics are defined by:

n Y
hl _hl
Rz—l—nl-;( } (13)
— — 2

1 < - \2
e YLERY (14)

where, h.h, and h are the observed, predicted and mean values of the tree height, respectively; n
1s the total number of cbservations used to fit the model and p i1s the number of model parameters.
As was expected, both Gompertz and Mitcherlich exogenous curves have about the same
explanatory power, as the coefficient of determination takes values 0.9640 and 0.9596, respectively.
The relative error takes values 6.96 and 7.49%, respectively.

Stochastic age-diameter models: Using the observed data set presented in Fig. 1 and 2 were
calculated the parameter estimations of the stochastic diameter growth moedel defined by Eq. 1. We
shall assume that the stochastic diameter growth process 1s observed without error at a given
collection of time instances t <t <..<t, (Dt}=d.t). i=01...n, this justifies the notation of a discretely
observed diffusion process. First, the original observed data set is arranged by averaging the values
observed in equidistant times. The time increments between consecutive arranged data set will be
defined A, =t,-t;; = 1 for1=1,2,...n. In this study, the estimates of parameters of the stochastic
nonhomogeneous model with an exogenous factor g(t) are defined by a technique that is based on
Maximum Likelihood Estimates (MLE). The estimate of parameters of the stochastic homogeneous
model (¢; =0) is compound of the Least Squares Estimate (LSE) of the deterministic part (drift) and
the MLE of the diffusion coefficient 0. Hence, we estimate 0 by keeping fixed the previously
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Fig. 1: The scatter graph of tree diameter at breast height agsinst tree age for total set
of samrple trees n = 900 used for parameterization of growth equations
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Fig. 2: The scatter graph of tree height against tree age for total set of sample trees n = 900
used for parameterization of growth equations
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Fig. 3. Scatter plots of standardized residuals wve, predicted wvalues: (a) the CGompertz
exogencous model and (b) the Mitcherlich exogenous model
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and (b)) the Mitcherlich height-age model
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obtained drift parameter estimates &.f The MLEs of the stochastic nonhomogeneous model are
defined by equations (A1)-(A10). The values of the estimators (standard errors) are presented in
Table 1.

Figure 6a-c chow the mean and standard deviation trajectories of the stochastic process D(t),
te[ty; T] of tree diameter. These functions are obtained by replacing the parameters in Eq. 8 and
9 by their estimators given in Table 1. All curves monotonically evolve to the steady state values.
Ag we can see in Fig. 63 and b, the mean and standard deviation curves of tree diameter are very
gimilar for both nonhomogeneous (Mitcherlich, Gompertz) models. The mean and standard
deviation curves for the homogeneous model (Fig. 6¢) describe a similar shape for trees less than
30 years age and subsequently get enlarged values than the nonhomogeneous ones.

Figure 7a -¢c show the estimated univariate transition probability density function (EDF) of tree
diameter defined by Eq. 5. These density functions indicate that the EDF of tree diameter is steeper
for the young stands and less steep for the mature stands. Figure Ta-c don’t fix marked difference
between the EDFs using nonhomogeneous and homogeneous models.

Tahle 1: Parameter estimations

Parameters (ZE)

Exogenous factor g o & a
Gompertz 0.1508 (0.0368) 0.0025 (0.0015) 00686 [0.0213) 0.1515 (0.0145)
Mitcherlich 0.1910 (0D.0403) 0.0025 (0.0014) 00628 0,023 0.1514 (0.0145)
Lo 01120 (0.0047) - 00254 [(0.0078) 01T (0.0143)
) N - )
Exngenous Iitcherlich e Exogenons Gopertz e

Lhameter (o)
L
()
Diameter {era)
()
=

20 30 40 SO0 60 70 80 80 100 B 3 40 S0 e0 70 800

50 " 100
bge (year) Aze (year)
() -
Bl Exagenous Mo e
70 ] P
~

. 60] -
g
8
s}

20 30 40 S0 60 70 0 %0 100
Age (year)

Fig. 6: Plot of the mean and standard deviation dynamic of tree diameter with the
parameterization data sets: (a) Mitcherlich exogenous factor; (b) Gompertzian exogenous
factor and (c); homogeneous model; mean (continuous curve), meantSD (non-continuous
curve)
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Fig. 7: Plot of the estimated univariate transition probability density function: (a) for the
Mitcherlich exogenous factor; (b) for the Gompertzian exogenous factor and () no
exogenous; estimated surface of the age-dependent density Eq. 5) of tree diameter
(left); the density of tree diameter at the age t = 20, 60, 100 years (right)
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For the evaluation of goodness-of-fit of our presented lognormal shape univariate
age-dependent transition probability density function (5) we use the Shapiro-Wilk statistic and
normal probability plot. The normal probability plots of the pseudo-residuals using the estimates
of parameters presented in Table 1 are shown in Fig. 8a-c. From Fig. 8a-b, it is possible to conclude
that both EDFs for Mithcherlich and Gompertz exogenous factors fit not teo bad. For the EDF with
the Mitcherlich shape exogenous factor computed the Shapiro-Wilk statistic W yield a value 0.9792
(p-value 0.0010). For the EDF with the Gompertz shape exogenous factor computed the
Shapire-Wilk statistic W yield a value 0.9795 (p-value 0.0013). Finally, for the EDF of
homogeneous model computed the Shapiro-Wilk statistic W yield a value 0.9792 (p-value 0.0008),
These results lead us to a conclusion that the observed data set is compatible with the EDF (5) in
all cases. It is worth remarking that the Shapiro-Wilk statistic provides a generally superior
omnibus measure of non-normality. Moreover, the fitting data set was sufficiently large n = 900,

Finally, the relative error index was used in the comparisons as a measure of goodness of fit of
the EDFs for the nonhomogeneous and homogeneous models. The values of the REI% measure
Eq. 12 calculated for each EDF of stochastic nonhomogeneous (Mitcherlich, Gompertz) and
homogeneous models were 22.00, 23.00, 21.44%, respectively. If we lock at the relative error index
from the age, the relative error index varies from 7 to 73% (Fig. 9). The relative error index 1s at,
its minimum at the age of 55 years. Taking into account that most of the stands covered in this
study were within 12-80 years, the relative error index 1s a peaking function for ages greater than

80 years.

Application: The development of simple and accurate stand-specific volume model based on easily
obtainable tree and stand characteristics is a main problem of forest mensuration. Traditionally,

the mean tree volume V 1s estimated as an average of sample tree volumes:

v==¥V(d,h) (15)

l n
n 1=1
where, V(d, h) is an individual tree volume equation on diameter and height. Much greater
accurateness 1s obtained by substituting (smoothing) a density function p(d) of tree diameter and
integrating by all diameters d=0. If the tree volume regression function V{d, h) additiocnally

depends on age (V(d, h, t)) and the density p{d) function additionally depends on age and height
(p(d, h, t)), then Eq. 15 can be rewritten as follows:

Vbt = [ Vidh,tp(dh,t)-dd (18)

d>0

The integral form Eq. 16 describes the mean tree volume as an explicit function of height and
age and can provide additional information about volume dynamiec. The commonly used functional
dependence for volume (V(d, h, t)) calculation takes the form of the power function V=exp(8)d*nh*t>
and parameters d,, &,, 8,, 8, to be estimated. The estimators and their standard deviations {(in
parenthesis) are & = -9.5282 (0.0127), & = 1.9183 (0.0072), & = 0.9807 (0.0104), & = 00.0268
(0.0042).
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To derive the age-height-dependent density function p(d, h, t) of tree diameter for the
nonhomogeneous stochastic model (1), we define Eq. 6 in the following form:

) t
wih,t) = e'ﬁ(*'t")lndu g %Tm(l_ oPlt-to) )+ al_[h e-p(t_y)dy an

L]

Substituting Eq. 17 into Eq. & gives the lognormal density function which depends on height
and age as follows:

Corzge s | (Imd—pdb) 18
p(dh,ty=[2mr* (1) ] 2d exp{ 570)] (18)

Figure 10a and b show the estimated lognormal density function of tree diameter which
depends on height and age, defined by Eq. 18. These density functions are represented at heights
15 and 30 m. The higher is the height for a fixed age, the more skewed toward large diameters and
the wider are densities curves. The ability to model age and height relationship in the diameter
dengity function is often ugeful, egpecially in modeling diameter dynamic.
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Fig. 10: Plot of the estimated lognormal density function Eq. 18 at height 15 m (a) and at height
30 m (b); estimated surface of the age-dependent dencity of tree diameter (left); the density
of tree diameter at the age t = 20, 60, 100 years (right)
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The purpose of this contribution was to present a specific modeling approach based on the
methodelogy of stochastic differential equations. To deal with the growth models in a numerical
fashion, probabilistic means were adopted to give an understanding of the problems of the modeling
of mean diameter, standard deviation of diameter and mean volume. Equations for predicting mean

diameter (d) and standard deviation (s) of diameter are expressed in the general forms:

d=d(h,t)= [ d-p(d,h,t)-dd (19)

d=0

s=s(h,t) = \/j (d—dch, 1))’ - p(h,t)-dd (20)

d=0

Thus the mean diameter Eq. 19, standard deviation of diameter Eq. 20 and mean volume
Eq. 16 are modeled as a density-dependent set of curves. Figure 11a-¢ show the mean diameter of
a tree, the standard deviation of tree diameter and the mean volume of a tree subject to height and
age. These graphics demonstrate that the growth of mean diameter, standard deviation of diameter
and mean volume is a peaking funection over a single inflection peint at diameter, increasing with
age and height.

Using probabilistic mean diameter and volume growth models Eq. 19, 16 and height-age growth
curves h = h{t) = h,{t) or h = h(t) = h,(t) Eq. 2 and 3 we can define the current {the mean) annual

diameter and volume increments Z:{th Zz() ZM. Z:U) of an average tree in the following form:

d(h(t) t)_ 1 jzd (5)ds) (21)
-t

0y

7,y(t) f*(d(h(t) £)) (za(t) =

7 (t)——(V(h(t) t))( F() = V(h(t) _ = 1t j'zv(s)ds) (22)

0t

Relationships between the current annual diameter Eq. 21 and volume Eg. 22 increments
against the height of a tree are illustrated in Fig. 12a and b. As we see in Fig. 12a and b, the height
exerts a strong influence on current annual diameter and volume increments. The effect of a height
on current annual diameter and volume inerements becomes negligible above 100 year age.

Figure 13a-d shows the current and mean annual diameter and volume increments against the
age and the mean diameter of a tree using the Mitcherlich height-age growth curve h = h(t) = h,it)
{Kq. 3). From Fig. 13a and ¢ we see that the culmination of volume increment is reached even later
than that of diameter increment. The peak in current and mean annual diameter increments
occurred at 21 and 81 years of age (Fig. 13a-¢), respectively and current and mean annual velume
increments peaked at 26 and 125 years of age (Fig. 13a-c), respectively. If an objective of forest
management is to maximize the produced stem volume, the trees should be retained until they
attain their maximum mean annual volume increment at the age 125 years (Fig. 13c) or at the

mean diameter 42.2 em (Fig. 13d). The mean annual diameter increment, is greatest at the mean
diameter 13.3 em (Fig. 13b).
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Fig. 12: Relationship between the current annual diameter and volume increments of an average
tree against the height of a tree: (a) current diameter increment and (b) current volume
increment at the height 20, 10 and 5m
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Fig. 13: Annual diameter and volume increments: (a) annual diameter increments against the age;
(b) annual diameter increments against the mean diameter; (¢) annual volume increments
against the age and (d) annual volume increments against the mean diameter

The interrelations of the current annual volume increment and mean annual volume increment
curves of a stand and the position of their point of intersection are of particular interest to forest
management. Enlarged understanding and statistical inference in stand current and mean annual
volume increment models require an adequate representation of the prediction of tree mortality
(survival).

CONCLUSION

Given the importance of stochastic analysis in modern forestry, we congider the case where the
governing tree diameter dynamic is defined by an elementary stochastic differential equation. A
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thearetical prerequisite of our presented approach was the stochastic Gompertz diameter growth
law driven by one-dimensicnal standard Wiener process. The results obtained here have shown
that it 1s possible to relate nonlinear stochastic diameter growth law and diameter distribution law.
For a realistic representation of diameter and height growth, was used Gompertzian and
Mitcherlich growth models.

Thus, the proposed method could be continued in terms of properly modifying the drift and
diffusion funections of the stochastic diameter growth process and choosing exogenous factors.

The accuracy of the age-height-dependent diameter distribution (Eq. 5) depends on the amount
of information available from the stand. Our methodology extends some way to inclusion of the
basal-area or/fand density of a stand as an exogenocus factor or as an independent variable.

APPENDIX
The maximum likelihood estimates: Here, section we collect some results which were used in
order to estimate the model parameters. To write the maximum likelihoed function explicitly is
possible because the transition probability density function of the diameter stochastic process D(t),
te[t,; T] is explicitly solved by Eq. 5.

The resulting maximum likelihood function is defined by:

= = 1 r ‘ ,
L{o,.a,,B,0) :E[p(dl,tl d .t ) :[ZTEGZKZ} 2 exp(g(vﬁ fUﬁa) (VB Uﬁa)} (A1)
Where:
¥ zziﬁ(l o) (A2)
5 r
ot e
vy =dy. Vg =hAg (lndi —e® lndl_l) (Ad)

’

V[3 :(VI,B’VZ,B""’VH,B)

_1-e (A5)
'Y =
"B
U, is 2xn matrix defined by
U, = (ul’ﬁ,uz,ﬁ,...,un’ﬁ)
g =y (v,s, I g(y)e‘ﬁ“f”dy} (AB)
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Thanks to quadratic form in ¢ the maximum likelihood estimators of ¢ and o? are given by
{Gutidrrez et al., 2008):

A ’ -1
a—[UAUA) U.v, (A7)
BB BB
ng* =v, H,.v, (A8)
B BB
Where:
’ N A
H =1 -U, [UAUAJ U, (A9)
u.p B B B B

While the likelihood estimators of ¢ and 0? for stochastic Gompertz process (1) is well established
by Kq. A7, A8, estimating parameter P is not straightforward. In this paper, the estimation
approach we follow is to first estimate by likelihood estimation procedure the parameter p of the
ordinary differential Eq. 1 (o = 0), which represents the deterministic part of the stochastic
Gompertz process (1). The maximum likelihood estimator of the parameter p is defined in the
following form:

() 03 (A10)

B:m( i1=1y"1)( :1:1yl)7n ;yi—lyl

where, vy, =In d..
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