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ABSTRACT

The aim of this study is to highlight four main stochastic moedeling procedures for spatial data
within Geographical Information Systems (GIS) which are still unknown by most GIS users:
Morphologic Geostatistics (MG}, Geographical Weighted Regression (GWER), Conditional Sequential
Simulation (CSS) for continuous and categorical variables. Sequential simulation, for instance, 1s
a widely used geostatistical tool for obtaining a set of equiprobable simulated realizations of
variables from natural phenomena, conditional to chserved data, honering their spatial distribution
and uncertainty. While Gaussian simulation involves the generation of many independent
realizations of a Gaussian random field but requiring the transformation of original variables,
direct sequential simulation (DSS) has been proposed for simulating directly in the original data
space and dees not rely on multi-Gaussian assumptions. A generic Pb contamination dataset is used
to illustrate the MG and C58 procedures. Major relationships among Kriging estimation, spatial
autocorrelation, geographical regression and the missing data issue are also reviewed in the last
section.

Key words: Geographic information systems, spatial analysis, morphologic geostatistics,
conditional sequential simulation, geographical weighted regression

INTRODUCTION

The problem of statistical spatial analysis encompasses an expanding range of methods which
address different spatial problems, from image enhancement and pattern recognition to spatial
interpolation and socic-economic trend modeling. Each of these methods focuses on a particular
aspect but what emerges 1s something that is clearly identifiable as spatial statistics, statistical
methods like MG, CS5 and GWR techniques which address geographical raw data that are spatially
correlated.

According to Ferreira and Simdes (1993, 1994), the kernel of geography is to think
geographically, that is, to study the spatial distribution of the phenomena and their correlations.
Traditional statistics must be reformulated to properly account for spatial correlation and spatial
heterogeneity within georeferenced data (Anselin, 1996, 1998). Spatial autocorrelation is a reality
but also a requirement to carry out spatial interpolation and spatial regression modeling. For
instance, if regression residuals reveal a medium-strong spatial autocorrelation then any missing
variable within the initial regression model can be significant. Certainly, MG, CSS and GWR try
to include this spatial autocorrelation issue within their spatial interpolation and simulation
computation.
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To re-examine these procedures becomes, hence, the goal of this research. Section two
highlights Morphologic Geostatistics (MG) while sections three and four underline Conditional
Gaussian Sequential Simulation (CGSS) and Conditional Categorical Sequential Simulation
(CCS8), respectively. Direct Sequential Simulation (D3SS) is alse introduced while Geographical
Weighted Regression (GWE) 1s presented in section five. Close relationships among these spatial
issues are presented in present study.

It is wital to stress that the comprehension of this essay underlines the knowledge of
variography and Kriging topics (Aguilar ef al., 2008; Negreiros et al., 2010). Additionally, the input
Pb spatial data, exploratory, variography and Kriging results that follow section two and three are
presented in the Appendix (contamination data of Aljustrel, Portugal, within a global area of
4500 mx*2950 m). The software used here was GeoMSF from Instituto Supericr Téenico, Lisbon.

MORPHOLOGIC GEOSTATISTICS
This section is dedicated to MG for categorical variables (body X and body X% such as the
presencelabsence of a particular type of pine tree in an open field, for example. The main idea is
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Fig. 1. (a-d) Histogram, cumulative distribution functions, box-plot, desecriptive statistics (top) and
spatial location map (bottom) of the categorical variable (blue dots versus red ones) based
on KEq. 1
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to analyze the spatial structure for problems closely related with qualitative variables which 1s
useful to understand the degree of presence of a certain type of objects in space. Quite often,
farmers do not want to measure the number of grasshoppers {(quantitative variable) but wish
to classify sub-regions according to a pre-define classification (categorical variable) such as lower,
medium and high infestation.

For illustration purposes lets consider the Pb contamination dataset (Appendix). By considering
an indicator variable whose cutoff value equals the median of the Pb values, a categorical variable
can be created according to the next rule:

lif x>40eX (1)

I X) =
st () {0 if x <= 40e X°

That is, a particular x location equals 1 if that particular site is classified as an X body {all x>40
ppm). Otherwise, it equals 0, which means that the location is classify as X° (all x No. 40 ppm). It
is central to highlight that this I . (x>40 ppm) condition (bedy X) used in this example works as
a classification eriteria for the present contamination dataset creating, thus, a two-phase structure:
population X and population X° (Fig. 1a-d).

As expected, the spatial continuity of both bodies can be measured by the indicator variogram
based on the sill, anisotropy {range) and nugget-effect parameters. In this morphologic context, the
range factor measures the average dimension of X and X" bodies while the nugget-effect denotes
the transition frequency between both bodies (1 and O states) at small scale (Fig. 2). The variogram
that lies behind this spatial autocorrelation structure is a spherical one with a major and minor
range of 2500 and 1000 m, respectively. The nugget-effect equals zero. The main direction of the
geometric anisotropy is 901.

The probability map of Fig. £ can be transformed into a morphologic binary map to reproduce
the X and X° bodies as described next (Soares, 1990):

0.000 [1.000

Fig. 2: Probability estimation map for the X body obtained by Indicator Kriging of the [, . variable
(the highest probabilities of Fb to be greater than 40 ppm are located at the lower right
corner)
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Fig. 3: The two-strata structure morpholegic map (body X in red and body X in blue)

Fig. 4: The previous two-phase structure morphologic map including uncertainty regions

+  Determine the global average, (my)*, of the Indicator Kriging probabilities estimates. Averaging
all grid locations = probabilities allows obtaining an estimate of the proportion of locations of the
region that should be classified ag X

+  Sort (descending) the probabilities estimates of all grid locations

*+  Create a new binary variable according to the following rules: assign the value 1 to all locations
with probability estimate greater than (my)*; assign the value 0 otherwise

+  Create a map of this new binary variable

In the Pb example, (m,)* equals 0.605786 which means that the body X covers 60.6% of the
region. Among the 34126 kriged blocks of Fig. 2, the 20673 locations (34126H0.605786) with the
highest probabilities were assigned the value 1 and the remaining ones were set to 0. Mapping this
new binary variable allows to produce the estimated morphologic map of the body X (Fig. 3).

Concerning the uncertainty assessment of the morphologic map, which is higher on the border
between different bodies, the following four steps were computed (Fig. 4):
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*  Determine the global average, (m)*, of the Indicator Kriging probabilities estimates

*  Sort (descending) the probabilities estimates of all grid locations

+ (Create a new variable according to the following rules: assign the value 1 to all locations with
probability greater than 105%H(m,)*; assign the value O to those smaller than 95%H(m,)*;
otherwise, the new variable will assume the value 2

*  (enerate a map based on this new variable with three phases
In the example:

«  108%x(my)* = 0.636075
«  0:98%x(my* = 0.575497
« Total number of locations with values equal to 2: 34126H10%=5412

CONDITIONAL GAUSSIAN AND DIRECT SEQUENTIAL SIMULATION

Interpolation methods, such as Ordinary Kriging (OK), typically overestimate small values and
underestimate large ones. As with the traditional regression, the final estimates are less variable
than the true values. Although a kriged map shows the best estimates of a variable, it does not,
represent the variability in a proper way, that is, this loss of variance could lead to wrong decisions.
To estimate a surface that retains the original samples variability, we need other techniques such
as geostatistical stochastic simulation (Webster and Olivier, 2007).

Within spatial analysis, the stochastic simulation is a tool to evaluate the spatial uncertainty
based on the generation of N sets of equiprobable values (Soares, 2000). Each simulated image
should hold the statistical properties of the original observations, such as the mean, variance,
histogram and covariance. Additionally, simulated values honor, at their locations, the measured
data values. Based on the N realizations, it 1s possible to compute uncertainty measures and to
assess the extreme spatial behavior of any particular phenomenon. For instance, from a set of
maps, it is possible to assess all sub-regions with values above a certain threshold and the
probability of that to happen. Kven more important for pollution studies, it 1s possible to generate
scenarios vielding the smallest (best scenario) and the largest (worst scenario) contaminations costs.

Broadly, there are three classes of simulation algorithms B sequential, p-field and annealing-
although only the first one will be covered in this study. The Conditional Gaussian Sequential
Simulation (CGSS) technique is based on the assumption that the spatial distribution of a
continuous random variable can be modeled by a multivariate Gaussian model. Through the
sequential simulation algorithms, instead of modeling the N-peints conditional cumulative
distribution function (cedf), a one-point cedf is modeled and sampled at each of the N nodes visited
along a random sequence. To ensure the reproduction of the variable covariance model, each one-
point cedf is made conditional not only to the original data but also to all values simulated at
previously visited locations {Goovaerts, 1997).

With CGSS, each variable is simulated sequentially according to its Normal cedf, which is fully
characterized through a Simple Kriging (SK) system. The conditicning data consist of all original
data and all previously simulated values found within a neighborhood of the location being
simulated. The conditional simulation of a continuous variable Z(u) modeled by CGSS proceeds,

then, as follows:
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Fig. 5: Random path example of the sequential simulation technique (Soares ef af., 2010)
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Fig. 6: Diagram of step b (Soares ef al., 2010)

* Based on all available samples, compute the univariate cumulative distribution function (edf)
representative of the entire study area

+ Using this edf, it 18 necessary to perform a normal-score transformation of the z(u) original data
into y-data (the Gaussian restriction)

* Define a random path that visits each node of the grid once (Fig. B). At each node u, keep hold
of a specified number of neighboring conditioning data including both initially transformed y-
data and previously simulated grid node values (the conditional restriction)

+  Apply Simple Kriging (SK) with the Normal score variogram model (based on the y-values) to
determine the estimate z*(u) and the variance 6*(u), at the u location

+ Randomly draw a value between O and 1 from the cumulative Gaussian distribution based on
step 4 results, that is, N(z*(u), 0*(u)). The simulated value is then equal to G7'{z*(u), o™(u)).
Afterwards, this simulated value is added to the current dataset (Fig. 8)

*  Proceed to the next node and loop until all nodes are simulated (the sequential restriction)

*  Back-transform the simulated normal values y*{u) into the original variable for each location
u (Fig. 7a-f)

Journel (1994) showed that for this conditional sequential simulation algorithm to reproduce
a specific covariance model it suffices that the simulated values are drawn from the local
distributions centered at the Simple Kriging estimates with a variance corresponding to the Simple
Kriging estimation variance. This result guarantees that the spatial covariance and the global
sample mean and variance, of the original variable are reproduced but not the histogram. To
overcome this limitation, Soares (2001) proposed a Direct Sequential Simulation (DSS) algorithm
that uses the local Simple Kriging estimates of the mean and variance, not to define the local
cumulative distribution function {edf) but to sample from the glebal edf.

Recently, Costa et al. (2008a) and Costa and Soares (2009) proposed a new method for the
homogenization of climate data using the DSS algorithm. The DSS procedure is used to caleulate
the local probability density function (pdf) at a candidate station's location. The algorithm generates

242



Trends Applied Sei. Res., 6 (3): 237-255, 2011

Fig. 7. With conditional simulation, the number of realizations used to produce the final estimates
can strongly affect the outcome of the interpolation. The upper six images correspond to 80
mx80 m grid interpolated maps (density of 0.5 m) with different numbers of simulations: (a)
block Kriged data; (b) the same data interpolated for n = 1 conditional simulation; (c) n = 10
simulations; (d) n = 100 simulations; (&) n = 1000 simulations; (f) n = 10000 simulations
(Robertson, 2008)

realizations of the climate variable through the resampling of the global pdf using the local mean
and variance of the candidate station, which are estimated through a spatictemporal model. The
local pdf from each instant in time is used to verify the existence of irregularities: a breakpoint is
identified whenever the interval of a specified probability p, centered in the local pdf, does not
contain the observed (real) value of the candidate station. If irregularities are detected in a
candidate series, the time series can be adjusted by replacing the inhomogeneous records with the
mean of the pdf(s) calculated at the candidate station's location for the inhomoegeneous periodis).

Recently, Costa ef al. (2008b) used the direct sequential cosimulation (colDSS) algorithm to map
a flood indicator and extreme precipitation frequency in Southern Portugal using elevation as
auxiliary information. The methods incorporate space-time models that account for long-term trends
of extreme precipitation and local changes in the relationship between elevation and extreme
precipitation through time.
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SEQUENTIAL SIMULATION FOR CATEGORICAL VARIABLES
Variables, such as the concentration of a metal in the soil, may appear to change abruptly in
space. In this case, the phenomenon should be modeled as a mixture of two populations each of
them may have different patterns of spatial continuity {(Goovaerts, 1997). To deal with this type
of variables, Sequential Indicator Simulation (SIS) is presented in this section as it allows moedeling
the relative geometry of each population (strata) in order to create an exhaustive categorical map.
Analogous to the CGSS, seven major steps are invelved in the SIS algorithm:

. Transform each categorical data (e.g., tillage, meadow, pasture and forest) into a vector of 1s
and Os (e.g., (0,0,0,1) if a particular site is classified as forest only)

. Assess the occurrence probability for each category using Indicator Kriging (IK) at all locations

*  Correct these category probabilities in terms of relation order

+  Build the cumulative distribution function (edf) at each spatial node. As expected, the sum of
the probahilities of all categories at each location equals one

*  Draw a random number p between 0 and 1 from that cdf. The simulated category at that
location is the one that corresponds to the probability interval that includes p

+ Add the simulated value to the conditioned dataset,

*  Proceed to the next location and repeat steps 3to 6

Sequential simulation will be exemplified for non-continuum variables using the input dataset
detailed in Appendix. First, a new categorical variable with four classes (Fig. 8a-d), named CI (u),
is computed using the Pb contamination data and Eq. 2:

1if z(u) < Q,

2if Q =z(un)<Q2 (2)
3if Q2= zu)y<Q,

41if z(u) 2 Q,

Cl(u) =

Where:

&, = first quartile =36.2 ppm

2 = median = 43.6 ppm

5 = third quartile = 59.2 ppm

u stands for a particular spatial location

Several experimental variograms for the four phase variable were computed according to two

main directions (geometric anisotropy): 0° (N/S direction) and 901 (E/W direction). Notice that this

multiphase variogram equals:

bh=1

v(h) = 0.5HE (Z[Mu)—lb(w h)]]

that is, each wvariogram lag corresponds to a global average of four individual covariances

{(Fig. 9a, b).
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spatial layout (bottom) of the categorical variable CI(u)
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Fig. 9. (a, b) Average variogram for the multiphase CI{u) variable adjusted by a spherical model
with the sill equal to 1.24, the major range equal to 2000 m (E/W direction, bottom) and the
minor one equal to 1200 m (IN/S direction, top)

Regarding the simulated data of Fig. 10, it 1s curious to confirm that the histogram of these
34126 values estimated by the Sequential Indicator Simulation (SIS) is similar to the original
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Fig. 10: Example of an indicator realization map of CI{u) generated by SIS
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Fig. 11: {a-c) Histogram, cumulative distribution function, box-plot. and univariate statistics of the
simulated values

distribution histogram (Fig. 11a-c). It is also important to highlight that all simulated data honors
the experimental data.

In average, the simulated spatial images hold the same statistical features of the original
observations. In fact, the variograms of the simulated map hold a similar shape (Fig. 12a, b). In this
case, a spherical model with a major range of 2000 m (E-W direction) and a minor one of 1200 m
{(IN-5 direction) was fitted. The fluctuations between both models are known as ergodic fluctuations
{Goovaerts, 1997). In fact, Gaussian and Indicator simulation algorithms only reproduce the
original observations variogram in the presence of an average simulated map that results over
many realizations. The ergodic fluctuations of the realizations' variograms are generally important
when the range of the varicgram model is larger with respect to the size of the simulated area
{particularly if the relative nugget-effect is small).

As already stated before, Indicator Kriging (IK) allows to estimate the conditional cumulative
distribution function (cedf) for a particular spatial location. By defining L cutoff values, it is then
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Fig. 12: (a, b) Comparison of the SSI multiphase experimental variogram with the one fitted to the
original data in Fig. 9.
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Fig. 13: Loecal entropy map generated by the 100 indicator simulation maps

possible to infer about the uncertainty probability of each class (cedf difference of any adjacent
cutoffs). Using these partial probabilities, the Shannon entropy procedure allows inferring the local
uncertainty of the interpolation at unknown sites. Given L sets of IK probabilities at any u location
F,(u), with 1 = 1...I,, the Shannon entropy (a disorder measure closely connected to the spatial
organization of an attribute) equals BSUM(P,(u)H LN(P,(u))), where LN() denotes the Neperian
logarithm, F,{() is the IK estimation probability for each class while BSUM() denotes the negative
sum of all classes' probabilities at that u location. As expected, red color signifies high lack of
estimation confidence while dark blue denotes low uncertainty (Fig. 13). Unsurprisingly,
uncertainty is smaller near the samples locations.

GEOGRAPHICALLY WEIGHTED REGRESSION (GWR)

Statistically, Ordinary Least Squares (OLS) regression 1s a technique that allows to relate k-1
independent variables ({YX,,) to a dependent one (Y) in the following form: Y =
XX B X P AY+X B +e. Denoting by n the number of sub-regions considered in the spatial
problem, Y is a (nH1) vector, X is a (nHk) matrix, p is a (kH1) regression coefficients vector
concerning each independent variable and X is a (nx1) residuals vector (Fig. 14). The regression
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errors should follow a Gaussian distribution with zero mean and constant variance ¢? (Druck ef al.,
2004).

The major aim of regression analysis 1s to uncover which variables contribute in a significant
way for the linear relationship of the dependent variable. Still, it is expected, among other factors,
that regression errors are independent. According to Anselin (1992, 1994), this OLS model fails
quite often due to the occurrence of spatial autocorrelation. The global spatial lag model (SAR) for
stationary processes overcomes this drawback. It is defined by Y = pWY +Xp+e where, W represents
the neighborhood matrix and fi is the spatial autoregressive coefficient. Another possibility is to use
different spatial regimes (i.e., an individual regression for each region) in SpaceStat®. Pelynomial
trends is another option to work with the region overall tendency and non-stationary phenomenon.
Another possibility is the local continuous variation framework computed by the Geographically
Weighted Regression (GWR) system. The idea is to adjust a regression model by weighting the
neighborhood observations. In this way, the estimation computation will reflect automatic
adjustments according to the distance of the available samples.

GWER 1s a specific model which allows representing non-stationary local phenomena by
generating a separate regression equation for every feature analyzed as a means to address spatial
variation (Fotheringham ef al., 2002). Thus, GWR allows the modeling of processes that vary over
space. Sinee, it usually works with aggregation data, this inferential model considers that spatial
data may change abruptly (or not) at region boundaries only (Fig. 15).

Another example of this method is presented by Legg and Bowe (2009) regarding the analysis
of the listed sales price for single family houses in Marquette, Michigan and it 1s based on location
and three other variables: number of bedrecoms and bathrooms, house square footage and lot size
(Fig. 16). According to these authors, the OLS model was found to be significant and had a high
R?=0.782. Yet, the GWR model improved on this statistic and increased the model’s goodness of
fit to an R? = 0.885. In addition, the range of the residual error decreased by $160,000 when using
the GWR model instead of the Ordinary Least Square (OLS) model. The coefficients surface was

k]
T

T

Fig. 14: The Ordinary Least Squares (OLS) regression system in matrix notation
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Fig. 15: The number of murders per ward in Rio de Janeiro between 1908 and 1992 (Druck ef al.,
2004). Values do not vary within each ward because of the polygon spatial structure
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Fig. 16: Listing price map of a typical house modeled using spatially varying regression coefficients
generated using GWR tools of ArcGIS® (Lege and Bowe, 2009)
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Fig. 17: W(u,) 1s an n by n matrix representing the geographical weights around loecation u,. This

weighting system 1s known as kernel

also helpful for identifving the spatial patterns apparent in the study area. For example, the lot
coefficient indicates that located groups nearer the urban core and farther from the rural townships
increases its price. In contrast, coefficients suggest that the larger the house, the less it contributes
to the listing price.

For Lloyd (2007), one key decision emerges from this inferential spatial approach: the choice of
a weighting function (kernel shape and kernel bandwidth). Given two independent variables, y,
and y,, the local estimation of GWR parameters equals z (u)) = f,(u)+f,(uw)Hy +p,(u)Hy,, where
z is the dependent variable while (1) is the (x,¥) location at which the parameters are estimated.
By solving the system, the parameters can be estimated by p (u) = (Y"HW{u)HY)'HY"HW(u)Hz,
where, W (1) 1s a weight square matrix closely related to the position of u towards the available
samples (Fig. 17), Y'THW (u) HY represents the geographically weighted variance-covariance
matrix (the estimation requires its inverse) while z corresponds to the vector of values of the
dependent variable (original observations).

Typically, these weights follow the Gaussian weighting function: W(w) = exp (B0O.5(d/b)% if d;<b,
where d is the Fuclidean distance between the location of the neighborhood observations and the
location u, to be estimated, while b represents the bandwidth of the kernel. As the bandwidth gets
larger, the weights approach one and the local GWR model approaches the global OLS model. As
expected, if d=b, a zero value should be produced.

Overall, GWR extends the traditional regression framework by allowing local rather than global
parameters to be estimated. Regarding the choice of the weighting system W{u,), the majority of
software follows an adaptative kernel decoded 1n Kq. 3 (Boca ef al., 2007). A fixed kernel may be

another option where b 1s a fixed vicinity distance.
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dy
W, = {1 —(b’} } ,if j is one of the Nth nearest neighbors of i. Otherwise, W, =0 (3)

where, b is the distance between i and the Nth nearest neighbor (between 8 and 16 neighbors is
a good start). Hence, this kernel function distance varies in space and presents an adaptive
bandwidth depending on the data points' density: b is relatively small in areas where the data
points are densely distributed and the bandwidth 1s relatively large where the data points are
sparsely distributed.

Charlton and Fotheringham (2009) use the corrected Akaike Information Criterion (Eq. 4) in
the GWR as a measure of goodness of fit. Two separate models being compared are held to be
equivalent if the difference between the two AICe values is less than 3. The AICe value can also
be used to determine the optimal value of the kernel bandwidth (the lowest, the better).

AIC, = 2nlog, (&) +nlog(21)+n {Lf(s)} @
n—2—tr(s)

where, n is the number of observations in the dataset: 5 is the estimate of the standard deviation
of the residuals; and tr(S) is the trace of the hat matrix.

As stated by Lloyd (2007), the goodness-of-fit of a GWER model can also be assessed using the
geographically weighted coefficient of determination: R? = (TSS"-RSS")/TSS™ where TSS” denotes
the geographically weighted total sum of squares:

2

TSS™ = ¥ w,(y, )

1=l

and ESE represents the geographically weighted residual sum of squares:

2

RS88Y = Zwu (v, — y])

j=1

FINAL THOUGHTS

Spatial autocorrelation and statistical heterogeneity hold the ability to compare two regions and
to characterize texture differences. Quite often, distant pairs are less similar (competitive spatial
processes) than closer ones (cooperative spatial processes). Probably, some landscapes can exhibit
extremely irregular shapes. As a consequence, indices of spatial autocorrelation calculated globally
and locally are valuable for descriptive purposes because they provide a measure of how similar
objects are to their spatial neighbors. This spatial dependence impact 1s also crucial on spatial
inference interpolation such as Kriging, spatial simulation and geographical regression.

The word Kriging is synonymous with the optimal prediction of unknown values from observed
data at known locations (Journel and Huijbregts, 1978; Aunon and Hernandez, 2000). After the
variogram has been defined, the algebraic relationship between values at different distances is used
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to estimate Kriging weights. Mostly, four factors are taken into account in assigning weights to the
spatial observations: closeness to the location being estimated, redundancy between data values
{clustering), anisotropy (direction) and magnitude of continuity.

Generally, the estimation of missing spatial data when undertaking GWE for discrete data,
Kriging and spatial autocorrelation lead to a close linkage among them: the missing data i1ssue
(Griffith and Layne, 199%9). Spatial autocorrelation can also be used with spatial prediction. For
instance, a high degree of spatial autocorrelation suggests an equally likely chance of predicting
neighboring values. Also, a low value reveals a low level of spatial data redundancy.

Eight relationships emerge among these concepts (Griffith and Layne, 199%9):

*  Spatial autecorrelation is the progenitor of Kriging and spatial regression models

¢ Spatial autocorrelation itself seeks description and diagnosis while spatial regression and
Kriging seeks prediction

+ The variance-covariance matrix 1s included within spatial regression and Kriging

*  Once a variogram is fitted to the sample data, Kriging can be used to estimate de variable at
locations where data are not sampled

«  With spatial regression models, the missing data can be regarded as an interactive re-estimation
solution fashioned with updated variable imputations based on R? in Maximum Likelihood
(ML), OLS and bootstrap procedures

*  Kriging is primarily concerned with more or less continuous attributes while spatial regression
involves aggregations of phenomena into discrete regions such as areal units

*  While autoregressive and trend surface methods assume that samples follow an underlying
trend plus the random residuals, in Universal Kriging the trend component 1s modeled as a
linear combination of functions of the spatial coordinates and Ordinary Kriging accounts for
local variations of the mean

*  Since, Kriging honors data at sampled locations, spatial regression residuals are not precisely

similar to Kriging estimation errors
APPENDIX

Table Al: The Pb dataset (99 samples): Contamination data of Aljustrel, Portugal, within a global area of 4500 mx 2950 m

X Y Fb X Y Fb X Y Fb X Y Fb
650 1050 37.5 3560 800 45.0 3800 1850 53.8 2450 200 723
4050 2200 37.5 50 550 46.5 1400 1050 79.3 1300 2250 298
4400 1350 55.5 2350 500 104.7 3950 2050 38.7 2660 100 64.7
650 100 38.5 1650 500 65.4 2100 150 37.6 1100 400 45.0
2900 2500 36.3 300 2100 43.5 350 0 40.1 3950 450 60.1
1200 2400 25.8 1800 700 90.0 800 1600 34.9 2100 1750 34.8
1550 2850 45.2 1550 550 78.4 1250 1550 38.4 2600 1400 99.8
2200 2500 38.2 4350 2450 523 250 2200 35.6 3600 750 58.4
800 2550 25.5 250 2600 29.9 400 100 34.6 3400 2250 38.4
4300 2200 43.1 950 1650 44.3 1250 23580 36.2 1500 350 99.3
1700 1350 236.0 2850 150 66.4 4250 2650 40.7 1700 450 46.8
1000 1750 5.7 4550 50 41.9 2600 1900 53.9 600 1950 30.1
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Tahble Al: Contitmed

X Y Fb X Y Fb X Y Fb X Y Fb
2100 3560 60.6 1350 200 73.4 500 1850 38.2 2200 1650 46.6
3000 1950 29.8 1950 2300 34.4 1500 2250 39.0 3560 250 513
2550 2350 43.6 700 450 258 1600 250 91.2 650 1200 34.6
2750 1800 49.7 3800 2200 52.4 2550 100 50.3 2350 1950 43.1
2150 600 100.4 2250 600 111.8 1650 2250 27.9 750 1650 34.3
700 600 275 3200 2300 39.7 4100 1700 59.2 900 950 36.7
2100 100 46.3 3550 400 51.6 3300 400 78.0
3200 1450 61.5 3150 2950 26.0 1150 1550 29.6
3450 2700 42.3 3350 50 54.9 4050 1850 53.3
2650 750 133.8 2200 2600 39.4 2600 800 153.1
1750 1800 46.1 3750 1250 79.5 4500 1000 57.0
1600 2500 27.3 1550 2000 43.2 2600 850 155.4
2500 0 5l.4 2050 1950 32.2 2750 1200 74.6
4250 2450 38.6 1350 750 49.7 1400 2700 25.5
300 1650 28 2350 2200 38.9 150 2450 30.8

Univariate statistics

107

(©) Samples : 99 Minimum : 25.5
Mean :53.59 5% 1258
— Variance :999.96 15% :30.1
Z0s SD :31.62 25% :36.2
1T Coef. var. : 0.59 Median  :43.6
75% :59.2 Anomalous
E 85% :78.0 Large maximum : 112.6
0.04 i . 95% : 111.8 Minimum 1254
25.5 130.75 236.0 Maximum :236.0 Small maximum : 78.1
Pb2 Cocf. skewness : 2.88  Minimum 2 9.1

Fig. Al: Histogram, cumulative distribution functions, box-plot and descriptive statistics of the Pb
dataget. Clearly, it follows a positive asymmetric distribution

Y P2 360
F216.86
L197.73
1 178.59
' 159.45
140.32
121,18
102,05
18291
63.77
44.64
25.5

o X
Axis coordinates X: [50.0; 4550.0]
Y: [-775.0; 3725.0]
Z:[-2250.0; 2250.0]

Fig. A2: Spatial distribution of the Pb contamination dataset. The attribute has a more continuous

spatial pattern from East to West, thus it 1s anisotropic
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Fig. A3: Experimental variograms according to four directions plus the omnidirectional one with

spherical models fitted

Fig. A4 Ordinary Kriging estimation (a) and Kriging variance (b) maps. As an uncertainty
measure, OK variance reflects the geometry of the observations but not the variability

among them
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